ISSN PRINT 2319 1775 Online 2320 787 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 12, Iss 07, 2023

VALIDATION AND DEVELOPMENT FOR THE ESTIMATION OF PIRFENIDONE IN MARKETED FORMULATION BY RP-HPLC

Krishna Satya A^{1*}, Sunitha N²

1.Associate Professor, Department of Biotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh

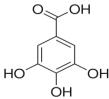
2.Research scholar, Department of Biotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh

Address for Correspondence

Dr . A Krishna Satya

Associate Professor Department of Biotechnology Acharya Nagarjuna University Guntur, Andhra Pradesh Ph No: 9490639577 Mail ID: <u>akrishnasatya78@gmail.com</u>

ABSTRACT:


The RP-HPLC method was proved to be simple, precise accurate and sensitive from the results of the validation and it is suitable method for the estimation of pirfenidone in its pharmaceutical dosage forms.

A RP-HPLC method was developed using the mobile phase of 50:48.5:1.5 % v/v methanol and water and tri etylamine. The run time of the developed method was six minutes, which reduces the solvent usage. The chromatographic conditions use ambient temperature which can yield accurate, precise results in the range of $25-35 \text{ }^{\circ}\text{C}$. The results of the validation parameters showed that the method is accurate and precise. Finally, it can be concluded that the methods for quantitation of pirfenidone by RP-HPLC Method in its pharmaceutical dosage forms can be applied for the routine analysis because of simplicity, accuracy, and preciseness.

KEY WORDS: Pirfenidone, tri ethylamine, methanol, RP-HPLC

INTRODUCTION:

Pirfenidone is a novelantifibrotic drug approved for mild to moderatye idiopathic pulmonary fibrosis(IPF) as orphan drug in japan and Europe. Pirfenidone is only drug which has been approved for the treatment of IPF. Pirfenidone is a small non – peptide molecule of low molecular weight (185.2 daltons) with the chemical name of 5-methyl-1-phenyl-2-(1H)-pyridone¹⁻²².

Fig 1: Structure of Pirfenidone

ISSN PRINT 2319 1775 Online 2320 787 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 12, Iss 07, 2023

MATERIALS AND METHODS:

Chemicals and Reagents:

Drug sample:

• Pirfenidone was obtained from Yarrow Chem products, Mumbai, India.

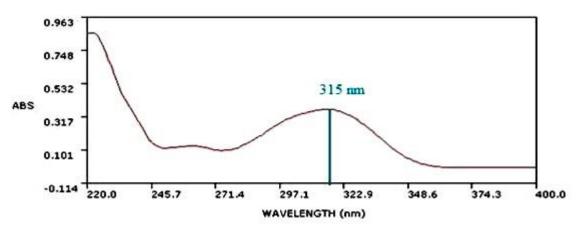
Chemicals:

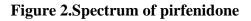
- HPLC grade methanol-Merck life science Pvt Ltd
- HPLC Water

METHOD DEVELOPMENT

Selection of Mobile Phase: Based on sample solubility, stability and suitability various mobile phase compositions were tried to get a good resolution and sharp peaks. The standard and sample solution was run in different mobile phases. From the study, Methanol was preferred over acetonitrile because it gives sharper peak and less cost than Acetonitrile.From the various mobile phases, methanol : water : Triethylamine (50: 48.5:1.5 % v/v).

Preparation of Standard Stock Solution:

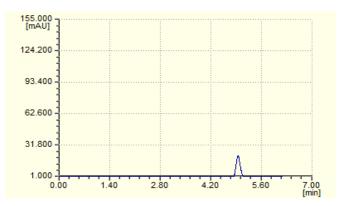

An accurately weighed quantity of (10 mg) pirfenidone was transferred to a 10mL volumetric flask, dissolved and diluted to the mark with Methanol : Water : Triethylamine (50:48.5:1.5 %v/v) to obtain standard stock solution of 1000µg/ml.


Preparation of mobile phase:

Take 50 ml of methanol was transferred to 100 ml of volumetric flask then add 48.5 ml of double distilled water and add 1.5 ml of tri ethylamine then sonicate it for 1hr and filter the mobile phase (50:48.5:1.5 v/v)

RESULTS AND DISCUSSION

The λ max of pirfenidone was found to be 315 nm

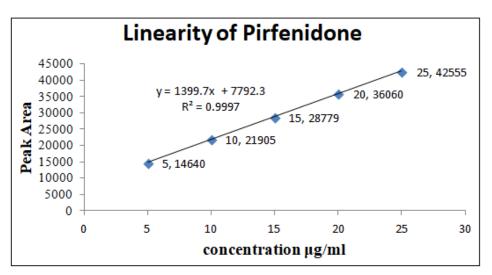


ISSN PRINT 2319 1775 Online 2320 787 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 12, Iss 07, 2023

Chromatographic conditions:

Table 1: Optimized chromatographic conditions:			
loloo	Flowrosil C18 column with 5 µm (Dimension)		
Mobile phase	Methanol:water:triethylamine(50:48.5:1.5)%v/v		
Flow rate	1ml/min		
Temperature	Ambient		
Run time	7min		
Detection wavelength	315 nm		
Injection volume	10µl		
Mode of operation	Isocratic elution		

Figure no 3. Optimized Chromatogram for Pirfenidone


Table 2: Chromatogram results for optimized method

Mobile phase	Methanol:water:tri ethylamine(50:48.5:1.5)%v/v)
Stationary phase	Flowrosil C18 column with 5 µm (Dimension)
Wavelength	312nm
Run time	7min
Flow rate	1ml/min
Injection volume	10µg/ml
Mode of operation	Isocratic elution
Temperature	Ambient

Calibration curve

ISSN PRINT 2319 1775 Online 2320 787 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 12, Iss 07, 2023

Assay

 Table 3: Assay Results

S.No	Concentration (µg/ml)	Standard peak area (Mean±SD), n=3	Test peak area (Mean±SD), n=3	Amount of Pirfenidone found in mg (n=3)	Mean %recovery of Pirfenidone
1	20µg/ml	36060	35560	19.848	99.24

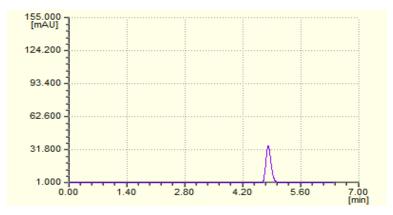


Figure 5: Chromatogram for 20 (µg/ml) Assay

	Table 4. Chromatogram results for 20 (µg/nn) Assay							
S.No	Drug Name	Retention time(min)	Peak area	Theoretical plates	Tailing factor			
1	Pirfenidone	4.82	35560	5110.60	1.72			

Table 4: Chromatogram results for 20 (µg/ml) Assay

ISSN PRINT 2319 1775 Online 2320 787 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 12, Iss 07, 2023 155,000 124,200 93,400 62,600 31.800 1.000 0.00 1.40 2.80 4.20 5.60 7,00

Figure 6: Chromatogram for (20 µg/ml) Standard

S.No	Drug Name	Retention time(min)	Peak area	Theoretical plates	Tailing factor
1	Pirfenidone	4.9	36060	5900.78	1.85

Table 5:	Chromatogram	results for	$(20\mu g/ml)$	standard
I GOIC CI	oni oniatogi ani			

Validation

Specificity

Specificity of the HPLC method was demonstrated by the separation of the analytes from other potential components such as impurities, other markers. A volume of 20μ L of individual ingredients and other marker solutions were injected and the chromatogram was recorded. Peaks of other marker were not found at retention time of 4.97 min. Hence, the proposed method was specific for Pirfenidone.

Blank:

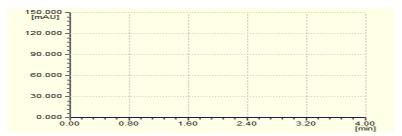


Figure 7.Blank injection chromatogram for specificity

Standard:

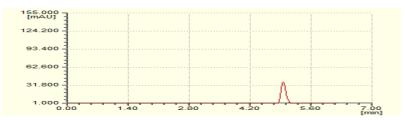


Figure 8. Chromatogram of Standard Pirfenidone

ISSN PRINT 2319 1775 Online 2320 787 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 12, Iss 07, 2023

Sample:

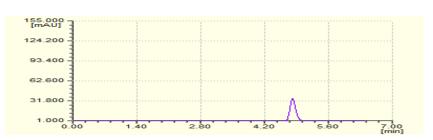


Figure 9. Chromatogram of Test Pirfenidone

Linearity

Linearity for this method was found to be in between $5-25\mu g/ml$ Linearity 5 $\mu g/ml$

Figure 10: Linearity (5µg/ml) Chromatogram

Linearity 10 µg/ml

Figure 11: Linearity (10µg/ml) Chromatogram

Linearity 15µg/ml

Figure 12: Linearity (15µg/ml) Chromatogram

ISSN PRINT 2319 1775 Online 2320 787 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 12, Iss 07, 2023

Linearity 20 µg/ml

Table 6: Chromatogram results for Linearity (20µg/ml)					
S.No	Drug Name	Retention time(min)	Peak area	Theoretical plates	Tailing factor
1	Pirfenidone	4.9	36060	5900.78	1.85

Table 7: Chromatogram results for Linearity (25µg/ml)

	S.No	Drug Name	Retention time(min)	Peak area	Theoretical plates	Tailing factor
Ē	1	Pirfenidone	4.9	42555	5566.84	1.78

Accuracy

✤ Accuracy 50% Recovery level

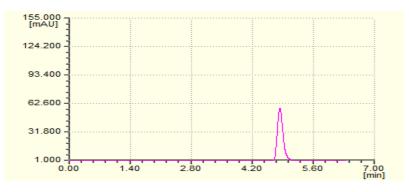


Figure 13: Chromatogram for Accuracy 50% recovery level

***** Accuracy 100% Recovery level

Figure 14: Chromatogram for Accuracy 100% recovery level Table

ISSN PRINT 2319 1775 Online 2320 787 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 12, Iss 07, 2023

✤ Accuracy 150% Recovery level

Figure 15 : Chromatogram for Accuracy 150% recovery level

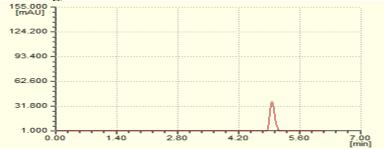

Decovery		Concentration(µg/ml)			%Mean
Recovery Level	Test (Initial amount)	Standard (Amount added)	Predicted Concentration	Area n=3	Recovery
50%	20µg/ml	10µg/ml	30µg/ml	57520	101%
100%	20µg/ml	20µg/ml	40µg/ml	71376	100%
150%	20µg/ml	30µg/ml	50µg/ml	84516	98%

Table 8: Accuracy Results

Precision

Precision was done with the 20μ g/ml (n=6) concentration.

Repeatability(Morning)

Figure 16: Precision Chromatogram of Standard Pirfenidone at 20 µg/ml

Repeatability (Evening)

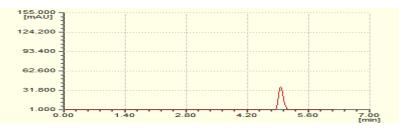


Figure 17: Precision Chromatogram of Standard Pirfenidone at 20 µg/ml

ISSN PRINT 2319 1775 Online 2320 787 *Research Paper* © 2012 IJFANS. All Rights Reserved, Journal Volume 12, Iss 07, 2023

Reproducibility (Day 1)

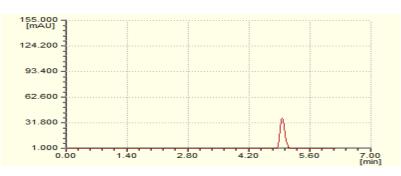


Figure 18: Precision Chromatogram of Standard Pirfenidone at 20 µg/ml

Table 7 .Chromatogram results for Reproducibility							
Conc.20µg/ml	repeatability	Retention	Theoretical	Tailing factor			
Spikes	Day 1	time(min)	plates	Taning factor			
1	36060	4.98	5900	1.78			
2	36012	4.94	5869	1.85			
3	36105	4.95	5741	1.68			
4	35987	4.95	5966	1.91			
5	35899	4.97	5768	1.89			
6	36014	4.98	5988	1.75			

Reproducibility (Day 2)

Conc.20µg/ml Spikes	repeatability Day 2	Retention time(min)	Theoretical plates	Tailing factor
1	36040	4.98	5900	1.78
2	36561	4.94	5869	1.85
3	36211	4.95	5741	1.68
4	35990	4.95	5966	1.91
5	35856	4.97	5768	1.89
6	36111	4.98	5988	1.75

Table 10: Chromatogram results for Reproducibility

Robustness:

Six replicates were taken and study for Robustness was performed at a concentration of $20\mu g/ml$ by deliberate change in flow rate.

ISSN PRINT 2319 1775 Online 2320 787 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 12, Iss 07, 2023

Flow rate 0.8 ml/min

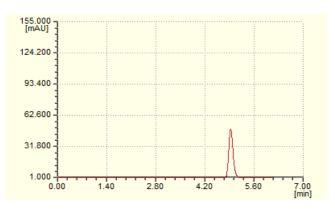


Figure 19: Chromatogram for Robustness (Flow rate 0.8 ml/min)

Table 11. Robustiless Results								
Robustness		Flow rate 0.8ml/min		Flow rate 1.2ml/min				
Retention time = 4.97		Retention time	Peak area	Retention time	Peak area			
	S1	4.98	36060	4.92	36561			
Absorbance	S2	4.96	36115	4.91	36772			
at 20µg/ml	S3	4.96	36899	4.93	35754			
	S4	4.98	35879	4.93	36112			
	S 5	4.99	36174	4.92	36453			
	S6	4.98	36172	4.91	36528			
Mean (n=6)		4.97	36216.5	4.975	36294.5			
Standard deviation (SD)		0.01549193	351.65139	0.01378405	369.274288			
RSD		0.00311709	0.0097097	0.00277066	0.01017439			
%RSD		0.31%	0.97%	0.27%	1.01%			

Ruggedness

✤ Analyst-1

ISSN PRINT 2319 1775 Online 2320 787 *Research Paper* © 2012 IJFANS. All Rights Reserved, Journal Volume 12, Iss 07, 2023

✤ Analyst-2

Figure No 21: Chromatogram for Ruggedness

Ruggdness		Analyst 1		Analyst 2				
		Retention time	Peak area	Retention time	Peak area			
Absorbance at	S1	4.95	36060	4.92	36151			
20µg/ml	S2	4.94	36012	4.94	37015			
	S3	4.94	36105	4.93	36001			
	S4	4.97	36211	4.92	36060			
	S5	4.96	35899	4.93	36200			
	S6	4.95	36014	4.92	36001			
Mean(n=6)		4.951666667	36050.17	4.92666667	36238			
Standard deviation		0.01169045	157.7857	0.00816497	389.040872			
RSD		0.00236091	0.00437	0.0016573	0.01073572			
%RSD		0.23%	0.43%	0.16%	1.07%			

Table 12: Ruggedness Results

Limit of detection and Limit of quantification

	Table13: LOD & LOQ		
Limit of Detection	Limit of Quantification		
0.05	0.15		

CONCLUSION

Literature survey indicates that the methods for the determination of pirfenidone by RP-HPLC method were time consuming and costlier. So the present work aimed for the development of sensitive, economical and simpler methods for the estimation of pirfenidone in its pharmaceutical dosage forms.

A RP-HPLC method was developed using the mobile phase of 50:48.5:1.5 % v/v methanol and water and tri etylamine. The run time of the developed method was six minutes, which reduces the solvent usage. The chromatographic conditions use ambient temperature which can yield accurate, precise results in the range of 25-35 °C. The results of the validation parameters showed that the method is accurate and precise.

ISSN PRINT 2319 1775 Online 2320 787 *Research Paper* © 2012 IJFANS. All Rights Reserved, Journal Volume 12, Jss 07, 2023

Finally, it can be concluded that the methods for quantitation of pirfenidone by RP-HPLC Method in its pharmaceutical dosage forms can be applied for the routine analysis because of simplicity, accuracy, and preciseness.

ACKNOWLEDGEMENT: I thank Department of Biotechnology Acharya Nargajuna University, for helping me throughout the work, without which it may not be possible.

CONFLICT OF INTEREST: We declare that we have no conflict of interest.

BIBILIOGRAPHY

- 1. Alisha P, Kesha D (2017) 'Method development and validation for estimation of Pirfenidone by UV Spectrophotometric and RP-HPLC in tablet dosage form', International Journal of Pharmaceutical Research, 7 (3), pp.45-50.
- Anusha R K, DevadasuCh, Devala Rao G, Ravisankar P (2014) ' A novel validated RP-HPLC method for the determination of Pirfenidone in Pharmaceutical dosage form', Scholar's research library, pp.19-29.
- 3. Ashok P , Prabhakar S, Rina Mohan S, Snehal G (2018) 'Chromatographic method development and validation for estimation of Pirfenidone in pharmaceutical dosage form', European journal of biomedical and pharmaceutical science, 5(8), pp.552-558.
- 4. Atul A S ,Chaudhari J, Pritham P, Mujeeb G K (2019) 'Development and validation of zero & first order derivative area under curve spectrophotometric methods for the determination of pirfenidone in bulk material and pharmaceutical formulation', Asianj.ResearchChem,volume 12(3), pp.129-135.
- 5. Audran M, Bromet P M, Brossolle F (1996) 'Validation of LC and GC methods application of pharmacokinetics', Journal of chromatography B, 6, pp.3-11.
- 6. Azuma A, Ebina M, Kondoh Y, Raghu G, Taguchi Y, Takahashi H (2010) 'Pirfenidone in idiopathic pulmonary fibrosis', European respiratory journal, 35, pp.821-829.
- 7. Bockstaele E, Loose d ,Taverniers I (2004) 'Trends in quality in the analytical laboratory,II. Analytical method validation and quality assurance', Trends Anal. Chem, 23, pp.535–552.
- 8. Chen Y, Liu X, Wang G, Wang Y, Zhao X, Zhong J (2006) 'Simple determination of pirfenidone in rat plasma via high-performance liquid chromatography' ,Biomed, 20, pp.1375-1379.
- 9. Dharmendra K, Sreedhar C, Sreenivasa R, Tamang R (2018) 'Analytical method development and validation for pirfenidone(Anti fibrotic) in bulk drug and dosage form', International journal of chemistry and pharmaceutical sciences, 6(5), pp.134-140.
- 10. Desai S B ,Parmar V K and Vaja T (2014) 'RP-HPLC and UV spectrophotometric methods for estimation of Pirfenidone in pharmaceutical formulation', Indian journal of Pharm science, 76(3), pp.225-229.
- 11. Feng Y, Zong G J ,Zhan X (2009) 'Determination of Pirfenidone and its related substances', Anhuai Medical and pharmaceutical journal, PP.15-25.
- 12. Hartmann C, Smeyers V, Massart R D (1998) 'Validation of bioanalytical chromatographic methods', Biomed, 17,pp. 193–218.
- 13. <u>http://www.intermune.com/Pirfenidone</u>.
- 14. https://www.drugbank.ca/drugs/DB04951.
- $15.\ https://pubchem.ncbi.nlm.nih.gov/compound/pirfenidone\ .$

ISSN PRINT 2319 1775 Online 2320 787 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 12, Iss 07, 2023

- 16. <u>https://www.drugdevelopmenttechnology.com/projects/pirfenidone-treatment-foridiopathic-pulmonary-fibrosis</u>.
- 17. Ittadwar A M , Padmane S P, Tajne M R ,Thorat S G (2016) 'Development and validation of simple, rapid and sensitive UV, HPLC and HPTLC methods for estimation of Pirfenidone in tablet dosage form', Journal of the Chilean chemical society, 61(2), pp. 2978-2981.
- 18. Jiang H , Pan Y ,Tong S., Wang X, , Xuegu X (2010) 'Determination of Pirfenidone in rat plasma by LC–MS-MS and its application to a pharmacokinetic study', Chromatographia, 71, pp. 709-713.
- 19. Paul W, Noble (2016) "pirfenidone for idiopathic pulmonary fibrosis:analysis of pooled data from three multinational phase 3 trials", Paul W. Noble, European Respiratory Journal, pp.243-253.
- 20. Siddhant M (2017) 'Development of chromatographic method and validation for estimation of pirfenidone in bulk and pharmaceutical dosage form', International research journal of pharmacy, 10(7), pp.45- 50.
- 21. Thorat S G, Rupesh V C (2016) 'Determination and pharmacokineticstudy of pirfenidone in rat serum by HPTLC', Journal of chromatographic science, 54(7), pp.1115-1119.
- 22. Rowland M, Tozer T N (1995) 'Clinical Pharmacokinetics Concepts and Applications', United States of America, 3, pp.123-136.

