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Abstract

In the present research, we propose the Homotopy Perturbation Transform Method (HPTM), an
efficient method for solving differential equations that combines the Laplace Transform Method
with the Homotopy Perturbation Method (HPM). Solving linear and nonlinear partial differential
equations, such as the heat equation, is one of its main applications. Ji-Huan He established the
HPM technique in 1999, and M. Omran introduced the Homotopy Perturbation Transform
technique (HPTM) in 2012. By applying HPTM, the solution process becomes more organized
and controllable, which makes it an effective tool for solving heat equations in a variety of
scenarios. The precise findings found in the literature were compared with the solutions. The
outcomes demonstrate that the HPTM can effectively generate solutions that are precise,
converge more quickly, and use less computer resources.
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1. Introduction

When expressed as partial differential equations and integral equations, real-world issues in
scientific domains including solid state physics, plasma physics, fluid mechanics, chemical
kinetics, and mathematical biology are typically linear or nonlinear. Numerous effective and
straightforward techniques have been put forth and effectively used to address a wide range of
issues within the past 20 years. Numerous approximation techniques have been developed,
including the differential transform approach [9-10], the Laplace decomposition method [11—
12], the variational iteration technique [3—8], and the Adomian decomposition method [1-2]. He
[13—16] initially suggested the homotopy perturbation method (HPM), a modern analytical tool
for addressing a variety of linear and nonlinear starting and boundary value problems. It
combines the usual homotopy and classical perturbation techniques[17-23]. Some scientists have
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since tweaked it to provide faster convergence, more accurate findings, and less processing [24—
26]. The linear and nonlinear partial differential equations can be solved with accurate
approximations using the HPM, VIM, and ADM methods. However, this approximation is only
acceptable for a limited range because these methods can only satisfy boundary conditions in one
dimension. This indicates that most analytical techniques have inherent flaws and require a
significant amount of computational work. The Adomain decomposition approach is the most
clear way to solve partial differential equations, but its use is limited since it requires the
computation of complex Adomain polynomials. Due to the challenges posed by the nonlinear
variables, the Laplace transform is completely unable to handle the nonlinear equations. We
create a very efficient way to deal with these nonlinearities by combining the Laplace transform
method with the homotopy perturbation method to solve these shortcomings. Numerous
approaches, such as the Adomain decomposition technique, have been put out lately to address
nonlinearities [27]. Moreover, the homotopy perturbation approach is coupled with the
variational iteration method [29] and Laplace transform method [28] to provide a powerful tool
for resolving a variety of nonlinear issues.

This work's main goal is to suggest a fresh HPM modification in order to address the
shortcoming. The answer is given by the proposed HPTM in a quickly convergent series, which
might lead to a closed form solution. This method's benefit is its ability to combine two effective
techniques for finding nonlinear equations' precise solutions. It is important to note that the
HPTM is implemented without the use of discretization, constrictive transformations or
assumptions, or round-off mistakes. One or two iteration stages also yield extremely precise
results across a large range. Unlike the separation of variables technique, which requires initial or
boundary conditions, the HPTM approach just requires the starting conditions to provide an
analytical solution. Only the findings produced can be justified using the boundary conditions.
The suggested approach functions effectively, and the preliminary findings are reassuring and
trustworthy. It is important to note that the HPTM can be regarded as a major improvement over
earlier techniques and as a substitute for more recent approaches like the Homotopy perturbation
method, Variational iteration method, and Adomain's decomposition method. The effectiveness
and dependability of the homotopy perturbation transform approach are demonstrated using a
number of instances.

The efficiency of the Homotopy Perturbation Transform Method (HPTM) in solving heat
equations with starting and boundary conditions has been examined in the current work. An
alternative set of numerical examples is provided in the section under "implementation of the
method." Lastly, they provide a few closing observations.

2.  Analysis of Homotopy Perturbation Transform Method
To illustrate the basic concept of this method, we consider the differential equation:

Du(x,t)+ Ru(x,t) + Nu(x,t) = g(x,1t) 2.1)
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with the initial conditions:

u(x,0) = h(x), u, (x,0) = f(x)

0
where D= > is the first order linear differential operator, R is the differential operator of less

order than D, N is the general nonlinear differential operator and g(x,?) is the source term.

Taking the Laplace transform L on both sides of equation (2.1), we have
LIDu(x,t); 1+ L{u(x,1) o 1+ LINu(x, )] = L[ g (x,1)] (2.2)
Using the differentiation property of the Laplace transform, we obtained

pACY) (X)

1 1
Llu(x,t)] = +— L[g( t)]—;L[u(x,t)xx]—;L[Nu(x,t)] (2.3)

Operating with the inverse Laplace transform on both sides of equation(2.3), we have
u(x,t) =G(x,0)— L [1 Llu(x,1) ., + Nu(x, z)]} (2.4)
S

where G(x,t) is the term arising from the source term and the prescribed initial conditions. Now,
applying the Homotopy perturbation method(HPM), we have,

u(x,t) = Ep"un (x,1) (2.5)
n=0

and the nonlinear term can be decomposed as

Nu(xt)= S p"H, () (2.6)

n=0

For some He’s polynomial H, (u) that are given by

n
H, (ug,uy,uy,....u,) = 10 { [Zp u; ﬂ ,n=0,123.... (2.7)
H!Gp i=0 =0

Substituting equations (2.5) and (2.6) in Equation (2.4), we have

> pu n (60 =G(x,1) = p( LL[ZP Up (X,1) o + %p"Hn(u)]D (2.8)

n=0 n=0 n=0

Which is the coupling of the Laplace transform and the HPM using He’s polynomials.
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Comparing the coefficient of like powers of p, the following approximation are obtained.

pY ug(x,1)=G(x,1)

p] uy(x,1) = ~L! [% Llug(x,t), + Hy(u)]

Py (x,t)=—L" [1 Lluy (x,1) ., + H{ ()] (2.9)
A

p3 uzy(x,t) = L [% Luy(x,t),, +H, (u)]}

and so on. Hence the approximate solution of Eq.(2.1) is given by

u(x,t)=hm u(x,t) =ug(x,1) +u; (x, 1) +uy (x,1) +....
p—l

3. Homotopy Perturbation Method and He’s polynomial

The homotopy perturbation method is a technique for solving functional equations of various
kinds in the form:

u—-Nu)=f (2.10)

Where N is nonlinear operator from Hilbert space H to H, u is unknown function and f is known
function in H.

Consider Eq.(2.10) in the form
Lu)=u— f(x)—Nu) (2.11)
with solution u(x) . As possible remedy, we can define homotopy H (u, p) as follows:
Hu,0)=Fw), Hu,1)=Lu)

Where F(p)is an integral operator with known solution u, which can be obtained easily,

typically we may choose a convex homotopy in the form
H(u, p)=1—-p)F(u)+ pL(u) (2.12)

And continuously trace implicitly defined curve from starting point H(u(,0) = F(u), to the

solution function H (u, 1) = F(u), the embedding parameter p monotonically increase from zero
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to unit as the trivial problem F(u)=0is continuously deformed form to original problem

L(u) = 0, the embedding parameter, p € [0, 1] can be considered as an expanding parameter

u=ugy+ pu; + p2u2 +.... (2.13)

When p — 1, Eq.(2.12) corresponds to Equations(2.11) and (2.13) becomes the approximate of
Eq.(2.11).

1. ., U= Im u= Ug +u1 +u2 +.. (214)
p—1

4. Numerical Applications

i) Linear Schrodinger equation
Consider the linear Schrodinger equation from A. M. Wazwaz [30]
u, +iu,, =0 (2.15)
with the initial condition
u(x,0) =1+ cosh(2x) (2.16)
Where u(x,t) is a complex function and iZ=-1.

Solution: Taking the Laplace transform on both sides of Eq. (2.15) subject to the initial
condition (2.16), we have

Lu(x, 0] = 2080 L0, 2.17)

s s
The inverse Laplace transform of Eq.(2.17) is

u(x,t) =1+ cosh(2x) — L™ [1 iLu,, ]} (2.18)
s
Now applying the HPM, we get

S p"u,, (x,1)=1+ cosh(2x) - p[r1 FiL[( > p"u, (x, r))xx]D (2.19)
Comparing the coefficients of same powers of p, we have

p° 1ug(x,1) =1+ cosh(2x)
pliu(xt)=-L" [liL[(uo(x,t)xx} = (=4i1)cosh(2x)
S
(—4i1)* cosh(2x)
21

(-4it)® cosh(2x)
3!

p2 SUy(x,0) = ! {L‘L[(ul(x, t)xx:|
s

gl 1.
p3 tuz(x,t)=-L 1{; zL[(uz(x,t)xx}
and so on. Therefore, the solution u(x,#) is given by
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u(x,t) =limu(x,t) =u,(x,t)+u, (x,t) +u,(x, t)+u (x,t)+...
p—o1

(—4it)* cosh(2x) . (—4it)3 cosh(2x) .
2! 3!

=1+ cosh(2x)+ (—4it)cosh(2x) +

=1+e % cosh(2x)

which is the exact solution.

ii) Consider linear homogeneous diffusion equation
u, =u, —u, 0<x<1,¢>0 (2.20)
with the initial condition
u(x,0) =sin( zx), 0<x<1 (2.21)
and boundary conditions are given by
u0,t)=u(l,t)=0, >0 (2.22)

Where u(x,t) is a complex function and iZ=-1.

Solution: Taking the Laplace transform on both sides of Eq.(2.20) subject to the initial condition
(2.21), we have
Llu(x,1)] =

SN _ L~ ] (2.23)
S

The inverse Laplace transform of Eq.(2.22) is
u(x,t) = sin( 7x) — Lt [l Llu—u,, ]} (2.24)
s
Now applying the HPM, we get

S p™u, (x. 1) = sin( 7zx) — p( LL[(Zp (,,(x,n—un(x,t)xx)]D (2.25)

n=0 n=0
Comparing the coefficients of same powers of p, we have

po ug (x,t) =sin( )

plzul(x,:)=—L‘1[1L[(uo(x,z)—uo(x,r) 1|=—(z? +1)tsin( zx)
S

sin( 7zx)

} (7r2 +1) t?

41
priuy(x,t)=—L 1[;L[(ul(x,t) —uy (x,1) ]

(7z +1) t

———sin( 7zx)

3.3
p3:u3(x,t)=—L_1{1L[(u2(x,t)—uz(x,t)xx} @ ”) T Gin( o)
S

p4 tuy(x,t)= ! [% Ll(uy(x,t) —uz(x,1) . |

and so on. Therefore, the solution u(x,t) is given by
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u(x,t) =tm u(x,t)=uy(x,t) +u;(x,1) +uy (x,1) + uz(x,1) + ...
p—)

G VS Gt VSN G VA

o (2
=sin( )| 1—(x~ + 1)t + Y Y 7

—...|Thi

2
=sin( 7zx) Pl

s the exact solution.

iii) Consider non-homogeneous diffusion equation

u, —3u,, =x, O0<x<mt>0 (2.26)
with the initial condition
u(x,0)=smn x, O<x<nw (2.27)
and boundary conditions are given by
u(0,t)=0, u(z,t)y=nxt, t>0 (2.28)

Solution: Taking the Laplace transform on both sides of Eq.(2.26) subject to the initial condition
(2.27), we have

sin(x) 1

Llu(x,t)] = - ; L[-3u,, —x] (2.29)

The inverse Laplace transform of Eq.(2.29) is
u(x,1) =sin( x) — L [1 L[-3u,, — x]} (2.30)
s

Now applying the HPM, we get

n=0

0 . 111 0

Y p"u, (x,1) =sin( x) — p(L 1[; LY p"(=3u,(x,1), - x)]D (2.31)
n=0

Comparing the coefficients of same powers of p, we have

po iU (x, 1) =sin( x)

pliu(x,y=—L" [1 L[-3ug(x,1) . — x]} = —3¢sin( x) + xt
S

2 a1 | 912 .
p iuy(x,t)=—L"| = L[-3u;(x,1),, —x] ZTSm(X)
S ] !
3 -1 1 ] 27t3 .
p iuz(x,t)=—L | = L[-3u,y(x,t),, —x] |=— Y sin( x)
s | !
4 al 1 i 81t3 .
p iuy(x,t)=—L"| = L[Bus(x,t),, —x]|= 0 sin( x)
Ky | !

and so on. Therefore, the solution u(x,t) is given by
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u(x,t) =tm u(x,t) =uy(x,t) +u;(x, 1) +uy (x,1) +uz(x,1) + ...
p—)

2 2
12 271 81z

:sin(x)l—3t+9 - + — .|+ xt
2! 3! 4!

—sin(mx)e St 4 xt

which is the required exact solution available in the literature.

iv) Consider Heat equation

u, =u,, 0<x<lt>0 (2.32)
with the initial condition
u(x,0) =3sin( 27zx), 0<x<1 (2.33)
and boundary conditions are given by
u,t)=u(l,t)=0, >0 (2.34)

Solution: Taking the Laplace transform on both sides of Eq.(2.32) subject to the initial condition
(2.33), we have

Llu(x,t)]= M + % Llu,,] (2.35)
The inverse Laplace transform of Eq.(2.35) is
u(x,t) = 3sin( 27zx) + L E L[uxx]} (2.36)
Now applying the HPM, we get
§Op”un (x,1) = 3sin( 2720) + p(L‘1 E I §Op"un (5,0 4 ]D (2.37)

Comparing the coefficients of same powers of p, we have

p° :uy(x,t) =3sin(27x)

plru(x,t)=L" [lL[uo(x,t)xx]} =—3(47°)tsin(27x)
s

2

p: uz(x,t):L_l[1L[ul(x,t)xx]} 3(47°)° sm(z;rx)
s !

3

pPrug(x,t)=L" [lL[uz(x,t)xx]} =-3(47°)? t—,sin(MX)
S 3!

t3

p4:u4(x,t):Ll[lL[u3(x,t)XX]} 3(4 7% )* —sin(27x)
s 4!
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and so on. Therefore, the solution u(x,t) is given by
u(x,t) = m u(x,t) =ug(x, 1) +ug(x,1) +uy (x, 1) +uz(x, 1) +...
p—l
(47r2)2t2 (47r2)3 3 (47[2)4t2

—2a (A2 _ _
=3sin( 27)| 1- (477 )t + Y 3 + 2 oo | F Xt

2
—3sin(2z) e V1

which is the required exact solution available in the literature.

3. Conclusion

Using He's polynomials, the homotopy perturbation transform technique (HPTM) has a
straightforward solution process. When compared to the traditional homotopy perturbation
approach, it can reduce the amount of computing work. Furthermore, no random beginning
estimate is needed. In conclusion, we found that the Homotopy perturbation transform approach
fully utilizes all other available techniques.
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