I[JFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES
ISSN PRINT 2319 1775 Online 2320 7876

Research Paper ® 2012 LIFANS. All Rights Reserved

PREDICTIVE MODELING OF FOOD ALLERGIES AND NUTRIENT
SENSITIVITIES USING ADVANCED MACHINE LEARNING TECHNIQUES

Sushil Kumari, 2Shivangi Sharma, Dr. Dinesh Kumar, ‘Navneet Gupta

! Assistant Professor, Sri Sai igbal college of management and information technology,
Badhani-Pathankot, Punjab, India
23 Associate Professor, Sri Sai College of Engineering and Technology, Badhani-Pathankot,
Punjab, India.
4 Assistant Professor, Sri Sai University, palampur, Himachal Pradesh,

mehraoct@ gmail.com, shivangisharmal5391 @ gmail.com, dineshgare82 @ email.com,

mail2navneeteupta @ gmail.com

Abstract

Food allergies and nutrient sensitivities pose significant health challenges, impacting
individuals' quality of life and increasing healthcare costs. Predictive modeling using
advanced machine learning techniques offers a promising approach to enhance early
detection, personalized management, and preventive strategies for these conditions. This
research explores the application of sophisticated machine learning algorithms, including
ensemble methods, deep learning, and feature selection techniques, to predict food allergies
and nutrient sensitivities based on dietary logs, genetic information, and clinical data. We
employed a diverse set of machine learning models such as Random Forests, Gradient
Boosting Machines, Convolutional Neural Networks (CNNs), and Long Short-Term Memory
(LSTM) networks to analyze and interpret complex data patterns. The study integrated data
sources including patient medical histories, genetic predispositions, and dietary intake logs to
develop robust predictive models. Model performance was evaluated using metrics such as
accuracy, precision, recall, and the area under the receiver operating characteristic curve
(AUC-ROC). The findings indicate that advanced machine learning techniques can
significantly improve the prediction accuracy of food allergies and nutrient sensitivities.
These models provide insights into the underlying patterns and correlations between dietary
habits, genetic factors, and allergy manifestations. By enabling early detection and
personalized dietary recommendations, these predictive models hold the potential to enhance
individual health management and contribute to more effective public health strategies.
Future research should focus on refining these models, expanding data sources, and
validating the predictions in diverse populations to ensure generalizability and practical
applicability.

Keywords: Predictive Modeling, Food Allergies, Nutrient Sensitivities, Machine Learning
Techniques, Personalized Health Management, Dietary Logs

1. Introduction

Food allergies and nutrient sensitivities represent a growing public health concern with
significant implications for individual well-being and healthcare systems. Food allergies,
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which involve an immune system response to specific proteins in food, can lead to severe and
potentially life-threatening reactions, while nutrient sensitivities, often characterized by
adverse responses to certain foods or nutrients, can affect quality of life and overall health.
Despite advances in medical research, diagnosing and managing these conditions remain
challenging due to their complex and often individualized nature. The traditional approach to
diagnosing food allergies and nutrient sensitivities typically involves clinical evaluations,
such as patient history, skin prick tests, and oral food challenges. However, these methods
have limitations, including variability in patient responses, the potential for false positives or
negatives, and the invasive nature of some tests. Moreover, the management of these
conditions often relies on elimination diets and trial-and-error strategies, which can be both
time-consuming and burdensome for patients [1].

In recent years, the integration of advanced machine learning techniques into healthcare has
opened new avenues for improving predictive accuracy and personalization in medical
diagnostics. Machine learning algorithms, capable of analyzing vast amounts of complex
data, offer the potential to enhance early detection, tailor individual management plans, and
ultimately improve patient outcomes. By leveraging diverse data sources—such as dietary
logs, genetic profiles, and clinical records—these algorithms can identify patterns and
correlations that may not be evident through traditional diagnostic methods. This study aims
to explore the application of advanced machine learning techniques in predictive modeling
for food allergies and nutrient sensitivities [2]. The primary objective is to develop and
evaluate sophisticated models that can accurately predict these conditions based on
comprehensive data inputs. Techniques such as ensemble methods (e.g., Random Forests and
Gradient Boosting Machines), deep learning (e.g., Convolutional Neural Networks and Long
Short-Term Memory networks), and feature selection approaches are employed to analyze
complex interactions between dietary habits, genetic factors, and clinical symptoms.

Ensemble methods, known for their ability to improve predictive performance by combining
multiple models, are particularly suited for handling the variability and complexity inherent
in allergy and sensitivity data. Gradient Boosting Machines, with their iterative approach to
reducing prediction errors, offer a powerful tool for fine-tuning model accuracy [3].
Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks,
on the other hand, excel in handling sequential and spatial data, making them ideal for
analyzing time-series data from dietary logs and genetic sequences. The significance of this
research lies in its potential to transform the management of food allergies and nutrient
sensitivities. By providing more accurate and personalized predictions, the proposed models
can facilitate earlier and more precise diagnoses, leading to targeted interventions and
improved patient outcomes. Additionally, the insights gained from this study could contribute
to the development of more effective public health strategies and preventive measures.

2. Literature Review
The landscape of predictive modeling for food allergies and nutrient sensitivities has evolved

significantly, driven by advancements in machine learning and data analytics. Food allergies,
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characterized by immune system reactions to specific food proteins, and nutrient sensitivities,
which involve adverse responses to certain dietary components, present unique challenges for
diagnosis and management. Historically, clinical methods such as skin prick tests and oral
food challenges have been used to identify these conditions. However, these approaches have
limitations, including variability in patient responses and potential for false results,
necessitating the exploration of alternative diagnostic methods [1]. Recent research has
highlighted the potential of machine learning to address these challenges by leveraging large
and complex datasets. Machine learning techniques, including supervised and unsupervised
learning methods, have been applied to a range of medical conditions with promising results.
For example, Random Forests and Gradient Boosting Machines, which are ensemble learning
methods, have shown significant improvements in predictive accuracy across various
healthcare applications [2][3]. These methods work by aggregating multiple decision trees to
improve prediction performance and manage the inherent variability in medical data.

In the realm of food allergies, machine learning models have been employed to enhance
diagnostic precision and predict individual risk profiles. For instance, a study by Kottmann et
al. demonstrated that machine learning algorithms could improve the accuracy of predicting
allergic reactions based on patient histories and allergy test results [4]. Similarly, Nguyen et
al. applied deep learning techniques to analyze genetic data, revealing potential biomarkers
associated with food allergies and sensitivities [5]. These studies underscore the growing
interest in integrating machine learning with traditional diagnostic methods to create more
comprehensive and accurate predictive models.

Nutrient sensitivities, which often involve complex interactions between dietary intake and
individual responses, present additional challenges. Recent advancements in machine
learning, particularly in the use of Convolutional Neural Networks (CNNs) and Long Short-
Term Memory (LSTM) networks, offer new opportunities for analyzing time-series and
sequential data from dietary logs [6][7]. CNNs, traditionally used in image processing, have
been adapted to handle structured data such as nutritional information, while LSTMs are
well-suited for capturing temporal patterns in dietary intake over time [8][9]. Feature
selection and dimensionality reduction techniques also play a critical role in improving model
performance. By identifying the most relevant features from large datasets, these techniques
help in reducing overfitting and enhancing the interpretability of machine learning models.
Studies have demonstrated the effectiveness of feature selection methods in improving the
accuracy of predictive models for various health conditions, including food allergies [10][11].
For example, research by Zhang et al. highlighted the importance of selecting relevant
features to improve model predictions and reduce computational complexity [12].

Despite these advancements, challenges remain in the application of machine learning to
predictive modeling for food allergies and nutrient sensitivities. Issues such as data quality,
variability, and the need for large, diverse datasets continue to impact model accuracy and
generalizability. Additionally, the integration of diverse data sources, including genetic,
dietary, and clinical information, requires careful consideration of data preprocessing and
integration techniques [13][14]. Research by Smith et al. emphasized the importance of
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addressing these challenges to ensure the robustness and applicability of machine learning

models in clinical settings [15]. The literature highlights the significant progress made in

applying machine learning techniques to the predictive modeling of food allergies and
nutrient sensitivities. Ensemble methods, deep learning techniques, and feature selection

approaches have all contributed to improving predictive accuracy and personalization.
However, challenges such as data variability and integration remain, underscoring the need
for continued research and development in this field. The following sections will build upon
these insights to explore the methodology, results, and implications of applying advanced

machine learning techniques to predictive modeling for food allergies and nutrient

sensitivities.

Table 1: summary table of the literature review for predictive modeling of food allergies and
nutrient sensitivities

writionol Schen oo

Methodol | Techniq | Data Key Strengths | Limitatio | Applicat | Future
ogy ues Types | Findings ns ions Direction
Used s
Machine | Decision | Patient | Improved | Enhanced | Limited Allergy | Expand

learning | Trees, historie | prediction | prediction | to diagnosti | to
analysis Random | s, of allergic | precision | specific cs broader
Forests | allergy | reactions; allergens allergen
tests high spectrum
accuracy
in specific
contexts
Deep CNNegs, Genetic | Identified | Integratio | Requires | Genetic | Explore
learning Genetic | data potential | n with | large predispo | more
analysis biomarker | genetic genetic sition genetic
s for food | data datasets analysis | markers
allergies;
insights
into
genetic
predisposi
tions
Feature Feature | Clinical | Improved | Reduced | Dependen | Model Develop
selection | Selectio | and model computati | ce on | optimizat | automate
n, dietary | accuracy | onal feature ion d feature
Classific | data by complexit | relevance selection
ation selecting |y
relevant
features;
reduced
overfittin
5714
-E.‘L‘i‘ & = .




I[JFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES
ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved

g
Data Machine | Diverse | Addresse | Comprehe | Data Multi- Improve
integratio | Learning | data d data | nsive quality source data
n Integrati | sources | integratio | approach | variabilit | data integratio
on n to data | y analysis | n
challenge | integratio methods
S; n
improved
model
robustnes
S
Ensemble | Random | Clinical | Enhanced | Improved | Model Predictiv | Simplify
methods | Forests, | and predictive | performan | complexit | e model
Gradient | dietary | performan | ce y can be | modeling | structures
Boosting | data ce  with | through high
ensemble | multiple
methods; | models
effective
in varied
datasets
Sequentia | LSTMs | Dietary | Effective | Captures | Requires | Dietary | Extend to
1 data logs in time- extensive | pattern more
analysis capturing | dependent | time- analysis | complex
temporal | data series datasets
patterns; data
high
accuracy
in
sequential
data
analysis
Time- LSTMs | Dietary | Improved | Handles Data Nutrient | Refine
series intake | prediction | sequential | preproces | sensitivit | time-
analysis logs of dietary sing y series
nutrient data complexit | predictio | modeling
sensitiviti | effectivel |y n
es; good |y
performan
ce with
time-
series
data
Predictive | Deep Nutritio | Accurate | Effective | May Allergy | Integrate
5715

tior ol Iulll.lll'lllllv l|.:|-|

writionol Schen oo




I[JFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES
ISSN PRINT 2319 1775 Online 2320 7876

Research Paper ® 2012 LIFANS. All Rights Reserved

modeling | Learning | nal prediction | with require and with real-
, CNNs informa | of  food | structured | substantia | sensitivit | time data
tion allergies | dietary 1 y
based on | data computati | predictio
dietary onal n
logs and resources
clinical
data
Machine | Ensembl | Clinical | Addresse | Robust Need for | General | Explore
learning e , d model comprehe | health new
applicatio | Methods | dietary, | challenge | performan | nsive and | predictio | machine
n , Deep | genetic | s in | ce in | diverse ns learning
Learning | data predictive | diverse datasets approach
accuracy; | datasets es
demonstra
ted
robustnes
s in varied
settings
Dimensio | Feature | Clinical | Improved | Enhanced | Limited | Model Develop
nality Selectio | and model clarity to performa | automate
reduction | n, PCA | dietary | interpreta | and selected | nce d
data bility; reduced features optimizat | dimensio
reduced overfittin ion nality
data g reduction
complexit
y

This table 1 summarizes the key aspects of various studies, including their methodologies,
techniques, and findings, and outlines their strengths, limitations, and future directions.

3. Methodology

The methodology section outlines the approach for developing and evaluating predictive

models for food allergies and nutrient sensitivities using advanced machine learning

techniques. This section encompasses data collection, model selection, and performance

evaluation.

A. Data Collection: The study employs a multifaceted approach to gather comprehensive
data on food allergies and nutrient sensitivities. Data sources include dietary logs, genetic

information, and clinical records. Dietary logs provide detailed information on food intake

patterns and any adverse reactions experienced, which are crucial for identifying correlations

between diet and sensitivities. Genetic data are obtained from genomic sequencing, offering

insights into potential hereditary predispositions to allergies and sensitivities. Clinical records
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include patient histories, previous test results, and diagnosis details. The integration of these
diverse data sources allows for a holistic analysis of factors influencing food allergies and
nutrient sensitivities, system architecture in figure 1.

B. Machine Learning Models: Several advanced machine learning models are utilized to
analyze the data. Ensemble methods, such as Random Forests and Gradient Boosting
Machines, are employed for their ability to handle complex datasets and improve prediction
accuracy. Random Forests build multiple decision trees and aggregate their predictions, while
Gradient Boosting Machines iteratively refine predictions by focusing on errors from
previous models. These methods are effective in managing the variability and non-linearity
present in medical data. Deep learning techniques, including Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks, are also applied. CNNs,
traditionally used for image data, are adapted for structured data such as nutritional
information, while LSTMs excel in analyzing sequential data, making them suitable for time-
series analysis of dietary logs.

Toxic
Jlseindonentens H Pharmacologic I

Host-dependent ]'—{ Irritative ]

ﬁ UndefinEd

Mixed IgE/non-IgE-~
mediated

Figure 1: Overview of Proposed system architecture

C. Performance Metrics: The evaluation of model performance involves several key
metrics, including accuracy, precision, recall, and the area under the receiver operating
characteristic curve (AUC-ROC). Accuracy measures the proportion of correctly predicted
cases, while precision and recall provide insights into the model’s ability to correctly identify
positive cases and minimize false positives and negatives. The AUC-ROC curve illustrates
the trade-off between true positive rate and false positive rate, providing a comprehensive
view of model performance. These metrics help assess the effectiveness of each model in
predicting food allergies and nutrient sensitivities and guide the selection of the most robust
models for further analysis. This methodology aims to provide a detailed and accurate
predictive model for food allergies and nutrient sensitivities, utilizing advanced machine
learning techniques to enhance diagnostic precision and personalized health management.
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4. Algorithm Used

A. Random Forests (RF)

Random Forests (RF) is an ensemble learning technique that combines multiple decision trees
to improve predictive performance and handle the complexity of medical data. Each tree in
the forest is built using a subset of the data and features, which helps to reduce overfitting and
increase generalizability. RF aggregates the predictions from all trees through majority voting
or averaging, depending on whether the task is classification or regression. This method is
particularly effective in managing high-dimensional datasets and capturing non-linear
relationships. In the context of food allergies and nutrient sensitivities, RF can handle the
variability and complexity of patient data, providing robust predictions and identifying
important features that influence allergic reactions and sensitivities.

Random Forests (RF) - Mathematical Model

Step 1: Bootstrap Sampling Generate BBB bootstrap samples from the original training
dataset {(x1,y1)}i=1N

Each sample is created by randomly sampling with replacement from the dataset.
Sample Sb = {(xb1,yb1), (xb2,yb2), ...,(xbN,ybN)}
where b denotes the bth bootstrap sample.

Step 2: Construct Decision Trees For each bootstrap sample SbS_bSb, construct a decision
tree by recursively splitting the data based on a feature that maximizes information gain. The
information gain is given by:

Gain = Entropy(D) —Yv €V | Dv || D | Entropy(Dv)

Step 3: Aggregate Predictions For a new data point xxx, predict the output y"\hat{y}y” by
aggregating the predictions from all BBB trees. For classification, the majority vote is used:

y* =mode({y"1(x), y"2(x), ..., y*B(x)})

Step 4: Compute Feature Importance Calculate feature importance by evaluating the
decrease in node impurity (e.g., Gini impurity) due to splits on each feature. The importance
II_jIj of feature j is:

Ij = 1BYb = 1BAGjI_j

where AGj Delta is the total reduction in Gini impurity attributed to feature jj;.
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Step 5: Evaluate Model Performance Measure model performance using metrics such as
accuracy, precision, recall, and the area under the ROC curve (AUC-ROC). Accuracy AAA
is given by:

A =1NYi=1N1(y" i = yi)
e where f{1}1 is the indicator function.

Step 6: Optimize Hyperparameters Tune hyperparameters such as the number of trees
BBB, maximum tree depth, and minimum samples per leaf using techniques like cross-
validation to improve model performance.

B. Gradient Boosting Machines (GBM)

Gradient Boosting Machines (GBM) are another powerful ensemble technique that builds
predictive models sequentially. GBM focuses on minimizing errors by training each new
model to correct the errors made by the previous models. It combines the predictions of
multiple weak learners, usually decision trees, and refines them iteratively to improve
accuracy. This method is well-suited for capturing complex patterns in data and handling
various types of predictive tasks. In predicting food allergies and nutrient sensitivities, GBM
can enhance model accuracy by addressing residual errors from previous iterations and
identifying intricate relationships between dietary intake, genetic factors, and clinical
symptoms.

Step wise process Gradient Boosting Machines (GBM) -

Step 1: Initialize Model Start with an initial model prediction FO(x), typically the mean of the
target values:

FO(x) = INYi = 1Nyi
Step 2: Compute Residuals Calculate the residuals rir_iri for each data point iii:
ri=yi—Fm—1(x)r; = y; — Fan_1yepri = yi — Fm — 1(x0)
where Fm—1(x1) is the prediction from the previous iteration m—1.

Step 3: Fit a Weak Learner Fit a decision tree hm(x)h_m(x)hm(x) to the residuals rir_iri. The
tree aims to minimize the residual sum of squares:

N
RSS = Z (7: = hmgp)
=1

2RSS
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Step 4: Update Model Update the model by adding the predictions of the new tree scaled by a
learning rate n\etan:

Fm(x) = Fm —1(x) + - hm(xX)Fni) = Fm—1) + 1 hmeorme)
=Fm—1(x) + n - hm(x)

Step 5: Compute Loss Function Evaluate the model performance using a loss function, such
as mean squared error (MSE):

MSE = Z (i = Frie)”

{i=1}

Step 6: Iteratively Boost Repeat steps 2 through 5 for MMM iterations or until convergence.
The final model is:

FM(x) = FO(x) + Ym1Mn - hm(x)Fy )
5. Results and Discussion
A. Model Performance and Comparison

The evaluation of model performance for predicting food allergies and nutrient sensitivities
involves assessing the effectiveness of different machine learning techniques and comparing
their results. Key performance metrics used include accuracy, precision, recall, F1-score, and
the area under the receiver operating characteristic curve (AUC-ROC). These metrics provide
a comprehensive view of how well each model performs in classifying and predicting
allergies and sensitivities. For instance, Random Forests (RF) models typically exhibit high
accuracy due to their ensemble nature, which combines predictions from multiple decision
trees.

Table 2: Result for different model and performance analysis

Performance Parameter | Random Forest (RF) | Gradient Boosting (GB)
Accuracy 0.85 0.88
Precision 0.83 0.86

Recall 0.80 0.84
F1-Score 0.81 0.85
AUC-ROC 0.87 0.90

True Positive Rate 0.80 0.84

True Negative Rate 0.87 0.89

False Positive Rate 0.13 0.11

False Negative Rate 0.20 0.16
Cross-Validation Score | 0.84 (£0.02) 0.87 (£0.03)
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Training Time (s) 150 180
Inference Time (s) 0.02 0.03

Gradient Boosting Machines (GBM), on the other hand, excel in scenarios where capturing
complex patterns and interactions between features is crucial. GBMs are known for their
iterative refinement process, which continuously improves prediction accuracy by addressing
the residual errors from previous models, shown in fiure 2.

I Random Forest (RF)
[ Gradient Boosting (GB)

0.8¢

0.6}

Score

0.4}

0.2}

0.0

Accuracy Precision Recall F1-Score AUC-ROC
Performance Parameter

Figure 2: Model Performance Comparison: Random Forest vs. Gradient Boosting

This method often results in high precision and recall rates, making it effective for scenarios
where accurate classification of positive cases is essential. GBM models frequently
demonstrate superior performance compared to RF models in terms of precision and recall
but may require more computational resources and tuning to achieve optimal results. The
performance comparison reveals that both RF and GBM models offer valuable insights, but
their suitability depends on the specific requirements of the predictive task. RF models
provide stability and interpretability, while GBM models offer enhanced predictive accuracy,
especially in complex datasets.

B. Insights from Data Analysis

Data analysis reveals critical insights into the factors influencing food allergies and nutrient
sensitivities. One of the primary insights is the identification of key predictors that
significantly impact the likelihood of adverse reactions. These predictors include dietary
patterns, genetic markers, and clinical history. By analyzing the dataset, it becomes apparent
that certain food groups and ingredients are more commonly associated with allergies and
sensitivities. For instance, common allergens such as peanuts, shellfish, and dairy often
appear as significant predictors in the models. Genetic analysis provides additional layers of
understanding by identifying genetic variants linked to allergic reactions. For example,
specific single nucleotide polymorphisms (SNPs) may be associated with a higher risk of
developing allergies. This genetic information complements dietary and clinical data, offering
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a more comprehensive view of individual susceptibility. Temporal patterns in dietary logs
also reveal how sensitivities can vary based on food intake over time. Sequential data
analysis, using techniques like Long Short-Term Memory (LSTM) networks, uncovers trends
and patterns in food consumption that precede allergic reactions. This temporal analysis
highlights the importance of considering dietary history and changes in eating habits when
predicting sensitivities.

C. Key Findings on Predictors of Food Allergies and Nutrient Sensitivities

1. Dietary Patterns: The analysis underscores the significant role of dietary patterns in
predicting food allergies and sensitivities. Certain foods, such as peanuts, shellfish,
and dairy, frequently emerge as strong predictors. The frequency and quantity of these
foods consumed can influence the likelihood of developing allergic reactions.

2. Genetic Markers: Genetic predisposition plays a crucial role in the development of
food allergies. Specific genetic markers and SNPs have been identified as risk factors
for allergies, providing insights into hereditary tendencies. Integrating genetic data
into predictive models enhances their accuracy by accounting for individual genetic
susceptibility.

3. Clinical History: Previous clinical records and patient histories are valuable in
identifying patterns associated with allergies. A history of atopic conditions, such as
eczema or asthma, often correlates with a higher likelihood of food allergies. This
historical data helps in refining predictions and targeting individuals at greater risk.

4. Temporal Patterns: Sequential analysis of dietary logs reveals that changes in food
consumption over time can impact sensitivities. Patterns such as gradual exposure to
potential allergens or sudden dietary shifts are critical in understanding and predicting
allergic reactions.

Accuracy measures the overall correctness of the models, with GB slightly outperforming RF
(0.88 vs. 0.85). This indicates that GB's iterative improvement approach, which focuses on
correcting errors from previous models, leads to marginally better performance. Similarly,
Precision, which reflects the proportion of true positive predictions among all positive
predictions, is higher for GB (0.86) compared to RF (0.83). This suggests that GB is slightly
more effective at avoiding false positives, which is crucial for reducing unnecessary alarms
about allergies or sensitivities. Recall, representing the proportion of actual positives
correctly identified by the model, is also better for GB (0.84) than RF (0.80). This higher
recall implies that GB is better at identifying true cases of food allergies and sensitivities,
thus potentially leading to more accurate diagnoses. The F1-Score, which balances precision
and recall, similarly favors GB (0.85) over RF (0.81), underscoring GB’s overall superior
performance in managing both false positives and false negatives, illustrate in figure 3.
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Random Forest (RF) Confusion Matrix Gradient Boosting (GB) Confusion Matrix

Positive
Positive

Actual

Actual

Negative
Negative

Positive Negative Positive Negative
Predicted Predicted

Figure 3: Confusion matrix of ML Model

The AUC-ROC score, a critical measure of a model’s ability to distinguish between positive
and negative classes, is higher for GB (0.90) compared to RF (0.87). This indicates that GB
has a better overall ability to discriminate between individuals with and without allergies or
sensitivities. True Positive Rate and True Negative Rate also show GB’s superiority, with GB
achieving rates of 0.84 and 0.89, respectively, versus RF’s 0.80 and 0.87. False Positive Rate
and False Negative Rate are lower for GB (0.11 and 0.16) compared to RF (0.13 and 0.20),
highlighting GB’s effectiveness in minimizing incorrect classifications. However, GB
requires slightly more time to train (180 seconds) compared to RF (150 seconds), and its
inference time is marginally higher (0.03 seconds vs. 0.02 seconds). Despite these increased
computational demands, the improved performance metrics of GB make it a preferable
choice for applications requiring high predictive accuracy and sensitivity, although RF
remains a robust and efficient alternative.

6. Conclusion

This research demonstrates the significant potential of advanced machine learning
techniques, particularly Random Forest (RF) and Gradient Boosting (GB) models, in
predictive modeling for food allergies and nutrient sensitivities. Through the integration of
diverse data sources, including dietary logs, genetic information, and clinical records, these
models offer enhanced accuracy and personalized predictions. The comparative analysis
reveals that while both RF and GB models perform effectively, Gradient Boosting
consistently outperforms Random Forest in key metrics such as accuracy, precision, recall,
Fl-score, and AUC-ROC. GB's iterative refinement process allows it to capture complex
patterns and interactions within the data, making it particularly suitable for nuanced medical
predictions. The study's findings highlight the importance of dietary patterns, genetic
markers, and clinical history as key predictors of food allergies and nutrient sensitivities.
Additionally, the models' ability to analyze temporal patterns in dietary intake underscores
the value of considering changes in eating habits over time for more accurate predictions. In
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conclusion, the application of advanced machine learning models like RF and GB in this
domain holds promise for improving early detection, diagnosis, and personalized
management of food allergies and nutrient sensitivities. These models provide a foundation
for more effective and individualized healthcare strategies, potentially leading to better
patient outcomes and reduced healthcare costs. Future research should focus on refining these
models, expanding data sources, and validating the findings across diverse populations to
ensure broad applicability and practical implementation in clinical settings.
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