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ABSTRACT

Diagnostics for lung cancer in its early stages and therapy monitoring for lung cancer depend
heavily on medical imaging technologies. For the purpose of detecting lung cancer, a number
of medical imaging modalities, including computed tomography, magnetic resonance imaging,
positron emission tomography, chest X-ray, and molecular imaging approaches, have been
thoroughly examined. Some of the disadvantages of these systems include their inability to
automatically categorize cancer images, making them inappropriate for use in patients with
other illnesses. The development of a sensitive and precise method for the early diagnosis of
lung cancer is desperately needed. One of the areas of medical imaging that is expanding the
fastest is deep learning, with quickly developing applications involving textural and medical
image-based data modalities. Medical imaging technologies based on deep learning can help
clinicians identify and categorize lung nodules more rapidly and precisely. Consequently, the
sophisticated CNN model modifications are implemented in this study for the purpose of
detecting lung cancer from chest scan images. The suggested CNN model outperforms the
state-of-the-art support vector machine (SVM) classifier in machine learning when it comes to
accurately classifying benign and malignant, or normal and cancerous, tissues. Furthermore,
the quality metrics obtained reveal the higher performance of the suggested deep CNN model
in supporting the experts in an improved diagnosis.

Keywords: Lung Cancer Diagnostics, Deep Learning, Chest X-Ray, Magnetic Resonance
Imaging,

1. INTRODUCTION

Lung cancer is the primary cause of cancer death worldwide, with 2.09 million new cases and
1.76 million people dying from lung cancer in 2018 [1]. Four case-controlled studies from
Japan reported in the early 2000s that the combined use of chest radiographs and sputum
cytology in screening was effective for reducing lung cancer mortality. In contrast, two
randomized controlled trials conducted from 1980 to 1990 concluded that screening with chest
radiographs was not effective in reducing mortality in lung cancer [2, 3]. Although the efficacy
of chest radiographs in lung cancer screening remains controversial, chest radiographs are more
cost-effective, easier to access, and deliver lower radiation dose compared with low dose
computed tomography (CT). A further disadvantage of chest CT is excessive false positive (FP)
results. It has been reported that 96% of nodules detected by low-dose CT screening are FPs,
which commonly leads to unnecessary follow-up and invasive examinations. Chest
radiography is inferior to chest CT in terms of sensitivity but superior in terms of specificity.
Taking these characteristics into consideration, the development of a computer-aided diagnosis
(CAD) model for chest radiograph would have value by improving sensitivity while
maintaining low FP results [4].
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Many computer-aided detection (CAD) systems have been extensively studied for lung cancer
detection and classification [5, 6]. Compared to trained radiologists, CAD systems provide
better lung nodules and cancer detection performance in medical images. Generally, the CAD-
based lung cancer detection system includes four steps: image processing, extraction of the
region of interest (ROI), feature selection, and classification. Among these steps, feature
selection and classification play the most critical roles in improving the accuracy and sensitivity
of the CAD system, which relies on image processing to capture reliable features. However,
benign, and malignant nodule classification is a challenge. Therefore, a rapid, cost-effective,
and highly sensitive deep learning-based CAD system for lung cancer prediction is urgently
needed.

2. LITERATURE SURVEY

The development of malignant cells in the lungs is known as lung cancer. Overall men and
women's mortality rates have increased as a result of growing cancer incidence. Lung cancer
is a disease wherein the cells in the lungs quickly multiply. Lung cancer cannot be eradicated,
but it can be reduced [7]. The number of people affected with lung cancer is precisely equal to
the number of people who smoke continuously. Lung cancer treatment was evaluated using
classification approaches such as Naive Bayes, SVM, Decision Tree, and Logistic Regression.
Pradhan et al. [8] conduct an empirical evaluation of multiple machine learning methods that
can be used to identify lung cancer using loT devices. A survey of roughly 65 papers
employing machine learning techniques to forecast various diseases was conducted in this
study. The study focuses on a variety of machine learning methods for detecting a variety of
diseases in order to identify a gap in prospective lung cancer detection in medical IoT. Deep
residual learning is used by Bhatia et al. [9] to identify lung cancer from CT scans. With the
UNet and ResNet algorithms, we propose a series of pre-processing approaches for
emphasising cancer-prone lung regions and retrieving characteristics. The extracted features
are fed through several classifiers, namely Adaboost and Random Forest, and the individual
predictions are ensembled to calculate the likelihood of a CT scan becoming cancerous.

Without learning inadequate human information, Shin et al. [10, 11] use deep learning to
investigate the characteristics of cell exosomes and determine the similarities in human plasma
extracellular vesicles. The deep learning classifier was tested with exosome SERS data from
regular and lung cancer cell lines and was able to categorise them with 95% efficiency. The
deep learning algorithm projected that 90.7% of patients' plasma exosomes were more similar
to lung cancer cell extracellular vesicles than the mean of healthy controls in 43 patients,
encompassing stage 1 and II cancer patients. In the ability to forecast lung ADC subtypes,
researchers looked at four clinical factors: age, sex, tumour size, and smoking status, as well
as 40 radiomic markers. The LIFEx software was used to extract radiomic characteristics from
PET scans of segmented cancers. The clinical and radio mic variables were ranked, and a subset
of meaningful features was chosen based on Gini coefficient scores for histopathological class
relationships [12]. In the estimation of survival, a deep learning network with a tumour cell and
metastatic staging system was used to examine the dependability of individual therapy
suggestions supplied by the deep learning preservation neural network. The C statistics were
employed to evaluate the performance of the model. The computational intelligence survival
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neural network model's longevity forecasts and treatment strategies were made easier with the
use of a customer interface [13].

3. PROPOSED METHODOLOGY
3.1 Overview

A deep CNN model for lung cancer classification from CT scan images is a powerful approach
that leverages the capabilities of deep learning to automatically learn and extract relevant
features from raw image data. Here is an overview of how a deep CNN model can be used for
classifying CT scan images into normal and malignant categories:

Accuracy
Precision

Upload Image Image 5 CNN
Dataset Preprocessing Data splitting MODEL

Malignant with
Survival rate

Image

Upload test Image Preprocessing

—* Load CNN Model

Non Malignant
with Survival rate

Figure 1: Block Diagram of Proposed Model
3.2 CNN Basics

According to the facts, training and testing of proposed model involves in allowing every
source image via a succession of convolution layers by a kernel or filter, rectified linear unit
(ReLU), max pooling, fully connected layer and utilize SoftMax layer with classification layer
to categorize the objects with probabilistic values ranging from [0,1]. Convolution layer as is
the primary layer to extract the features from a source image and maintains the relationship
between pixels by learning the features of image by employing tiny blocks of source data. It’s
a mathematical function which considers two inputs like source image I(x,y, d) where x and
y denotes the spatial coordinates i.e., number of rows and columns. d is denoted as dimension
of an image (here d = 3, since the source image is RGB) and a filter or kernel with similar size
of input image and can be denoted as F (kx, ky, d).

y-Fy+1

X wky 41
Fig. 2: Representation of convolution layer process.

The output obtained from convolution process of input image and filter has a size of
C ((x —k, +1), ( y—ky,+ 1), 1), which is referred as feature map. Let us assume an input
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image with a size of 5 X 5 and the filter having the size of 3 X 3. The feature map of input
image is obtained by multiplying the input image values with the filter values.

1{1({1|0]|0
Ol0|1]11 1|01
1{1[0(0]1 >k 01110
Ol0|0]1 1 1|01
L1{1[1]0|0 3x3 kernel
5x5 image
(a)
111|100
Ofo0j1]1]1 1 1 . 313|323
1]1[0]0]1 * 1 — 2123
Oloj0]1]1 1 1 323
1{1(1|0]|0
5x5 image 3x3 kernel Feature map
(b)

Fig. 3: Example of convolution layer process (a) an image with size 5 X 5 is convolving with
3 x 3 kernel (b) Convolved feature map

3.3.1 ReLLU layer

Networks those utilizes the rectifier operation for the hidden layers are cited as rectified linear
unit (ReLU). This ReL U function G(-) is a simple computation that returns the value given as
input directly if the value of input is greater than zero else returns zero. This can be represented
as mathematically using the function max(+) over the set of 0 and the input x as follows:

G(x) = max{0, x}
3.3.2 Max pooing layer

This layer mitigates the number of parameters when there are larger size images. This can be
called as subsampling or down sampling that mitigates the dimensionality of every feature map
by preserving the important information. Max pooling considers the maximum element form
the rectified feature map.

3.3.3 Softmax classifier

Generally, as seen in the above picture softmax function is added at the end of the output since
it is the place where the nodes are meet finally and thus, they can be classified. Here, X is the
input of all the models and the layers between X and Y are the hidden layers and the data is
passed from X to all the layers and Received by Y. Suppose, we have 10 classes, and we predict
for which class the given input belongs to. So, for this what we do is allot each class with a
particular predicted output. Which mean that we have 10 outputs corresponding to 10 different
class and predict the class by the highest probability it has.
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Fig.5: Example of SoftMax classifier.

In Figure 6, and we must predict what is the object that is present in the picture. In the normal
case, we predict whether the lung is A. But in this case, we must predict what is the object that
is present in the picture. This is the place where softmax comes in handy. As the model is
already trained on some data. So, as soon as the picture is given, the model processes the
pictures, send it to the hidden layers and then finally send to softmax for classifying the
picture. The softmax uses a One-Hot encoding Technique to calculate the cross-entropy loss
and get the max. One-Hot Encoding is the technique that is used to categorize the data. In the
previous example, if softmax predicts that the object is class A then the One-Hot Encoding for:

Class Awill be [1 0 0]
Class B will be [0 1 0]
Class C will be [0 0 1]

From the diagram, we see that the predictions are occurred. But generally, we don’t know the
predictions. But the machine must choose the correct predicted object. So, for machine to
identify an object correctly, it uses a function called cross-entropy function.

So, we choose more similar value by using the below cross-entropy formula.
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Fig.6: Example of SoftMax classifier with test data.

In the above example we see that 0.462 is the loss of the function for class specific classifier.
In the same way, we find loss for remaining classifiers. The lowest the loss function, the better
the prediction is. The mathematical representation for loss function can be represented as: -

LOSS = np.sum(—=Y * np.log(Y_pred))

4. RESULTS AND DISCUSSION

Figure 7: Sample images from dataset with Non-Malignant class.

Figure 7 shows that Presents a collection of images sourced from a dataset categorized as Non-
Malignant class. Each image visibly represents lung tissue devoid of any cancerous
manifestations, serving as representative samples for this class in the dataset. Figure 8 shows
that Exhibits a series of images sourced from a dataset categorized as Malignant class. Each
image conspicuously showcases lung tissue displaying cancerous growth or abnormalities,
thereby serving as exemplars for this category within the dataset. Figure 9 shows Depicts the
visual layout of a user interface (UI) tailored for the explicit purpose of detecting instances of
lung cancer within images. This Ul encompasses various interactive elements and
functionalities aimed at facilitating the process of image-based lung cancer detection.
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Figure 8: Sample images from dataset with Malignant class.
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Figure 9: sample Ul used for Lung cancer detection from images
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Figure 10: UI shows the data after image preprocessing

Figure 10 shows Demonstrates the visual representation of data presented within the UI
subsequent to undergoing a series of preprocessing steps. These preprocessing steps typically
involve image enhancements, corrections, or feature extraction techniques aimed at optimizing
the images for subsequent analysis and detection tasks. Figure 11 shows Illustrates the
graphical depiction of the performance metrics attributed to a Support Vector Classifier (SVM)
utilized for the task of lung cancer detection. These metrics may include accuracy, precision,
recall, or Fl-score, indicating the efficacy of the SVM model in distinguishing between
cancerous and non-cancerous lung tissue. Figure 12: Exhibits a visual representation of the
confusion matrix corresponding to the performance evaluation of the SVM Classifier. This
confusion matrix offers a comprehensive breakdown of the classifier's predictive performance,
including true positive, false positive, true negative, and false negative classifications.
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Figure 11: Performance of Support vector classifier
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Figure 13: Performance evaluation of CNN Classifier
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Figure 14: Iteration wise accuracy and loss graph

Figure 13 Showcases a graphical representation of the performance evaluation metrics
associated with a Convolutional Neural Network (CNN) Classifier deployed for lung cancer
detection. This visual display highlights the CNN model's effectiveness in accurately
identifying lung cancer instances within images. Figure 14 shows Displays an iteration-wise
graphical representation of the accuracy and loss values observed during the training process
of the CNN Classifier. This graph offers insights into the model's learning progress and
convergence towards optimal performance over successive training iterations. Figure 15 shows
Portrays the visual depiction of the confusion matrix corresponding to the proposed CNN
Model's performance evaluation. This confusion matrix furnishes detailed insights into the
CNN model's classification accuracy and error rates across different classes.

CNN Model Confusion Matrix
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MALIGNANT

NON MALIGNANT

Figure 15: Confusion matrix of Proposed CNN Model
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Figure 16: Prediction of survival rate and Prediction of output using CNN Model

Figure 16 shows Showcases the visual output generated by the CNN model, encompassing the
predicted outcomes of lung cancer detection on a set of input images. This display likely
includes examples of correctly and incorrectly classified lung tissue images. Figure 17 shows
Consists of two distinct visual components; one representing the predictive estimation of
survival rates based on detected lung cancer instances, and the other presenting the general
output generated by the CNN Model. These visual outputs provide valuable insights into the
prognostic capabilities and overall performance of the CNN model. Figure 18 shows that
Presents a comparative graphical analysis between the performance metrics of the Gaussian
Naive Bayes (GNB) Classifier and the CNN Model. This comparative graph facilitates a

comprehensive evaluation of the two models' respective effectiveness in lung cancer detection
tasks

Performance Metrics Comparison Between Algorithms

100 1

40

20 Metrics

Algorithms

Figure 17: Performance Comparison graph of GNB Classifier and CNN Model.
5. CONCLUSION

In conclusion, the implementation of advanced modifications in convolutional neural network
(CNN) models for the detection of lung cancer from chest scan images represents a significant
advancement in early-stage diagnosis and monitoring of lung cancer. The proposed CNN model
exhibits superior performance in classifying benign and malignant cases, distinguishing
between normal and cancerous conditions with higher accuracy compared to conventional
machine learning approaches like support vector machine (SVM) classifiers. By harnessing the
power of deep learning, clinicians can benefit from more accurate and efficient detection and
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classification of lung nodules, enabling earlier intervention and better patient outcomes. The
incorporation of deep learning-based medical imaging tools into clinical practice enhances
diagnostic capabilities and supports medical professionals in making informed decisions for
patient care.
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