ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 12, Iss 01, 2023

Thermal Performance And Analysis of a Solar water Heating System With Heat Pipe Evacuated Tube Collector M Sai Krishna¹, P Gandhi²

¹ PG Student, Department of Mechanical Engineering, Chalapathi Institute of Technology, Guntur, Andhra Pradesh, India

² Assistant Professor, Department of Mechanical Engineering, Chalapathi Institute of Technology, Guntur, Andhra Pradesh, India

Abstract: Renewable energy is mostly used by many countries now days for energy generation and save our environment as well as save conventional fuel resources. Solar energy is one of the most efficient, clean and affordable energy alternatives available today. With the current concerns about global warming and ever-increasing energy rates, countries are seriously looking for domestic and industrial usage of solar energy. Cooling, refrigeration, and air conditioning processes are considered essential needs and major requirements for all human beings in our world today.

In the present study, a detail review of the application of solar energy by using evacuated tube collector with heat pipe technology for hot water generation has been carried out. The utilization of solar energy for hot water generation system by Evacuated Tube Collector would help in improvement of energy economics, energy consumption and energy efficiency.

In this project thermal analysis is to determine the temperature distribution and heat flux for glass tubes. This technology used mainly for hot water generation which is further used for different purpose compared to any other collector or technology because of higher efficiency, less heat loss, less friction and many more advantages.

Key Words: Solar Water Heater, Thermal Performance, evacuated Tube Collector, Analysis, PRO-E Design Software

1. Introduction

Solar water heating (SWH) is the conversion of sunlight into heat for water heating using a solar thermal collector. A variety of configurations are available at varying cost to provide solutions in different climates and latitudes. SWHs are widely used for residential and some industrial applications.

A sun-facing collector heats a working fluid that passes into a storage system for later use. SWH are active (pumped) and passive (convection-driven). They use water only, or both water and a working fluid. They are heated directly or via light-concentrating mirrors. They operate independently or as hybrids with electric or gas heaters. In large-

scale installations, mirrors may concentrate sunlight onto a smaller collector.

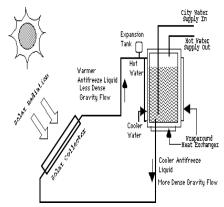


FIG 1: SOLAR WATER HEATING

1.1 Working Principle

Solar water heating systems include storage tanks and solar collectors. There are two

6202

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 12, Iss 01, 2023

types of solar water heating systems: active, which have circulating pumps and controls, and passive, which don't.

1.1.1 ACTIVE SOLAR WATER HEATING SYSTEMS

There are two types of active solar water heating systems:

Direct circulation systems

Pumps circulate household water through the collectors and into the home. They work well in climates where it rarely freezes.

Indirect circulation systems

Pumps circulate a non-freezing, heattransfer fluid through the collectors and a heat exchanger. This heats the water that then flows into the home. They are popular in climates prone to freezing temperatures.

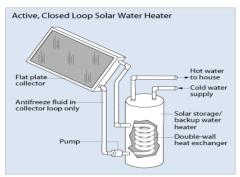


Fig 2: Active Closed Loop Solar Water Heater

1.1.2 PASSIVE SOLAR WATER HEATING SYSTEMS

Passive solar water heating systems are typically less expensive than active systems, but they're usually not as efficient. However, passive systems can be more reliable and may last longer. There are two basic types of passive systems:

Integral collector-storage passive systems

These work best in areas where temperatures rarely fall below freezing. They also work well in households with significant daytime and evening hot-water needs.

Thermosyphon systems

Water flows through the system when warm water rises as cooler water sinks. The collector must be installed below the storage tank so that warm water will rise into the tank. These systems are reliable, but contractors must pay careful attention to the roof design because of the heavy storage tank. They are usually more expensive than integral collector- storage passive systems.

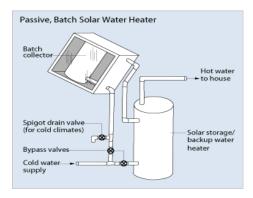


Fig 3: Passive Batch Solar Water Heater

1.1.3 Evacuated-tube solar collectors

They feature parallel rows of transparent glass tubes. Each tube contains a glass outer tube and metal absorber tube attached to a fin. The fin's coating absorbs solar energy but inhibits radiative heat loss. These collectors are used more frequently for U.S. commercial applications.

Solar water heating systems almost always require a backup system for cloudy days and times of increased demand. Conventional storage water heaters usually provide backup and may already be part of the solar system package. A backup system may also be part of the solar collector, such as rooftop tanks with thermosyphon systems. Since an integral-collector storage system already stores hot water in addition to collecting solar heat, it may be packaged with a tankless or demand-type water heater for backup.

Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 12, Iss 01, 2023

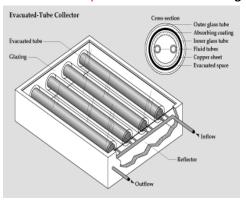
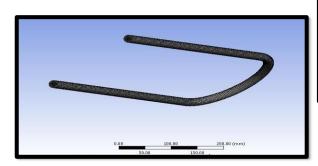


Fig 4: Evacuated tube Collector


2. MODELLING AND ANALYSIS

The solar water heater is modelled using the given specifications and design formula from data book. The isometric view of solar water heater is shown in below figure. The solar water heater outer casing body profile is sketched in sketcher and then it is revolved up to 360° angle using revolve option and tubes are designed and assemble to in solar water heater using extrude option.

Fig 5: Solar Water Heater 3D Model 2.1 CFD ANALYSIS OF SOLAR WATER HEATER

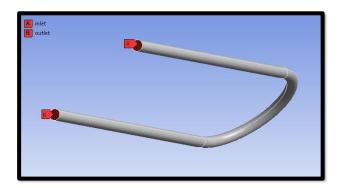

Mass Flow Rate - 0.006, 0.008, 0.015 Kg/s

Fig 6:

Fig 7:

Fig 8:

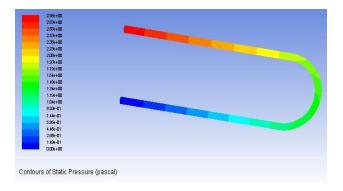


Fig 9: PRESSURE MASS FLOW RATE – 0.006m/s

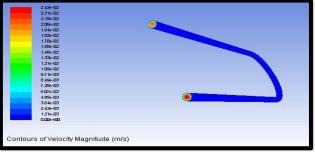


Fig 10: VELOCITY MASS FLOW RATE
- 0.006m/s

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 12, Iss 01, 2023

3. THERMALANALYSIS OF SOLAR **WATER HEATER**

MASS FLOW RATE

(kg/s)	Mass Flow Rate
0.0059999996	inlet
-2.503412	interior- <u>m</u> sbr
-0.0060066455	outlet
(wallmsbr
-6.6459179e-86	 Net

HEAT TRANSFER RATE

(w)	Total Heat Transfer Rate
1878.1362	inlet
-1880.2151	outlet
6	wallmsbr
-2.0788574	Net

Table 1: For 0.006 Kg/s Mass flow rate & **Heat Transfer Rate** Performance

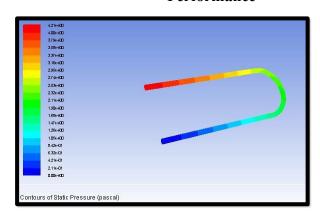


Fig 11: Pressure Mass Flow Rate 0.008 Kg/s

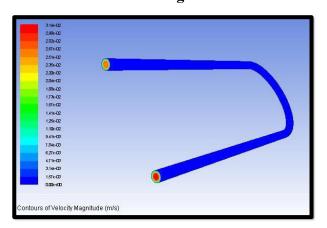


Fig 12: VELOCITY MASS FLOW RATE -0.008kg/s

MASS FLOW RATE

(kg/s)	Mass Flow Rate
0.0080000013 -3.3359661 -0.0079953074 0	inlet interiormsbr outlet wallmsbr
J. 6038650a d	Not

HEAT TRANSFER RATE

(w)	Total Heat Transfer Rate
2504.1824 -2502.7114 6	inlet outlet wallmsbr
1.4709473	Net

Table 2: For 0.008 Kg/s Mass flow rate & **Heat Transfer Rate Performance**

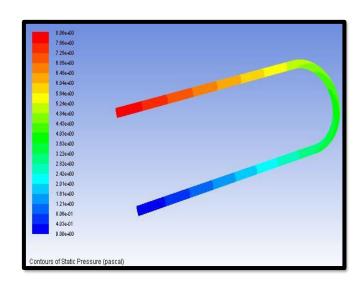


Fig 13: Pressure Mass Flow Rate 0.015 Kg/s

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 12, Iss 01, 2023

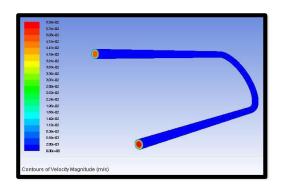


Fig 14: VELOCITY MASS FLOW RATE - 0.015kg/s

MASS FLOW RATE

(kg/s)	Mass Flow Rate
0.014999997 -6.2576375 -0.014996917	inlet interiormsbr outlet
9	wallmsbr
3.0798838e-06	Net

HEAT TRANSFER RATE

(w)	Total Heat Transfer Rate
4695.3403 -4694.3867	inlet outlet
	msbr
0.95361328	Net

4. RESULTS & CONCLUSIONS

Comparing the thermal properties of the water heaters, the following results are obtained.

Copper material properties

Thermal conductivity	=	385w/m-k		
Specific heat	-	0.385j/g ⁰ C		
Density	=	$0.00000776 kg/mm^{3}$		
Aluminium material properties				
Thermal conductivity	=	210w/m¦k		
Specific heat	-	0.9000j/g ⁰ C		
Density	-	$0.0000026989 kg/mm^3$		
Aluminium alloy 6061 material properties				
Thermal conductivity	=	180w/m-k		
Specific heat	-	0.896j/g ⁰ C		
Density	=	0.00000270kg/mm ³		

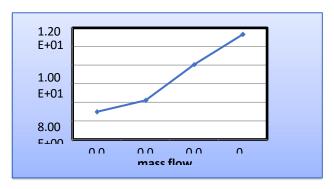


Fig 15: PRESSURE PLOT GRAPH

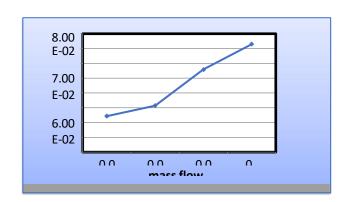


Fig 16: VELOCITY PLOT GRAPH

Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 12, Iss 01, 2023

Table 3: CFD ANALYSIS

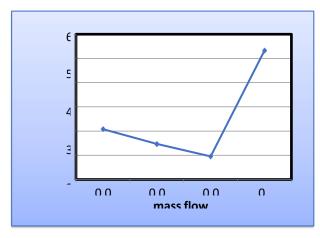


Fig 17:MASS FLOW RATE GRAPH

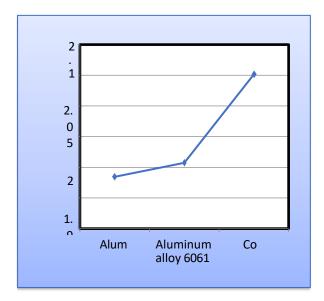


Fig 18: HEAT TRANSFER RATE PLOT

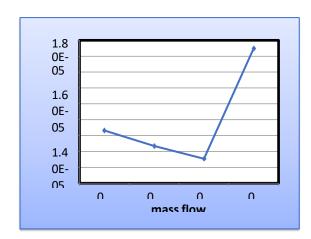


Fig 19: MASS FLOW RATE GRAPH

Flow rates	Pressur e (Pa)	Velocity (m/s)	Mass flow rate	Heat transfer
(Kg/s)			(kg/s)	rate (W)
0.006	2.98e+0	2.43e-02	6.6459e-	2.0788574
	0		06	
0.008	4.21e+0	3.14e-02	4.6938e-	1.4709473
	0		06	
0.015	8.06e+0	5.59e-02	3.07988e-	0.9536132
	0		06	8
0.02	1.13e+0	7.29e-02	1.69929e-	5.3261719
	1		05	

Table 4: THERMAL ANALYSIS

Material	Temperature (⁰ C)		Heat flux (w/mm ²)
	Max	Min	
Aluminum	100	89.189	1.8845
Aluminum alloy	100	90.041	1.9072
6061			
Copper	100	95.191	2.0515

5. CONCLUSIONS

In this thesis the steam flow in solar water heater tubes is modelled using PRO-E design software. The thesis will focus on thermal and CFD analysis with different flow rates (0.006, 0.008, 0.015& 0.02m/s). Thermal analysis done for the solar water heater by aluminium, aluminium alloy 6061& copper at water heat transfer coefficient values.

By observing the CFD analysis the pressure drops, velocity, mass flow rate & heat transfer rate increases by increasing the inlet flow rates.

By observing the thermal analysis, Heat flux

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 12, Iss 01, 2023 value is more for copper material than aluminium and aluminium alloy 6061.

So, we can conclude the copper material is better for solar water heater.

REFERENCES

- [1]Badar, A.W., Buchholz, R., Ziegler, F., 2012. Single and two-phase flow modelling and analysis of a Coaxial vacuum tube solar collector. Sol. Energy 86 (1), 175–189.
- [2]Zambolin E, Del Col D. "Experimental analysis of thermal performance of flat plate and evacuated tube Solar collectors in stationary standard and daily conditions", Solar Energy. 2010, 84: 1382-1396.
- [3]Zambolin E, Del Col D. "An improved procedure for the experimental characterization of optical Efficiency in evacuated tube solar collectors", Renewable Energy.2012, 43: 37-46.
- [4]Morrison G, Budihardjo I, Behnia M. Water-in-glass evacuated tube solar water heaters. Sol Energy 2004; 76:135–40.
- [5] Zubriski S E, Dick K. Measurement of the efficiency of evacuated tube solar collectors under various operating conditions. College Publishing; 2012.p. 114–130.

