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AAbbssttrraacctt  

In the present research, we propose the Homotopy Perturbation Transform Method (HPTM), an 

efficient method for solving differential equations that combines the Laplace Transform Method 

with the Homotopy Perturbation Method (HPM). Solving linear and nonlinear partial differential 

equations, such as the heat equation, is one of its main applications. Ji-Huan He established the 

HPM technique in 1999, and M. Omran introduced the Homotopy Perturbation Transform 

technique (HPTM) in 2012. By applying HPTM, the solution process becomes more organized 

and controllable, which makes it an effective tool for solving heat equations in a variety of 

scenarios. The precise findings found in the literature were compared with the solutions. The 

outcomes demonstrate that the HPTM can effectively generate solutions that are precise, 

converge more quickly, and use less computer resources. 
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1. Introduction  

  

When expressed as partial differential equations and integral equations, real-world issues in 

scientific domains including solid state physics, plasma physics, fluid mechanics, chemical 

kinetics, and mathematical biology are typically linear or nonlinear. Numerous effective and 

straightforward techniques have been put forth and effectively used to address a wide range of 

issues within the past 20 years. Numerous approximation techniques have been developed, 

including the differential transform approach [9–10], the Laplace decomposition method [11–
12], the variational iteration technique [3–8], and the Adomian decomposition method [1-2]. He 

[13–16] initially suggested the homotopy perturbation method (HPM), a modern analytical tool 

for addressing a variety of linear and nonlinear starting and boundary value problems. It 

combines the usual homotopy and classical perturbation techniques[17-23]. Some scientists have 
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since tweaked it to provide faster convergence, more accurate findings, and less processing [24–
26]. The linear and nonlinear partial differential equations can be solved with accurate 

approximations using the HPM, VIM, and ADM methods. However, this approximation is only 

acceptable for a limited range because these methods can only satisfy boundary conditions in one 

dimension. This indicates that most analytical techniques have inherent flaws and require a 

significant amount of computational work. The Adomain decomposition approach is the most 

clear way to solve partial differential equations, but its use is limited since it requires the 

computation of complex Adomain polynomials. Due to the challenges posed by the nonlinear 

variables, the Laplace transform is completely unable to handle the nonlinear equations. We 

create a very efficient way to deal with these nonlinearities by combining the Laplace transform 

method with the homotopy perturbation method to solve these shortcomings. Numerous 

approaches, such as the Adomain decomposition technique, have been put out lately to address 

nonlinearities [27]. Moreover, the homotopy perturbation approach is coupled with the 

variational iteration method [29] and Laplace transform method [28] to provide a powerful tool 

for resolving a variety of nonlinear issues. 

This work's main goal is to suggest a fresh HPM modification in order to address the 

shortcoming. The answer is given by the proposed HPTM in a quickly convergent series, which 

might lead to a closed form solution. This method's benefit is its ability to combine two effective 

techniques for finding nonlinear equations' precise solutions. It is important to note that the 

HPTM is implemented without the use of discretization, constrictive transformations or 

assumptions, or round-off mistakes. One or two iteration stages also yield extremely precise 

results across a large range. Unlike the separation of variables technique, which requires initial or 

boundary conditions, the HPTM approach just requires the starting conditions to provide an 

analytical solution. Only the findings produced can be justified using the boundary conditions. 

The suggested approach functions effectively, and the preliminary findings are reassuring and 

trustworthy. It is important to note that the HPTM can be regarded as a major improvement over 

earlier techniques and as a substitute for more recent approaches like the Homotopy perturbation 

method, Variational iteration method, and Adomain's decomposition method. The effectiveness 

and dependability of the homotopy perturbation transform approach are demonstrated using a 

number of instances.  

The efficiency of the Homotopy Perturbation Transform Method (HPTM) in solving heat 

equations with starting and boundary conditions has been examined in the current work. An 

alternative set of numerical examples is provided in the section under "implementation of the 

method." Lastly, they provide a few closing observations. 

2. Analysis of Homotopy Perturbation Transform Method  

To illustrate the basic concept of this method, we consider the differential equation: 

),(),(),(),( txgtxNutxuRtxuD         (2.1) 
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with the initial conditions: 

  )()0,(),()0,( xfxuxhxu t   

where 
t

D



 is the first order linear differential operator, R is the differential operator of less 

order than D, N is the general nonlinear differential operator and ),( txg  is  the source term.  

Taking the Laplace transform L on both sides of equation (2.1), we have  

  )],([)],([]),([]),([ txgLtxNuLtxuLtxuDL xxt          (2.2) 

Using the differentiation property of the Laplace transform, we obtained 

)],([
1

]),([
1

)],([
1)(

)],([ txNuL
s

txuL
s

txgL
ss

xf
txuL xx    (2.3) 

Operating with the inverse Laplace transform on both sides of equation(2.3), we have  

      



   )],(),([
1

),(),( 1
txNutxuL

s
LtxGtxu xx        (2.4) 

where ),( txG  is the term arising from the source term and the prescribed initial conditions. Now, 

applying the Homotopy perturbation method(HPM), we have, 

        


0

),(),(
n

n
n

txuptxu           (2.5) 

and the nonlinear term can be decomposed as  

  


0

)(),(
n

n
n

uHptxuN           (2.6) 

For some He’s polynomial )(uHn  that are given by  
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Substituting equations (2.5) and (2.6) in Equation (2.4), we have  
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Which is the coupling of the Laplace transform and the HPM using He’s polynomials.  
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Comparing the coefficient of like powers of p, the following approximation are obtained. 

 ),(),(: 0
0

txGtxup   

 



   )](),([
1

),(: 00
1
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 
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
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1

),(: 11
1

2
2

uHtxuL
s

Ltxup xx          (2.9) 

 



   )](),([
1

),(: 22
1

3
3

uHtxuL
s

Ltxup xx  

and so on. Hence the approximate solution of Eq.(2.1) is given by 

 ....),(),(),(),(lim),( 210
1




txutxutxutxutxu
p

 

3. Homotopy Perturbation Method and He’s polynomial 

The homotopy perturbation method is a technique for solving functional equations of various 

kinds in the form: 

fuNu  )(           (2.10) 

Where N is nonlinear operator from Hilbert space H to H, u is unknown function and f is known 

function in H. 

Consider Eq.(2.10) in the form  

   )()()( uNxfuuL          (2.11) 

with solution )(xu . As possible remedy, we can define homotopy ),( puH  as follows: 

   )()1,(),()0,( uLuHuFuH   

Where )( pF is an integral operator with known solution 0u  which can be obtained easily, 

typically we may choose a convex homotopy in the form 

   )()()1(),( upLuFppuH           (2.12) 

And continuously trace implicitly defined curve from starting point ),()0,( 0 uFuH   to the 

solution function ),()1,( uFuH   the embedding parameter p monotonically increase from zero 
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to unit as the trivial problem 0)( uF is continuously deformed form to original problem  

0)( uL , the embedding parameter, ]1,0[p  can be considered as an expanding parameter 

          ....2
2

10  uppuuu            (2.13) 

When 1p , Eq.(2.12) corresponds to Equations(2.11) and (2.13) becomes the approximate of 

Eq.(2.11).  

   i. e.,   ....lim 210
1




uuuuu
p

           (2.14) 

4. Numerical Applications  

 

i) Linear Schrodinger equation 

Consider the linear Schrödinger equation from A. M. Wazwaz [30]  

0 xxt iuu              (2.15) 

with the initial condition   

                                   )2cosh(1)0,( xxu                         (2.16) 

Where ),( txu is a complex function and 12 i . 

Solution: Taking the Laplace transform on both sides of Eq. (2.15) subject to the initial 

condition (2.16), we have 

][
1)2cosh(1

)],([ xxuLi
ss

x
txuL 


           (2.17) 

The inverse Laplace transform of Eq.(2.17) is  

   



  ][
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s
Lxtxu           (2.18) 

Now applying the HPM, we get 
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Comparing the coefficients of same powers of p, we have 
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and so on. Therefore, the solution ),( txu is given by 
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which is the exact solution.  

ii)  Consider linear homogeneous diffusion equation  

0,10,  txuuu xxt           (2.20) 

      with the initial condition   

                                   10),sin()0,(  xxxu                    (2.21) 

      and boundary conditions are given by  

    0,0),1(),0(  ttutu           (2.22) 

      Where ),( txu is a complex function and 12 i . 

Solution: Taking the Laplace transform on both sides of Eq.(2.20) subject to the initial condition 

(2.21), we have 

][
1)sin(

)],([ xxuuL
ss

x
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           (2.23) 

The inverse Laplace transform of  Eq.(2.22) is  
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
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Now applying the HPM, we get 
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Comparing the coefficients of same powers of p, we have 
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and so on. Therefore, the solution ),( txu is given by 
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s the exact solution.  

iii)  Consider non-homogeneous diffusion equation  

0,0,3  txxuu xxt            (2.26) 

with the initial condition   

                                    xxxu 0,sin)0,(                      (2.27) 

and boundary conditions are given by  

    0,),(,0),0(  tttutu           (2.28) 

       

Solution: Taking the Laplace transform on both sides of Eq.(2.26) subject to the initial condition 

(2.27), we have 

]3[
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The inverse Laplace transform of  Eq.(2.29) is  
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Now applying the HPM, we get 

         













 







]),(3[

1
)sin(),(

0

1

0 n
xxn

n

n
n

n
xtxupL

s
Lpxtxup   (2.31) 

Comparing the coefficients of same powers of p, we have 
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and so on. Therefore, the solution ),( txu is given by 
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which is the required exact solution available in the literature.   

iv)  Consider Heat equation  

0,10,  txuu xxt            (2.32) 

with the initial condition   

                                   10),2sin(3)0,(  xxxu                   (2.33) 

and boundary conditions are given by  

    0,0),1(),0(  ttutu                         (2.34) 

       

Solution: Taking the Laplace transform on both sides of Eq.(2.32) subject to the initial condition 

(2.33), we have 
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The inverse Laplace transform of  Eq.(2.35) is  
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Now applying the HPM, we get 
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Comparing the coefficients of same powers of p, we have 
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and so on. Therefore, the solution ),( txu is given by 
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which is the required exact solution available in the literature.   

3. Conclusion  

 

Using He's polynomials, the homotopy perturbation transform technique (HPTM) has a 

straightforward solution process. When compared to the traditional homotopy perturbation 

approach, it can reduce the amount of computing work. Furthermore, no random beginning 

estimate is needed. In conclusion, we found that the Homotopy perturbation transform approach 

fully utilizes all other available techniques. 
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