A VIEW ON AN EDGE PAIR SUM GRAPHS

*1 Henry G, M. Phil Scholar, Department of Mathematics, Bharath University, Chennai. 72
*2 Dr. M. Siva. Assistant Professor and Head, Department of Mathematics, Bharath University, Chennai. 72.
ghenry1970@gmail.com sivamurthy@gmail.com
\section*{Address for Correspondence}
*1 Henry G, M. Phil Scholar, Department of Mathematics, Bharath University, Chennai. 72
*2 Dr. M. Siva. Assistant Professor and Head, Department of Mathematics, Bharath University, Chennai. 72.

Abstract

A graph with an edge pair sum labeling is called an edge pair sum graphs. In this paper we prove that edge pair sum graphs. A graph which admits edge pair sum labeling is called an edge pair sum graphs. The origin of graph theory started with the problem of Konigsberg bridge in 1735.

Keywords:

Pair sum labeling, pair sum graph, edge pair sum labeling, ladder graph, etc

Introduction:

The graph considered here are all finite, undirected simple. The pair sum labeling is introduced by R.Ponraj and they study the edge pair sum labeling of cycle, path, star and some of their related graphs. The Mathematician Leonhard Euler thought about this problem and by solving this problem Euler introduced the new branch of Mathematics namely graph theory. The city of Konigsberg was located on the Pregl River in Prussia. The river divided the city into four regions. These four regions are linked by seven bridges. Residents of the city wondered if it were possible to leave home, cross each of the seven bridges exactly once, and return home.

Theorem

$\mathrm{S}\left(\mathrm{Q}_{\mathrm{n})}\right.$ is a pair sum graph.

Research Paper

Proof

Let $\mathrm{V}\left(\mathrm{S}\left(\mathrm{Q}_{\mathrm{n}}\right)\right)=\left\{\mathrm{x}_{\mathrm{j}}: 1 \leq \mathrm{j} \leq 2 \mathrm{n}+1\right\} \cup\left\{\mathrm{y}_{\mathrm{j}}: 1 \leq \mathrm{j} \leq 3 \mathrm{n}\right\} \cup\left\{\mathrm{z}_{\mathrm{j}}: 1 \leq \mathrm{j} \leq 2 \mathrm{n}\right\}$
and $\mathrm{E}\left(\mathrm{S}\left(\mathrm{Q}_{\mathrm{n}}\right)\right)=\left\{\mathrm{x}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}+1}: 1 \leq \mathrm{j} \leq 2 \mathrm{n}\right\} \cup\left\{\mathrm{x}_{2 \mathrm{j}+1} \mathrm{Z}_{2 \mathrm{j}}, \mathrm{y}_{3 \mathrm{j}} \mathrm{Z}_{2 \mathrm{j}}: 1 \leq \mathrm{j} \leq \mathrm{n}\right\} \cup\left\{\mathrm{x}_{\left.2 \mathrm{j}-1 \mathrm{Z}_{2 \mathrm{j}-1}, \mathrm{Z}_{2 \mathrm{j}-1} \mathrm{y}_{3 \mathrm{j}-2}: 1 \leq \mathrm{j} \leq \mathrm{n}\right\}}\right.$

$$
\cup\left\{y_{j} \mathrm{y}_{\mathrm{j}+1}: 1 \leq \mathrm{j} \leq 3 \mathrm{n}-1\right\}-\left\{\mathrm{y}_{3 \mathrm{j}} \mathrm{y}_{3 \mathrm{j}+1}: 1 \leq \mathrm{j} \leq \mathrm{n}\right\}
$$

Case 1. n is odd.
S $Q_{1} \square \square$ is

When $n>1$.

Define $\mathrm{g}: V \square S \square Q_{n} \square \square \square \square \square 1, \square 2, \ldots, \square \square 7 n \square 1 \square \square \square$ by

```
        g }\square\mp@subsup{x}{n\square1}{}\square\square\square\square\square6
    g\square\mp@subsup{x}{n}{}\square\square7,
    g}\square\mp@subsup{x}{n\square1\square\square\square8}{
    g}\square\mp@subsup{x}{n\square\square\square\square22,}{
    g}\square\mp@subsup{x}{n\square2}{\}\square\square\square\square3
    g\square ( 
    g}\square\mp@subsup{x}{n\square4)}{\square22
    g\square\mp@subsup{x}{n\square1\square2j}{\square\square14j \square20,1\squarej\square\square}\frac{n-3}{2}
    g\square\mp@subsup{x}{n\square2\square2j}{}\square\square14j\square22,1\squarej\square\square\frac{n-3}{2}
    g\square\mp@subsup{x}{n\square3\square2j}{\}\square\square\square14j\square20,1\square\squarej \\square\frac{n-3}{2}
    g\squarex nп4\square2j }\square\square\square
        14j\square22,1\square\squarej }\square\square\frac{n-3}{2
        g\square\mp@subsup{z}{n}{}\square\square5,
        g\squarezn\square1\square\square4,
        g\square zn\square2\square\square20
        g\squarezn\square1\square\square\square\square5,
        g\square\mp@subsup{z}{n\square2}{\square}\square\square\square\square12,
```

$$
\begin{aligned}
& \mathrm{g} \square z_{n \square 3} \square \square \square \square 20 \\
& \mathrm{~g} \square z_{n \square 1 \square 2 j} \square \square 14 j \square 10,1 \square j \square \square \square \frac{n-3}{2} \\
& \mathrm{~g} \square z_{n \square 2 \square 2 j} \square \square 18 \square 14 j, \square \square j \square \square \frac{n-3}{2} \\
& \mathrm{~g} \square \mathrm{z}_{\mathrm{n} \square 2 \square 2 \mathrm{j}} \square \square \square \square 14 \mathrm{j} \square 10,1 \square \square \mathrm{j} \square \square \frac{n-3}{2} \\
& \mathrm{~g} \square \mathrm{z}_{\mathrm{n} \square \mathrm{~b} \square 2 \mathrm{j}} \square \square \square \square 18 \square 14 \mathrm{j}, 1 \square \square \mathrm{j} \square \square \frac{n-3}{2} \\
& \mathrm{~g} \square y_{\square 3 n} \square 1 \square 2 \square \square 6 \text {, } \\
& \mathrm{g} \square y_{\square} \square n \square 1 \square / 2 \square \square 3 \\
& \mathrm{~g} \square y_{\square 3 n \square 3 \square} / 2 \square \square \square \square 10, \\
& \mathrm{~g} \square y_{\square} \square n \square 5 \square / 2 \square \square 16 \\
& \mathrm{~g} \square y_{\square 3 n \square 7 \square} / 2 \square \square 18, \\
& \mathrm{~g} \square \mathrm{y} \square 3 n \square 3 \square / 2 \square \square \square \square 7 \text {, } \\
& \mathrm{g} \square y_{\square 3 n} \square 5 \square / 2 \square \square 14 \text {, } \\
& \mathrm{g} \square y_{\square} 3_{n \square 7 \square} / 2 \square \square \square \square \square 16
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{g} \square \mathrm{y} \square 3 n \square 3 \square / 2 \square 3 j \square \square 14 j \square 12,1 \square \square j \square \square \frac{n-3}{2} \\
& \mathrm{~g} \square y \square 3 n \square 5 \square / 2 \square 3 j \square \square \\
& 14 j \square 14,1 \square \square j \square \square \frac{n-3}{2} \\
& \mathrm{~g} \square \mathrm{y} \square 3 \mathrm{n} \square 7 \square / 2 \square 3 j \square \square 14 j \square 6, \quad 1 \square \square j \square \frac{n-3}{2} \\
& \mathrm{~g} \square \mathrm{y} \square 3 n \square 5 \square / 2 \square 3 j \square \square \square \square 14 j \square 12,1 \square \square j \square \square \frac{n-3}{2} \square \\
& \mathrm{~g} \square y_{\square 3 n \square 7 \square / 2 \square 3 j \square \square \square \square 14 j \square 14,1 \square \square j \square \square \frac{n-3}{2}}^{2} \\
& \mathrm{~g} \square \square \mathrm{y} \square 3 \mathrm{n} \square 9 \square / 2 \square 3 j \square \square \square \square 14 j \square 6,1 \square \square j \square \square \frac{n-3}{2}
\end{aligned}
$$

For $n=3$

```
g e\squareE\squareS\square\squareQ Qn}\square\square\square\square\square1,2,6,8,9,11,12,15,30,34,38,42\square\cup
```


$34, \square 38, \square 42 \square$.

For $n \square 3$,
$\mathrm{g}_{e} \square E \square$
S
$\left(Q_{n} \square \square \square \square \square \mathrm{~g}_{e} \square E \square S\right.$

 $\square,(74,78,82,84,86,90,96,98 \square$,

$\square 86, \square 90, \square 96, \square 98 \square$, ,

$n \square 14,14 n \square \square 12,14 n \square 8,14 n \square 2,14 n \square$
$\square \square \square 14 n \square 24, \square 14 n \square 20, \square 14 n \square 16, ~ \square 14 n \square 14$, $\square 14 n \square 12$, $\square \square 14 n \square 8$,

Then g is pair sum labeling.
Conclusion
A graph is a collection of points and lines connecting some subset of them. The points of a graph are most commonly known as graph vertices, but may also be called nodes or simply points. Similarly, the lines connecting the vertices of a graph are most commonly known as graph edges, but may also be called Ares or lines.

References:

[1] Barrientos, C., The gracefulness of unions of cycles and complete bipartite graphs, J. Combin. Math. Combin. Comput. Volume 52, (2005), 69-78.
[2] Choudum, S.A., and Kishore, S. P. M., Graceful labellings of the union of paths and cycles, Discrete Math., Volume 206, (1999), 105-117.
[3] Parthasarathy, K.R., Basic Graph Theory, Tata Mc Graw-Hill, Publishing Co., Ltd., New Delhi, (1994).
[4]Robin J.Wilson, Introduction to Graph Theory, Longman, Harlow (1985).
[5]Tremblay, J.P., Manohar, R., Discrete Mathematical Structures with Applications to Computer Science.

