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ABSTRACT

The use of smart sensing technologies in production systems has grown in popularity in recent
years. These systems use sensors to gather data and interpret it in real time, making industrial
processes more automated and efficient. However, strong security measures are more important
than ever to guard against possible cyber attacks and vulnerabilities due to the increasing
complexity and interconnection of these smart sensing production systems. These difficulties
include the possibility of unwanted access to private information, falsification of sensor
readings, and interference with device-to-device communication. Hence, creating a security
architecture that can successfully counteract these new dangers and guarantee the availability,
integrity, and confidentiality of the smart sensing production system is central to the issue
description. Conventional security systems often depend on intrusion detection systems,
firewalls, and encryption methods to secure networks and information. These steps might not
be enough, nevertheless, to handle the unique difficulties presented by smart sensing
manufacturing systems. Additionally, subtle and sophisticated assaults targeting the networked
sensors and communication channels are difficult for traditional systems to detect. Therefore,
a more intelligent and adaptable security solution is required, one that can recognize the special
traits of smart sensing settings and take proactive measures to counter new threats.
Furthermore, any security breech in contemporary industrial systems can have dire
repercussions, including possible safety risks, production interruptions, and data leaks. The
industrial sector is rapidly embracing Industry 4.0 principles, which emphasize the need for
enhanced security measures due to the dependence on networked equipment and data-driven
decision-making. Because deep neural networks (DNNs) are excellent at processing complex
and high-dimensional data, this research presents a promising method for securing smart
sensing production systems. DNNs are particularly well-suited for analyzing the various
streams of information generated by sensors in a production environment. DNN models may
identify abnormalities suggestive of security vulnerabilities and understand patterns of typical
behavior by utilizing artificial intelligence and machine learning. In the context of networked
and data-driven production settings, these models offer a more intelligent and adaptable
approach to security, providing a better degree of protection against emerging cyber threats.

Keywords: Deep Learning, DNN, Backpropagation, Smart Sensing Technologies, Cyber
Threats, Intrusion Detection

1. INTRODUCTION

Sensors are most commonly used in numerous applications ranging from body-parameters’
measurement to automated driving. Moreover, sensors play a key role in performing detection-
and vision-related tasks in all the modern applications of science, engineering and technology
where the computer vision is dominating. An interesting emerging domain that employs the
smart sensors is the Internet of Things (IoT) dealing with wireless networks and sensors
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distributed to sense data in real time and producing specific outcomes of interest through
suitable processing. In IoT-based devices, sensors and artificial intelligence (Al) are the most
important elements which make these devices sensible and intelligent. In fact, due to the role
of Al the sensors act as smart sensors and find an efficient usage for a variety of applications,
such as general environmental monitoring [1]; monitoring a certain number of environmental
factorweather forecasting; satellite imaging and its use; remote sensing based applications;
hazard events’ monitoring such as landslide detection; self-driving cars; healthcare and so on.
In reference to this latter sector, recently the usage of smart devices has been hugely increased
in hospitals and diagnostic centers for evaluating and monitoring various health conditions of
affected patients, remotely as well as physically [2].

Practically, there is no field of science or research which performs smartly without using the
modern sensors. The wide usage and need of sensors; and IoT employed in remote sensing,
environment and human health monitoring make the applications as intelligent. In the last
decade, the agriculture applications have also included [3] the utilization of many types of
sensors for monitoring and controlling various types of environmental parameters such as
temperature, humidity, soil quality, pollution, air quality, water contamination, radiation, etc.
This paper also aims to highlight the use of the sensors and IoT for remote sensing and
agriculture applications in terms of extensive discussion and review. In recent years, SHM of
civil structures has been a critical topic for research. SHM helps to detect the damage of a
structure, and it also provides early caution of a structure that is not in a safe condition for
usage. Civil infrastructure like [4] bridges get damaged with time, and the reason for the
damage is heavy vehicles, loading environmental changes, and dynamic forces such as seismic.
These types of changes mainly occur at existing structures constructed long ago, and various
methods will detect that damage. The strategy of SHM involves observing the structure for a
certain period to notice the condition of the structure and the periodic measurements of data
will be collected, and the features of data will be extracted from these computation results, and
the process of analysis can be done with the help of a featured data to find out the present-day
health of the structure. The information collected from the process can be updated periodically
to monitor the structure and based on the data collected through monitoring a structure, and the
structure can be strengthened and repaired, and rehabilitation and maintenance can be
completed [5].

2. LITERATURE SURVEY

Ullo et. al [6] focused on an extensive study of the advances in smart sensors and [oT, employed
in remote sensing and agriculture applications such as the assessment of weather conditions
and soil quality; the crop monitoring; the use of robots for harvesting and weeding; the
employment of drones. The emphasis has been given to specific types of sensors and sensor
technologies by presenting an extensive study, review, comparison and recommendation for
advancements in [oT that would help researchers, agriculturists, remote sensing scientists and
policy makers in their research and implementations.

Sivasuriyan et. al [7] provides a detailed understanding of bridge monitoring, and it focuses on
sensors utilized and all kinds of damage detection (strain, displacement, acceleration, and
temperature) according to bridge nature (scour, suspender failure, disconnection of bolt and

cables, etc.) and environmental degradation under static and dynamic loading. This paper
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presents information about various methods, approaches, case studies, advanced technologies,
real-time experiments, stimulated models, data acquisition, and predictive analysis. Future
scope and research also discussed the implementation of SHM in bridges. The main aim of this
research is to assist researchers in better understanding the monitoring mechanism in bridges.

Dazhe Zhao et. al [8] proposed an easy-fabricated and compact untethered triboelectric patch
with Polytetrafluoroethylene (PTFE) as triboelectric layer and human body as conductor. We
find that the conductive characteristic of human body has negligible influence on the outputs,
and the untethered triboelectric patch has good output ability and robustness. The proposed
untethered triboelectric patches can work as sensor patches and energy harvester patches. Three
typical applications are demonstrated, which are machine learning assisted objects
distinguishing with accuracy up to 93.09-94.91 %, wireless communication for sending typical
words to a cellphone, and human motions energy harvesting for directly powering electronics
or charging an energy storage device.

Bacco et. al [9] described, both analytically and empirically, a real testbed implementing IEEE
802.15.4-based communications between an UAV and fixed ground sensors. In our scenario,
we found that aerial mobility limits the actual IEEE 802.15.4 transmission range among the
UAV and the ground nodes to approximately 1/3 of the nominal one. We also provide
considerations to design the deployment of sensors in precision agriculture scenarios.

Verma et. al [10] discussed the existing state-of-the-art practices of improved intelligent
features, controlling parameters and Internet of things (IoT) infrastructure required for smart
building. The main focus is on sensing, controlling the IoT infrastructure which enables the
cloud clients to use a virtual sensing infrastructure using communication protocols. The
following are some of the intelligent features that usually make building smart such as privacy
and security, network architecture, health services, sensors for sensing, safety, and overall
management in smart buildings. As we know, the Internet of Things (IoT) describes the ability
to connect and control the appliances through the network in smart buildings. The development
of sensing technology, control techniques, and IoT infrastructure give rise to a smart building
more efficient. Therefore, the new and problematic innovation of smart buildings in the context
of IoT is to a great extent and scattered. The conducted review organized in a scientific manner
for future research direction which presents the existing challenges, and drawbacks.

3.PROPOSED SYSTEM
3.1 Overview

The Python script that uses the Tkinter library to create a graphical user interface (GUI) for a
Smart Sensing System in an industrial environment. The GUI provides functionality for
uploading and preprocessing datasets, running various machine learning algorithms (Naive
Bayes, Random Forest, SVM, Logistic Regression, DNN, KNN), and displaying performance
metrics.
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Fig. 1: Block diagram of proposed system.
3.2 DNN
3.2.1 Perceptron
Although today the Perceptron is widely recognized as an algorithm, it was initially intended
as an image recognition machine. It gets its name from performing the human-like function
of perception, seeing, and recognizing images.
In particular, interest has been centered on the idea of a machine which would be capable of
conceptualizing inputs impinging directly from the physical environment of light, sound,
temperature, etc. — the “phenomenal world” with which we are all familiar — rather than
requiring the intervention of a human agent to digest and code the necessary information.
Rosenblatt’s perceptron machine relied on a basic unit of computation, the neuron. Just like in
previous models, each neuron has a cell that receives a series of pairs of inputs and weights.

The major difference in Rosenblatt’s model is that inputs are combined in a weighted sum and,
if the weighted sum exceeds a predefined threshold, the neuron fires and produces an output.

weighted sum

T = 1, if 21 T.U?JC»L— T >0

&rg 22 Z : I . U y = \\“h\

0, otherwise

Perceptron neuron model (left) and threshold logic (right).

Threshold T represents the activation function. If the weighted sum of the inputs is greater than
zero the neuron outputs the value 1, otherwise the output value is zero.

Perceptron for Binary Classification

With this discrete output, controlled by the activation function, the perceptron can be used as
a binary classification model, defining a linear decision boundary.

It finds the separating hyperplane that minimizes the distance between misclassified points and
the decision boundary. The perceptron loss function is defined as below:

:.-i|ii.'..

D(w,c) = — Z y; (xw; + ¢
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To minimize this distance, perceptron uses stochastic gradient descent (SGD)as the
optimization function. If the data is linearly separable, it is guaranteed that SGD will converge
in a finite number of steps. The last piece that Perceptron needs is the activation function, the
function that determines if the neuron will fire or not. Initial Perceptron models used sigmoid
function, and just by looking at its shape, it makes a lot of sense! The sigmoid function maps
any real input to a value that is either 0 or 1 and encodes a non-linear function. The neuron can
receive negative numbers as input, and it will still be able to produce an output that is either 0
or 1.

But, if you look at Deep Learning papers and algorithms from the last decade, you’ll see the
most of them use the Rectified Linear Unit (ReLU) as the neuron’s activation function. The
reason why ReLU became more adopted is that it allows better optimization using SGD, more
efficient computation and is scale-invariant, meaning, its characteristics are not affected by the
scale of the input.

The neuron receives inputs and picks an initial set of weights random. These are combined in
weighted sum and then ReLLU, the activation function, determines the value of the output.

7, —L2 3 ReLU y I

Perceptron neuron model (left) and activation function (right).

Perceptron uses SGD to find, or you might say learn, the set of weight that minimizes the
distance between the misclassified points and the decision boundary. Once SGD converges, the
dataset is separated into two regions by a linear hyperplane. Although it was said the Perceptron
could represent any circuit and logic, the biggest criticism was that it couldn’t represent
the XOR gate, exclusive OR, where the gate only returns 1 if the inputs are different. This was
proved almost a decade later and highlights the fact that Perceptron, with only one neuron,
can’t be applied to non-linear data.

3.2.2 DNN

The DNN was developed to tackle this limitation. It is a neural network where the mapping
between inputs and output is non-linear. A DNN has input and output layers, and one or
more hidden layers with many neurons stacked together. And while in the Perceptron the
neuron must have an activation function that imposes a threshold, like ReLU or sigmoid,
neurons in a DNN can use any arbitrary activation function.
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Architecture of DNN.

DNN falls under the category of feedforward algorithms, because inputs are combined with the
initial weights in a weighted sum and subjected to the activation function, just like in the
Perceptron. But the difference is that each linear combination is propagated to the next layer.
Each layer is feeding the next one with the result of their computation, their internal
representation of the data. This goes all the way through the hidden layers to the output layer.

If the algorithm only computed the weighted sums in each neuron, propagated results to the
output layer, and stopped there, it wouldn’t be able to learn the weights that minimize the cost
function. If the algorithm only computed one iteration, there would be no actual learning. This
is where Backpropagation comes into play.

Backpropagation

Backpropagation is the learning mechanism that allows the DNN to iteratively adjust the
weights in the network, with the goal of minimizing the cost function. There is one hard
requirement for backpropagation to work properly.

The function that combines inputs and weights in a neuron, for instance the weighted sum, and
the threshold function, for instance ReLU, must be differentiable. These functions must have
a bounded derivative because Gradient Descent is typically the optimization function used in
DNN.

w

. - I ;
w Z
. = . §
. W :

wy, ‘ Z

Input Layer Hidden Layer Output Layer

1. Feedforward | Mean Squared Error (MSE) computed

2. Backpropagation | Gradient is computed
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DNN, highlighting the Feedforward and Backpropagation steps.

In each iteration, after the weighted sums are forwarded through all layers, the gradient of
the Mean Squared Error is computed across all input and output pairs. Then, to propagate it
back, the weights of the first hidden layer are updated with the value of the gradient. That’s
how the weights are propagated back to the starting point of the neural network. One iteration
of Gradient Descent is defined as follows:

dF
Aw(t) — d”lU() + al w(t—1)

This process keeps going until gradient for each input-output pair has converged, meaning the
newly computed gradient hasn’t changed more than a specified convergence threshold,
compared to the previous iteration.

4.RESULTS

Figure 2 is a Sample Ul used for smart sensing production system This figure shows a visual
representation or screenshot of the user interface (UI) used in the smart sensing production
system. Figure 3 is a Dataset used for smart sensing production system This figure displays
information or characteristics of the dataset employed in the smart sensing production system.
It may include details about features, labels, and data distribution. Figure 4: UI shows the
dataset after preprocessing This figure represents the user interface displaying the dataset after
undergoing some preprocessing steps. Preprocessing may involve cleaning, transforming, or
handling missing data.
. _______________________________________________________________________________|

Uplasd Dutywn Frrpiocrin Dt
Dhete splifiing CCriplbesard Tam ify
BN Nigei it Frrslisimm

[T — P

Figure 2: Sample Ul used for smart sensing production system
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Figure 3: Dataset used for smart sensing production system
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Figure 4:UI shows the dataset after preprocessing
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Figure 5: Count plot of target column used for smart sensing production system
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Figure 6: Count plot of target column used for smart sensing production system after
preprocessing.
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Figure 7: Confusion matrix of all machine learning and deep learning algorithms

Figure 5 is a Count plot of target column used for smart sensing production system This figure
presents a count plot visualizing the distribution of the target column in the dataset before any
preprocessing.
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Figure 8: Performance comparison graph of all the ml algorithms
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Figure 9: UI shows the prediction results on test data

Figure 6 is a Count plot of target column used for smart sensing production system after
preprocessing Similar to the previous figure, this one illustrates the count plot of the target
column, but after the dataset has undergone preprocessing steps.

Figure 7 is a Confusion matrix of all machine learning and deep learning algorithms This figure
likely displays a confusion matrix that evaluates the performance of various machine learning
and deep learning algorithms on the task at hand. It provides insights into the model's ability
to correctly classify instances.

Figure 8 is a Performance comparison graph of all the ML algorithms This figure shows a
performance comparison graph, possibly depicting metrics such as accuracy, precision, recall,
or F1 score for different machine learning algorithms used in the smart sensing production
system.

Figure 9 is a Ul shows the prediction results on test data This figure demonstrates the user
interface presenting the prediction results of the smart sensing production system on test data.
It might include visualizations or summaries of the model's predictions.

Table 1 is a Performance comparison of quality metrics obtained using Machine Learning This
table likely summarizes the performance metrics (e.g., accuracy, precision, recall) obtained
from various machine learning algorithms. It provides a structured comparison of the models'
effectiveness.

Table 1: Performance comparison of quality metrics obtained using Machine Learning

Algorithm | Precision | Recall | F1-Score | Accuracy

KNN 56.39 55.57 | 55.77 56.24
DNN 98.99 99.21 ]99.08 99.20

Precision: Precision measures the accuracy of positive predictions made by the model. For the
KNN algorithm, the precision is 56.39%, indicating that out of all the instances predicted as p
ositive, 56.39% were actually positive. In contrast, the DNN algorithm achieved a much highe
r precision of 98.99%, indicating a higher accuracy in positive predictions.
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Recall: Recall measures the ability of the model to identify all positive instances. The KNN al
gorithm achieved a recall of 55.57%, meaning that it correctly identified 55.57% of all actual
positive instances. On the other hand, the DNN algorithm had a recall of 99.21%, indicating it
s superior ability to capture positive instances.

F1-Score: The F1-Score is the harmonic mean of precision and recall, providing a balance bet
ween the two metrics. For the KNN algorithm, the F1-Score is 55.77%, reflecting the balance
between precision and recall in its predictions. Conversely, the DNN algorithm achieved a mu
ch higher F1-Score of 99.08%, indicating a strong balance between precision and recall.

Accuracy: Accuracy measures the overall correctness of the model's predictions. The KNN al
gorithm achieved an accuracy of 56.24%, meaning that it correctly classified 56.24% of all in
stances. In comparison, the DNN algorithm achieved a significantly higher accuracy of 99.20
%, indicating its overall superior performance in classification tasks.

Overall, the DNN algorithm outperformed the KNN algorithm across all metrics, demonstrati
ng its effectiveness in accurately classifying instances and making predictions.
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