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Introduction  

Fractal sets are “too rough" to define the classical Laplace operator as is the case for open subsets 

of Rn. We can still however define the Laplace operator on fractals through various approaches, 

such as a probabilistic one studied by  and an analytic one, via the use of Dirichlet forms, 

originating from the work of Kigami .In this thesis we will focus on Kigami’s analytic approach. 

We will use the slightly different convention of, that is the same in spirit to that of Kigami, but is 

perhaps more suited for considering things from the graph theoretic point of view. On the graph 

approximation Gn, we set Vn = ∪ 
i FiVn−1 and V∗ = ∪ 

iVi. Now, for functions u, v : Vn → R we can 

define the energy form  
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where the notation y ∼n x denotes that the vertices x and y are adjacent in the graph Gn and cn(x, y) 

is the conductance of the edge connecting the vertices x and y. We want to create an energy form 

on the fractal K and whether that can be done is a difficult problem depending on K and the choices 

of cn(x, y). Some requirements need to be satisfied, but for our purposes here we will not focus on 

this renormalizaation problem. However, we will instead focus here in the cases where this is 

possible and all the conductances satisfy cn(x, y) = r−n where r is the so-called renormalization 

constant. We will also restrict our attention in the cases where 0 < r < 1 which we refer as a regular 

harmonic structure. We denote En(u) = En(u,u). If we have a function u : Vn → R there exists a 

unique way to extend it to Vn+1 such that its energy is minimized. This is called the harmonic 

extension, and in that case En+1(u) = E(u). So, given a function with initial values on V0 there exists 

a unique way to extend it harmonically at every level. Such a function will be called harmonic 

function. Then the energy of a function u : K → R is given by  

 

We will study functions of finite energy, i.e. the vector space  

 

It can be seen that functions of finite energy are continuous and thus since K is compact, 

uniformly continuous. The space of functions of finite energy modulo constants is a Hilbert space 

with the energy inner product.  

Renormalization and harmonic functions are connected with electric net works and random 

walks on graphs. Having the standard energy form E on a graph G, we can define the effective 

resistance between two vertices as  

R(u,v)=(min{E(h) : h(u) = 0 and h(v) = 1})−1.  
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The function satisfying that minimum is in fact going to be the harmonic func tion with 

those two boundary values. The effective resistance, also called as resistance metric is a metric on 

the graph. The probabilistic interpretation of harmonic functions is interpreting the values on the 

vertices of the graph as probabilities of a random walk on the graph. Take a subset S ⊂ G of 

vertices, and denote it as the boundary of the graph. Then if we solve the Dirichlet problem on the 

graph  

Δh(v) = 0 for all v ∈ G\ S and h|S = g  

we will have that the harmonic function h can be written as  

 

where Prob(u → v) denotes the probability that a random walk on the graph G starting at u first 

hits v before any other vertices of S. We refer the reader for more details to [9, 15].  

If w = (w1,...,wn) is a finite word, where wi ∈ {1,...,m} we define the map Fw = Fw1 ◦···◦ Fwn 

. We call FwK a cell of level n = |w|, where |w| is the length of the word. We can now construct a 

measure on our self similar set K. The standard measure is a special case of a self-similar measure 

created in the following way. Assign probability weights μi with ∑m
i=0 μi = 1 with each μi > 0 and 

set μ(FwK) = ∏|w|
i=0 μwi. For the standard measure we just assign all μi = 1/m. On K for the standard 

invariant measure μ we have μ(FwFiK) = 
1

𝑚
μ(FwK), i = 0,1,2,...,m for any word w. The self-similar 

identity μ(A) = ∑i μiμ(F−1 A) holds for set A ⊂ K. In fact, the standard mea sure is none other than 

a renormalized version of the Hausdorff measure. Using the measure μ we can study integrals so 

as to do analysis on the fractal. 

 Our functions are uniformly continous because the set K is compact, so we simply define 

integration as  
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Having the energy form and the integrals at our disposal, we can now define the Laplace 

operator on the fractal itself.  

Definition 3.2.1. Let u ∈ domE and f be a continuous function. Then, u ∈ domΔμ and Δμ u 

= f if  

 

  where dom𝜀0 denotes the functions of finite energy that vanish on the bound ary.  

Introducing the notion of normal derivatives we can modify the above no tion to define the 

Neumann Laplacian as well. This is refered to as the weak definition of the Laplacian, we may 

also construct a pointwise definition for the standard self-similar measure by using the graph 

Laplacians. Specifically, we define the combinatorial graph Laplacian as  

                          

The harmonic functions then at every level satisfy Δmh = 0. Notice that our definition of 

harmonic functions is in fact slightly different than the pure graph theoretic version often found in 

the literature. In spectral graph theory the har monic functions are those that Δh = 0, where Δ is 

the graph Laplacian defined above as Δ = D−A, and on finite graphs are only piecewise constant 

on each connected component of the graph. This difference comes from the fact that the graph 

Laplacian on the fractal graphs was not defined on the boundary, so as to allow us flexibility when 

it comes to boundary conditions such as Dirich let or Neumann. Here in the fractal setting, by 

harmonic functions we refer to the ones solving the Dirichlet problem  

Δmh = 0 for all m ≥ 1 and h|
V

0 = g  

and thus do not necessarily satisfy the Laplace equation, in the graph theoretic sense, on the 

boundary. There exists an algorithmic approach to calculating the values of a harmonic function 

on Vm. This is a local extension algorithm, meaning that knowing the boundary values on any cell 

http://www.ijfans.org/
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of level m we can extend it to a cell of level m + 1 and thus inductively everywhere. Starting from 

the boundary values at V0 we can solve the linear system of equations at V1 giving us the harmonic 

extension on the first level. Then at every next level, we are in the same situation as before with m 

cells and new boundary values. Encoding this information into m matrices Ai and thinking of the 

values of h on V0 as a vector we have that h|FiV0 = Aih|V0 which then inductively gives us that the 

values on any given cell are obtained by  

h|FwV0 = Awh|V0 where Aw = Awm ···Aw2Aw1 .  

These are called harmonic extension matrices, and for example in the Sier- pinski gasket 

they are ´  

 

giving us the so-called " 
1

5
 − 

2

5
 " harmonic extension rule, meaning that on m+1 level the value of a 

harmonic function is 
2

5
 times the value of the sum of its closest vertices plus 1

5 the value of the 

opposite vertex. Harmonic functions satisfy the maximum principle, meaning that the maximum 

and minimum val ues are on the boundary V0. If the matrices Ai are invertible then we have a non-

degenerate harmonic structure which implies that non-constant harmonic functions cannot be 

locally constant on any cell. This is not always the case, for example the Vicsek set in Figure 1.2 

has a degenerate harmonic structure.  
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with uniform convergence on V∗ \V0. When we will be using the standard self-similar measure μ 

we will omit it from the notation and simply write Δ. Then, the harmonic functions that we defined 

above are exactly the ones such that Δh = 0. Now, it may not be at this point clear that the space 

domΔμ is in fact a rich space to study. However, indeed domΔμ contains a lot of functions. We will 

omit the details of the construction of Green’s function, but through it we can use the following 

theorem which shows us the richness of domΔμ .  

Theorem 3.2.2. The Dirichlet problem  

                              −Δμ u = f ,u|V0 = 0  

has a unique solution in domΔμ for any continuous f , given by    

                           

where G(x,y) is the Green’s function. If we don’t have Dirichlet boundary conditions then 

the solution is given by  

 

where h(x) is a harmonic function with the same boundary values as u.  

One big disadvantage of domΔμ is that it’s not closed under multiplication. Specifically, for 

u ∈ domΔμ it is proven in [6] that u2 ∈/ domΔμ . This how ever is specifically for the measure μ. We 

can define different measures that will give rise to a different Laplacian that will not necessarily 

suffer from this drawback. Specifically, Kusuoka in [31, 32] defined the measure ν, now re ferred 

to as the Kusuoka measure. We take a look first at the energy measures of a function u ∈ domE. 

Let the energy measure νu be  

                        νu(FwK) = r−|w|E(u ◦Fw).  

http://www.ijfans.org/
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Then, let the harmonic functions hi(qj) = δi j for qj ∈V0 and i = 1,...,|V0|. If the harmonic 

extension matrices Ai are invertible then the energy measures νhi have full support. We define the 

Kusuoka measure as  

                      

It can be shown that every energy measure is absolutely continuous with re spect to the 

Kusuoka measure. Moreover, on the Sierpinski gasket the Kusuoka ´ measure ν is singular with 

respect to the self-similar measure μ. The Kusuoka measure gives rise to the energy Laplacian Δν 

, defined in the weak sense exactly as before, now integrating against the Kusuoka measure. 

However, this energy Laplacian lacks scaling self-similarity and becomes a significantly harder 

object to study.  

Now, for example if |V0| = 3 such as in the case of SGk, we can also define the Kusuoka 

measure in terms of an orthonormal basis of harmonic functions {h1,h2}−modulo constants. This 

gives the same version of the measure as above up to renormalization with a constant and in fact 

is independent of the choice of orthonormal basis. Then we have that if u ∈ domΔν then  

                      

is the Radon-Nikodym derivative. This is among one of the reasons that the energy Laplacian is 

of interest to study and therefore despite some of its disadvantages such as the lack of self-

similarity, it behaves better in some regards. An important formula connecting energy measures, 

energy forms and integration of functions u, v ∈ dom𝜀 is the carré du champs formula  

                  

There has also been a study of the Kusuoka measure from the ergodic point of view.  

 

http://www.ijfans.org/


Research Paper 

 

 

e-ISSN 2320 –7876 www.ijfans.org 

Vol.11, Iss.9, Dec 2022 

© 2012 IJFANS. All Rights Reserved 

 

 

  
 
 

2199 
 

3.3 Regarding the spectrum  

It is interesting to obtain explicit knowledge of the spectrum of the Laplace op erator with 

respect to various boundary conditions, such as the Dirichlet and Neumann. Depending on the 

measure used this may not always be possible. For example, the Kusuoka measure gives rise to a 

Laplace operator that, at the time of this writing, its spectrum is unknown. However, for the self-

similar measure, we are able to use its discrete graph approximations to study the spectrum on the 

actual fractal. This technique is called spectral decimation, first studied in [5, 37], and then in 

considerable more detail by Fukishima and Shima for the d-dimensional Sierpinski gaskets.  

It was later expanded significantly to a wide class of p.c.f fractals . For self similar sets of 

a specific type, see more, we have that the spectrum is obtained through a technique called spectral 

decimation which can roughly be described as follows. The spectrum of the Laplace operator on 

the fractal is given by a renormalized limit of a rational function pre-images of eigenvalues on the 

discrete sequence of graphs approximating it. Moreover, the spectrum on the graph Gn+1 can be 

decomposed into "initial eigenvalues" which may ap pear at every level, and continued eigenvalues 

which are pre-images of eigen values at Gn under the rational function, which is often in fact a 

polynomial. The set of initial eigenvalues is finite, and the rational function is fixed. This means 

that every eigenvalue on the graphs is either one of the initial eigen values, or a pre-image of an 

initial eigenvalue. This approach allows us also to construct the eigenfunctions recursively, but 

some care needs to be taken because not every pre-image of an eigenvalue is allowed to be taken, 

we have the so-called forbidden eigenvalues. For more details we refer. So for the fractal itself, as 

in, we say that a fractal Laplacian admits spectral decimation if its eigenvalues are of the form  

 

where w ∈ W is the finite set and the branches of the pre-images are taken in such a way 

such that the limit exists. We will describe very briefly the process here for simplicity only on the 

Sierpinski gasket for the combinatorial graph ´ Laplacian with Neumann boundary conditions.  
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The Neumann boundary condition corresponds to imagining that the graph is embedded in 

a larger graph by reflecting in each boundary vertex and using the eigenvalue equation on the even 

extension. The spectral decimation poly nomial is given by R(z) = z(5−z). The exceptional set of 

forbidden eigenval ues is E = {2,5,6}. In multiset notation, on G0 the spectrum of Δ0 = {0,6,6}. On 

G1 it is {0,3,3,6,6,6}. In particular, at level n every eigenvalue of Δn is ei ther 0 or 6 or obtained as 

a pre-image under R of these, under the condition that we do not encounter a forbidden eigenvalue. 

We have that R−1({0}) = {0,5} and R−1({6}) = {2,3} and these are the only cases when we encounter 

for bidden eigenvalues. Then the spectrum at level n is given by  

                      

The eigenvalue 0 is always a simple eigenvalue and the eigenvalues 5 and 6 appear at every level 

and with high multiplicities. When we take the pre images we have two branches  

 

where εn ∈ {−1,1}. For the Laplace operator −Δ on the fractal itself, we can  

define 

                

where the limit in the sequence {λn}n≥n0 is taken for all but a finite number of εn = −1, and 

n0 is the generation of birth. This procedure gives us the spectrum.  

In the year 1966, Kac presented a paper with the title of the now famous question "Can one 

hear the shape of a drum?". This question is interpreted to mean whether knowledge of the 

eigenvalues {λn} of the Dirichlet Laplace operator Δ on some bounded domain U ⊂ Rd is enough 

to determine the ge ometry and shape of the domain. The answer to this question is negative, i.e. 

there exist isospectral domains even in R2, however this question has moti vated a large amount of 
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research focusing on heat kernels and the eigenvalue counting function. We define the eigenvalue 

counting function as  

                           N(x) = #{n ∈ N : λn ≤ x}.  

A famous result by Weyl is that for sufficiently regular bounded open domains we have  

 

where V is the volume of the domain and ωd the volume of the unit ball in Rd. This essentially 

means that by hearing the drum, while it doesn’t give us knowledge of its exact shape, we still 

obtain some information about its geometry such as its d-dimensional volume.  

In analysis on fractals, there is a sharp contrast with that of Rd. Specifically, it was shown 

in [30] that the situation for the analogue of Weyl’s result is dif ferent. For example, for the 

Dirichlet or Neumann Laplacian on the Sierpinski ´ gasket, it was shown in [30] that there exists 

a log 5  

function G such that 0 < infG < supG < ∞ and   -periodic discontinuous  

N(x) = xds2 G(logx/2) +O(1)  

giving us that the limit limx→∞ N(x)x−ds2 does not converge. It is also inter esting to note 

that the term ds is different than what we may have expected considering the Rn case where the 

equivalent term is that of the dimension n. Now, ds referred to as the spectral dimension, is actually 

different than the Hausdorff dimension. These quantities are connected via the Einstein relation 

2ds = dhdw where dh is the Hausdorff dimension, ds the spectral dimension and dw the walk 

dimension. For more details we refer the reader to [17].  

There exists another notable difference between Rn and analysis on fractals. In analysis on 

fractals we have the existence of joint Dirichlet-Neumann eigen values and specifically, localized 

eigenfunctions. In fact, the initial eigen values are usually joint Dirichlet-Neumann ones and 

appear with very high 23 multiplicities. The reason for the high multiplicities is that if the support 

of an eigenfunction is in a very small cell, we can essentially move it around to create many of 

http://www.ijfans.org/
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them. That is why they are also referred to as localized eigenfunctions. Their existence is in sharp 

contrast to analysis on Rn because eigenfunctions are functions that are analytic and therefore 

cannot be zero on open sets.  

multiplicities. The reason for the high multiplicities is that if the support of an 

eigenfunction is in a very small cell, we can essentially move it around to create many of them. 

That is why they are also referred to as localized eigenfunctions. Their existence is in sharp contrast 

to analysis on Rn because eigenfunctions are functions that are analytic and therefore cannot be 

zero on open setsi 

Spectral decimation as in [2, 36] for fully symmetric fractals is valid in gen eral for the 

probabilstic graph Laplacian and not the combinatorial one. The Laplace operator is usually 

studied under Neumann or Dirichlet boundary con ditions and these conditions affect the spectrum. 

If the graph approximations consist of k-regular graphs, or perhaps non-regular graphs on the 

boundary that become regular under the Neumann conditions, then we may also use for our 

purposes the combinatorial graph Laplacian since it is essentially the same up to a k 

renormalization with the probabilistic graph Laplacian so again we have spectral decimation. We 

can then define L = limn→∞ c
nLn where the c > 1 is the so-called time-scaling factor and Lnu(x) = 1  

deg(x) ∑y∼x(u(x)−u(y)  

the probabilistic graph Laplacian on the graph Gn. Let L = −Δ. Its spectrum is discrete with 

eigenvalues of the form  

0 < λ1 ≤ λ2 ≤··· < ∞  

with ∞ the only accumulating point and 0 being an eigenvalue only in the Neumann case 

corresponding to the constant functions. We are interested in assigning meaning to the product 

∏∞
n=1 λn which would be the determinant of the operator. Of course this product is actually infinite, 

but we would still like to interpret it as a real value.  

http://www.ijfans.org/
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In general, some meaning may be given to infinite divergent sums through the process of 

regularization. For example, it is clear that the sum  

            However it is useful sometimes, for example in theoretical physics, to attempt to assign 

real values to such a sum. We know that for |z| < 1 it holds that ∑∞
n=0 z

n = 1
1−z and through the 

uniqueness of meromorphic continuation we can abuse notation and evaluate the meromorphic 

continuation of the func tion f : B(0,1) → C, f(z) = ∑∞
n=0 z

n 
as 
˜f(z) = 11−z at z = 2 to obtain that ∑∞

n=0 

2n = −1. Of course, this is only a formal expression. Something similar to the above can also be 

done for ∏∞
n=1 λn using the so-called spectral zeta function. The spectral zeta function is defined 

as ζL(s) = ∑∞
n=1

1λs
n for Re(s) sufficiently large so that the sum converges and where the 0 

eigenvalue is omit ted in the Neumann case. The spectral zeta function may be meromorphically 

extended to the entire complex plane and its poles are referred to as complex dimensions. Now, 

under the assumption that the spectral zeta function has no poles on the imaginary axis, we can 

still assign it a real value through the  following formal manipulations.  

We can also define the so-called polynomial zeta functions. Let R(z) = adx
d + ··· + cx be a 

polynomial that has real coefficients with d ≥ 2 which satisfies R(0) = 0 and R (0) = c > 1. The 

spectral decimation polynomial satisfies these assumptions. We call Φ the entire function that 

satisfies the functional equation  

Φ(λz) = R(Φ(z)) with Φ(0) = 0,Φ (0) = 1.  

We can now define the so-called polynomial zeta functions as  

 

ζΦ,w
(s) = ∑  

Φ(−μ)=w  

μ>0  

which can also equivalently be stated as  

http://www.ijfans.org/
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μ−s  

 

n→∞ ∑z∈R
−n

(w)(λ
nz)−s.  

ζΦ,w(s) = lim  

These zeta functions have been defined and studied in [14], [44] and are crucial in the 

meromorphic extension of the spectral zeta functions of the Laplace operator L. They can be 

meromorphically extended to the entire complex plane and none of their poles lie on the imaginary 

axis. Specifically, all their poles are simple and lie on the imaginary line Re(s) = logd  

logλ . We refer the  

reader to [14, 44]. There is also another type of zeta functions studied on fractals, those on 

fractal strings, see [33].  

It often is that we have for some constant α that L = α limn Ln. For exam ple in the Sierpinski 

gasket, in the literature we usually have L = 6limn Ln. However, it can also be that α varies in the 

literature. This is mostly based  

25 

on what convention the authors prefer to use. Then, for example in the unit interval, it just 

is that  

L = −Δ = − 
ddx2 = limn Δn = 2limn Ln.  

These differences in normalization are at first trivial, making absolutely no difference in 

the development of the general theory. However, they become more important once we start 

considering spectral zeta functions. This means that now the eigenvalues are truly of the form  

λ = αcm lim  

http://www.ijfans.org/


Research Paper 

 

 

e-ISSN 2320 –7876 www.ijfans.org 

Vol.11, Iss.9, Dec 2022 

© 2012 IJFANS. All Rights Reserved 

 

 

  
 
 

2205 
 

n→∞ c
nR−n(w)  

and thus the spectral zeta functions may differ from each other like ζ1(s) = α−sζ2(s)  

This distinction becomes important when we attempt to investigate connec tions between 

discrete and regularized determinants. For our calculations, we will be using α = 1.  

Conclusion  

In paper I, we provide a formula to determine the number of spanning trees on the graph 

approximations of a post critically finite self-similar fractal admit ting spectral decimation. 

Specifically, it is shown that the number of spanning trees τ(Gn) equals .. 

This formula is essentially a calculation of the product of the non-zero eigen values of the 

probabilistic graph Laplacian. Then, the spanning tree evalu ation is based on Kirchhoff’s Matrix-

Tree theorem in its probabilistic graph Laplacian version. Moreover, we provide a proof showing 

why the asymp totic complexity constant c exists for the fractal graphs based only on their self-

similarity without using the machinery of [35] as well as also provide the following lower and 

upper bounds for it.  

We conclude the paper with a plethora of examples of specific fractal graphs where we 

calculate the number of the spanning trees of their graph approxi mations.  
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