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Abstract 

Graph theory is a pivotal branch of mathematics with extensive applications across 

various disciplines, including computer science, biology, social sciences and more. Graph 
Theory is used in many areas of Biology. It can be used in drug target identification, 
determining a protein’s function, gene’s function. It is also used in studying the structures of 
DNA and RNA. In this case study, we concentrate on the features of biological networks. We 
demonstrate approaches, models and methods from the graph theory universe and we discuss 
ways in which they can be used to reveal hidden properties and features of a network. This 
network profiling combined with knowledge extraction will help us to better understand the 
biological significance of the system. 
 

1. Introduction 

In the present research study of Graph theory, a prominent and crucial branch of 

mathematics, explores the study of graphs, which are mathematical structures used to model 

pairwise relations between objects. Originating from Euler's solution to the Konigsberg bridge 

problem in 1736, graph theory has since evolved into a vital field of study with applications 

spanning computer science, biology, social sciences, and more. 

In biology, Graph theory can model and analyze the spread of diseases or information 

within biological networks, helping in designing effective vaccination strategies or 

understanding ecological interactions. 

This work aims to provide a comprehensive understanding of mathematical graph 

theory with a specific focus on biological networks. We will delve into the foundational 

concepts of graphs, including vertices, edges, paths, and cycles before progressing to the 

intricacies of biological networks.  

Graphs are used to represent relationships among species on different physical and 
micro-biological criteria. For example, the evolutionary relationship among the existing 
species is expressed in a tree structure called phylogenetic tree [20]. 

 

 

 

 

 

 

 

 

 

Figure: A Phylogenetic Tree 
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Graph is also used in analyzing biological data. Ecological landscapes can be 
modelled using graphs. Habitat patches are represented as vertices and the movement 
between the patches is represented as edges when ecological landscapes are modelled as 
graphs.  

Similarly, Graph theory is useful in conservation efforts where a vertex represents 
region where certain species exist and the edges represent migration paths or movement 
between the regions. This information is important when tracking the spread of diseases, 
parasites and how the changes in the movement can affect other species. 

 

2. Graph Theory and Definitions: 
 To introduce the basic concepts of graph theory, we give both the empirical and the 
mathematical description of graphs that represent networks as they are originally defined 
in the literature [23]. 
 

2.1 Undirected single graph 

 This is an important feature since there are networks such as protein-protein 
interaction networks in which two proteins might be evolutionary related, co-occur in the 
literature or co-express in some experiments, resulting by this way in three different 
connections, each one with a different meaning. An example of PPI database that takes 
into account the different types of interactions between proteins is String [12]. 
 

2.2 Directed graph 

 A directed graph is defined as an ordered triple G = (V, E, f), where f is a function that 
maps each element in E to an ordered pair of vertices in V. The ordered pairs of vertices 
are called directed edges, arcs or arrows. Directed graphs are mostly suitable for the 
representation of schemas describing biological pathways or procedures which show the 
sequential interaction of elements at one or multiple time points and the flow of 
information throughout the network. These are mainly metabolic, signal transduction or 
regulatory networks [9]. 
 

2.3 Weighted graph 

 A weighted graph is defined as a graph G = (V, E) where V is a set of vertices and E 
is a set of edges between the vertices E = {(u, v) | u, v Î V} associated with it a weight 
function w: E®R, where R denotes the set of all real numbers. 

 

Weighted graphs are currently the most widely used networks throughout the field 
of bioinformatics. As an example, relations whose importance varies are frequently 
assigned to biological data to capture the relevance of co-occurrences identified by text 
mining, sequence or structural similarities between proteins or co-expression of genes [19, 
22]. 

 

2.4 Bipartite graph is an undirected graph G = (V, E) in which V can be partitioned into 
two sets V1 and V2 such that (u,v) Î E implies either u Î V1 and v Î V2 OR v Î V1 and u Î 
V2. Applications of this type of graph to visualization or modelling of biological networks 
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range from representation of enzyme-reaction links in metabolic pathways to ontologies 
or ecological connections. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: Undirected, Directed, Weighted, Bipartite Graph 

 

The total connectivity of a network is defined as 
)1( −

=
NN

E
C where E is the number of 

edges and N the total number of nodes. The connectivity structure of biological networks 
is often informative with respect to reaction interplay and reversibility, compounds that 
structure the network, like in metabolism, or trophic relationships, like in food-web 
networks. Such connectivity profiles can be detected based on mixture models using 
software like MixNet [6, 24]. 

 

2.5 Data Structures 

 The two main data structures used to store network graph representations are 
described. This data structure is more efficient for cluttered networks, where the density 
of the connections between elements is relatively high. In the case of a fully connected 
graph where all nodes are connected with each other, adjacency matrices are highly 
suggested. 

 

2.6 Adjacency list 
 Given a graph G = (V, E) the adjacency list representation consists of an array Adj of 
|E| elements where for each eÎE Adj(0, e) = i ÎV. Adjacency lists require space Θ (|V| +|E|) 
and are preferable for sparse graphs with a low density of connections. An example of how 
these data structures represent a graph is given in Figure 1.2. 
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Figure: Data Structure 

 

2.7 Network Properties 

  Looking at different network properties can provide valuable insight into the internal 
organization of a biological network, the repartition of molecules among cellular 
processes, as well as the evolutionary constraints that have shaped an organism’s protein, 
metabolic or regulatory network into a functional, feasible structure. In the following, we 
give a short description of the main properties that are commonly analyzed in networks.  
 

2.8 Graph Isomorphism 

  Let G1= (V1, E1) and G2= (V2, E2) be two undirected graphs. A function f: V1 >V2 
is called isomorphism if f is an edge-preserving bisection, such that for all a, bÎV1, (a, b) 
ÎE1 if and only if (f(a), f(b)) Î E2. When such function exists, then G1 and G2 are called 
isomorphic. An example is shown in Figure 2.1. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure: Graph Isomorphism 

 

 A walk is a pass through a specific sequence of nodes (v1, v2,..., vL) such that 
{(v1,v2), (v2, v3),..., (vL-1, vL)} ⊆ E. A simple path is a walk with no repeated nodes. A 
cycle is a walk (v1, v2,..., vL) where v1= vL with no other nodes repeated and L >3, such 
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that the last node is the same with the first one. A trail is a path where no edge can be 
repeated. A graph is called cyclic if it contains a cycle. In any other case it is called acyclic. 
All of the aforementioned can be found as an example in Figure 4. A complete graph is a 
graph in which every pair of nodes is adjacent. If (i, j) is an edge in a graph G between 
nodes i and j, we say that the vertex i is adjacent to the vertex j. An undirected graph is 
connected if one can get from any node to any other node by following a sequence of 
edges.  
 

A directed graph is strongly connected if there is a directed path from any node to 
any other node. This does not require an all-against combination. The distance δ(i, j) from 
i to j is the length of the shortest path from i to j in G. If no such path exists, then we set 
δ(i, j) = ∞ assuming that the nodes are so far between each other so they are not connected. 
Practically, for the distance δ(i, j) = ∞ we can. use the maximum weight of the graph by 
adding one. Thus δ(i, j) = ∞ = (maxd(i, j)+1). To define the shortest path problem we can 
briefly say that it is the methodology of finding a path between two nodes such that the 
sum of the weights of its constituent edges is minimized.  
 

The average path length and the diameter of a graph G are defined to be the average 
and maximum value of δ(i, j) taken over all pairs of distinct nodes, i, j ÎV(G) which are 
connected by at least one path. More specifically, the average path length of a network is 
the average number of edges or connections between nodes, which must be crossed in the 

shortest path between any two nodes. It is calculated as 
= =

=
N

i

N

j

ji
NN 1 1

min ),(
)1(

2   where 

δmin(i, j) is the minimum distance between nodes i and j. The diameter of a network is the 
longest shortest path within a network. The diameter is defined as D = max i,j δmin(i, j). 
The most common algorithms for calculating the shortest paths are Dijkstra’s greedy 
algorithm and Floyd’s dynamic algorithm. Dijkstra’s algorithm has running time 
complexity O(N2) where N is the number of vertices and returns the shortest path between 
a source vertex i and all other vertices in the network. Floyd’s algorithm has running time 
complexity O(N3) and requires an all-against-all matrix that contains the distances of 
every node in the network to every other node in the network. [7] 

 

 

 

 

 

 

 

 

 

 

Figure: Walks, simple paths trails and cycles in graphs 
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3.  Applications of Graph Theory in Biological system: 
 Biological networks come in a variety of forms. Nodes in biological networks 
represent bimolecular such as genes, proteins or metabolites, and edges connection these 
nodes indicate functional, physical or chemical interactions between the corresponding 
bimolecular. Understanding these complex biological systems has become an important 
problem that has lead to intensive research in network analyses, modelling and function 
and disease gene identification and prediction. The hope is that utilizing such system-level 
approaches to analyzing and modelling complex biological systems will provide insights 
into the inner working of the cell, biological function, and disease. 
4. Transcriptional regulation networks: 
 In transcriptional regulation networks, nodes represent genes and edges are directed 
from a gene that encodes for a transcription factor protein to a gene transcriptional 
regulated by that transcription factor 9, see figure). Thus, the network structure in an 
abstraction of the system’s biochemical dynamics that is responsible for regulating the 
expression of genes in cells. The two best characterized transcriptional regulation networks 
are those of a eukaryote, the yeast and a bacterium. 
 

 

 

 

 

 

 

 

Figure B Two examples of biological network 

 

5.    Metabolic Networks 

 One of the most important life processes is the metabolism of an organism, the basic 
chemical system that generates essential components such as amino acids, sugars and 
lipids, and the energy required to synthesize them and to use them in creating proteins and 
cellular structures. A metabolic network represents this system of connected chemical 
reactions, i.e., the complete set of metabolic and physical processes that determine the 
physiological and biochemical properties of a cell. Metabolism network reconstruction 
breaks down metabolism pathways into their respective reactions and enzymes. Thus, in 
these networks, small molecule substrates can be envisioned as nodes and the links as the 
enzyme-catalyzed reactions that transform one metabolite into another, with the 
sequencing of complete genomes, it is now possible to reconstruct the network o 
biochemical reactions in many organisms, from bacteria to human. These networks are 
available in several databases, such as Kyoto Encyclopaedia of Genes and Genomes 
(KEGG). 
  

Metabolic networks are powerful tools for studying and modelling metabolism. 
However, graph theoretic description of real-world metabolic networks (Figure C a still 
needs to be established precisely. For example, in the most abstract approach, all 
interacting is considered equally and the edges between nodes represent reactions that 
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convert one substrate into another Figure C b). However, for many biological applications, 
it is useful to ignore co-factors, which can result in a completely different type of mapping 
that connects only the main source metabolites to the main products (Figure C c) 
 

 

 

 

 

 

 

 

 

 

 

 

Figure: C Metabolic networks 

 

6. PPI Network 

 

 Finally, in protein-protein interaction (PPI) networks, nodes correspond to proteins 
and undirected edges represent physical interaction amongst them. PPI networks represent 
an opportunity as well as the challenge. Analyzing these networks may provide useful 
clues about the function of individual proteins, protein complexes, and larger cellular 
machines. However, PPI data volume and noisiness is making many algorithms for its 
analyses intractable. Additionally, graph representation of PPI data with nodes and edges 
corresponding to proteins and protein interactions, respectively, does not address some of 
the major properties of protein interaction data. It does not deal with the noisiness of the 
data, i.e., the large number of false positives and negatives. Moreover, all spatial and 
temporal information is lost, as well as the information about the conditions of biochemical 
experiments, confidence of interactions, number of experiments confirming the 
interactions, etc. 
 

 

 

 

 

 

 

 

 

Figure: D PPI Network 
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7. Characterizing drug-drug target relationship 

 An assessment of the number of drug targets, i.e., molecular targets that represent an 
opportunity for therapeutic intervention, as well as their identification, is crucial to the 
development of post-genomic research strategies within the pharmaceutical industry. 
 Now that the size of the human genome is known, it is interesting to consider just how 
many molecular targets this opportunity represents. Additionally, identifying and 
characterizing the relationships between drugs and their protein targets, as well as between 
drug targets and disease-gene products in the human protein-protein interaction network 
still remains a challenge. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure: E Construction of diseasome bipartite network 

To study drug-drug target relationship, it will be divided into sub categories to study drug-
drug target relationship. 
1) Drug able protein 

2) Drug Bank 

3) Drug Target Network [15] 

 

8. CONCLUSION 

 There is a need to develop an integrative, systems-oriented analysis in Biology. While 
ultimately, we may wish to understand the dynamical processes that take place in living 
organisms, we first need to understand how the components in biological systems interact 
with each other and the biological significance of those interactions. Biological network 
analysis is thus a necessary and highly important aspect of the general systems – driven 
approach to biology. Recent developments in biology and medicine have led to a clear 
need for biological network analysis. 
 

 Moreover, current techniques for the generation of network data are error-prone. 
Network analysis techniques can be used to assess the accuracy of such data and to help 
in obtaining more reliable network maps in the future. 
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 Despite the progress that has been made in the analysis of biological networks, there 
are many major issues that still need to be addressed. The unreliable quality and 
incompleteness of existing data sets, is a serious impediment to network research and the 
development of improved experimental and statistical techniques, to enhance the accuracy 
of network maps, is of vital importance for future research efforts. 
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