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ABSTRACT 

Optimization problems are of prime importance for industrial as well as the scientific community in diverse 
disciplines. There are various optimization problems that present traits like high non-linearity .and multimodality, the solution 
of which is usually complex. Further, in many cases, some intricate optimization problems present noise and/or 
discontinuities which make conventional deterministic methods inefficient to obtain global solutions. Thus, global 
optimization approaches based on metaheuristics provide a viable alternative for solving complex optimization problems and 
do not require any information regarding the properties of the objective function. Metaheuristic algorithms are nowadays 
attaining popularity among researchers extensively owing to their success to find the optimum solution and steadfastness in 
solving real-world problems. They are generally utilized to solve several complex problems in science and engineering, finance 
as well as management. Metaheuristic algorithms have four inherent properties. First of all, they are primarily motivated by 
natural phenomena in the universe. Secondly, they constitute a stochastic method wherein an optimum solution is not 
guaranteed and is randomly searched in a feasible search space. Moreover, they do not require the derivative term to obtain 
the maximum or the minimum value. Last but not the least; they are always associated with some user-defined values at the 
initial stage to function suitably.  Therefore this work gives the detail review on metaheuristic algorithms for optimizing 
fractional order controller parameters. 
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1. INTRODUCTION 

Metaheuristic algorithms have emerged as 
powerful tools for modelling and control these days. The 
term meta- implies „beyond‟ or „higher level‟. They are far 
superior to ordinary heuristics. The variety of solutions 
obtained using metaheuristics is often accomplished with 
the help of randomization. Though metaheuristic 
algorithms are widely popular, still there is no clear-cut 
definition of heuristics and metaheuristics available in the 
literature. Several researchers even use them almost 
interchangeably. However, the general trend aims to 
label all stochastic algorithms via randomization and 
global exploration as metaheuristic. Randomization 
contributes valuably to move away from local to global 
search. Thus, almost all metaheuristic algorithms are 
highly suitable for nonlinear modelling and control. 
Metaheuristic algorithms provide an efficient means to 
yield acceptable solutions by trial and error to a complex 
problem in reasonably good time. The aim of these 
algorithms is not to find every possible solution in the 
search space but to find a feasible solution within 
acceptable time limit. However, there is no guarantee 
that the best solutions can be obtained.  

There are two major components of any 
metaheuristic algorithms namely exploration 
(diversification) and exploitation (intensification). 
Exploration generates diverse solutions so as to utilize 
the entire search space, while exploitation focuses on the 
search in a local region by exercising the information that 

a current good solution is found in this region. A good 
balance of these two will ensure the attainment of global 
solution [1]. Though human beings‟ problem-solving 
abilities have always been heuristic or metaheuristic since 
the early periods of human history, yet its scientific study 
is relatively a budding venture. Alan Turing was 
apparently the first to use heuristic search method during 
World War II. The 1960s and 1970s witnessed the 
development of Genetic Algorithms (GA). Another 
breakthrough contribution is the proposition of 
Simulated Annealing (SA) method in 1982. In 1992 and 
1995, significant progress took place through the 
developments of Ant Colony Optimization (ACO) and 
Particle Swarm Optimization (PSO) respectively. In 
around 1996 and later in 1997, a vector-based 
evolutionary algorithm coined as Differential Evolution 
(DE) came into existence. With the advent of 21st 
century, things became even more fascinating. Many new 
algorithms like Bacterial Foraging Algorithm (BFA), 
Harmony 2 Search (HS), Artificial Bee Colony (ABC) 
optimization, Firefly Algorithm (FA), Cuckoo Search 
(CS), Bat Algorithm (BA) and Flower Pollination 
Algorithm (FPA) also evolved [1].  

Few metaheuristic algorithms directly 
associated with this research work are described as 
follows. Bacterial Foraging Algorithm (BFA), coined by 
Passino, is based on the foraging strategy of Escherichia 
Coli (E. Coli) bacteria that reside in the human intestine. 
Foraging strategy is a habit of animals for searching,  
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managing and consuming their food. Bacteria 
apprehend the route towards food source depending on 
the amount of chemicals in their surroundings. Likewise, 
bacteria give off attracting and repelling chemicals into 
the neighbouring atmosphere and can recognize each 
other in a similar fashion. Bacteria can also encompass 
their environment, sometimes chaotically (tumbling and 
spinning), and other times moving in a directed manner 
(swimming) with the help of flagella. Bacterial cells are 
considered as agents in an environment, utilizing their 
sense of food and other cells as an encouragement to 
manoeuvre, and stochastic tumbling and swimming like 
movement to advance. Based on the cell-cell 
interactions, cells may flock towards a food source, 
and/or may drive away or avoid each other. Thus, a 
bacterial foraging system consists of four key steps 
namely chemotaxis, swarming, reproduction and 
elimination-dispersal [2].  

However, investigation with complicated 
problems discloses that the BFA possesses poor 
convergence and its performance highly decreases with 
dimensionality and the problem complexity. Another 
newcomer in the list of metaheuristic algorithms viz. 
Firefly algorithm (FA) is motivated by the 
communication behaviour and flashing patterns of 
fireflies found in the tropical climatic conditions. The 
mathematical model of the algorithm is developed based 
on the following simplifications:  

 All fireflies are assumed to be unisex such that 
one firefly is attracted towards other fireflies 
irrespective of their sex 

 Attractiveness is proportional to their 
brightness; thus for any two flashing fireflies, 
the less-bright one will move towards the 
brighter one.  

 The attractiveness is dependent on brightness 
and they both decrease as their distance 
enhances. If no one is brighter than a particular 
firefly, then it moves randomly  

The brightness or the light intensity of a firefly is 
decided by the landscape of the objective function to be 
optimized. Thus, there are two aspects in FA viz. 
variation of light intensity and formulation of 
attractiveness. For the sake of simplicity, it is.assumed 
that the attractiveness of a firefly is determined by its 
brightness or light intensity which in turn is correlated 
with the encoded objective function. The attractiveness, 
on the other hand, varies with the distance between any 
two fireflies. As the light intensity diminishes with 
distance from the source, the light is also absorbed in the 
media; hence, it is concluded that the attractiveness 
should vary with the degree of absorption [1].  

This algorithm has shown promising superiority 
over several algorithms in the recent past. An additional 
entrant in the tally of metaheuristic algorithms is the 
Flower Pollination Algorithm (FPA) inspired by the 
flower pollination process of flowering plants and 
follows a set of assumptions as enumerated below:  

 Biotic and cross-pollination are treated as 
global pollination process with pollen bearing 
pollinators carrying out Lévy flights. 

 Abiotic and self-pollination are deliberated as 
local pollination. 

 Flower constancy can be contemplated as the 
reproduction probability which is dependent to 
the similarity of two flowers associated. 

 Local and global pollination are controlled by a 
switch probability p [0, 1].  

Owing to the physical proximity and other factors 
such as wind, local pollination can have a high fraction p 
in the total pollination activities. Undoubtedly, each plant 
can have several flowers, and each flower patch can 
deliver millions of pollen gametes. For the sake of 
simplicity, it is assumed that each plant only has one 
flower, and each flower only produces one pollen 
gamete. There are two fundamental mechanisms in FPA, 
global and local pollination respectively. In the global 
pollination step, pollens are carried by insects, thus they 
can travel a considerable distance as insects can often fly 
and move quite a large range. This guarantees the 
pollination and reproduction of the fittest. Local 
pollination mimics the flower constancy in close vicinity. 
Most flower pollination activities can take place both on 
locally as well as globally.  

As a routine, adjacent flowers are more likely to be 
pollinated by local flower pollens than those at a 
distance. Due to this, a switch probability p is employed 
to shift between the common global pollination to 
intensive local pollination [1]. Even dynamism in switch 
probability often leads to improved solutions for 
different optimization problems. Grey Wolf Optimizer 
(GWO) is another metaheuristic algorithm that simulates 
the leadership hierarchy and hunting mechanism of grey 
wolves. Grey wolves are treated as apex predators, ruling 
at the topmost point of the food chain. They reside in 
groups, each group containing 5- 12 members on an 
average. The members of the group maintain a stringent 
social hierarchy. In the hierarchy, alpha wolves are 
considered the most dominating member. The 
subordinates to alpha are beta and delta, which help to 
control the omega wolves.  

In GWO algorithm, the hunting is controlled by 
alpha, beta and delta wolves. The omega wolves follow 
these three wolves. During hunting, the grey wolves 
normally encircle the prey. The hunting operation of the 
grey wolves is provided leadership by the alpha wolves. 
The beta and delta wolves occasionally take part in the 
hunting process. It is assumed that the alpha, beta and 
delta type grey wolves have better awareness about the 
potential location of prey. Hence, the first three best 
solutions acquired are recorded and the other search 
agents are required to update their positions as per the 
location of the best search agents. The grey wolves 
complete the hunting by attacking the prey when it 
finally stops moving [3]. GWO is tremendously popular 
among the researchers and thus has wide acceptance in 
diverse fields. Though several new algorithms [4-7] have 
also evolved, yet pure algorithms cannot always deliver 
an optimal solution and are almost inferior to 
hybridizations.  

Moreover, Pattern Search (PS) algorithm [8] acts as 
a potential candidate to offer good local search 
capabilities and has been widely employed to constitute a 
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hybrid combination with other metaheuristic algorithms. 
Further, it is also found that chaos plays an important 
role to improve upon the performance of any 
metaheuristic algorithm [9]. In the literature of 
identification and control, there have been numerous 
methods developed over the last five decades on 
discrete-time systems utilizing the potential of digital 
computers. Parallely, there has been a similar attempt in 
developing methods in continuous time identification 
and control in system theory because of the very fact 
that the physical signals are continuous-time in nature. 
Modelling, identification and control using delta operator 
is a holistic approach in which the signals and systems 
are modelled in discrete domain and leads to converge to 
its corresponding continuous-time signals and systems at 
a high sampling frequency thereby unifying both discrete 
and continuous-time signals and systems [10].  

Metaheuristic algorithms and their hybridizations 
prove to be an emerging area in the literature of system 
identification [11-12]. Linear systems with static 
nonlinearities at the input termed as the Hammerstein 
model, and linear systems with static nonlinearities at the 
output known as the Wiener model are two widely 
prevailing models in the literature. Parameter estimation 
using these models has traditionally been carried out in 
discrete-time using either shift operator in the time 
domain and z-transformation in the complex domain 
[13]. A considerable volume of literature also exists in 
the continuous-time system using classical techniques 
[14]. Hammerstein and wiener model identification in the 
continuoustime domain using metaheuristic approaches 
is very rarely being reported in the literature.  

Model Order Reduction (MOR) furnish an 
organized approach for modelling, analysis, design and 
implementation of large-scale systems and extensively 
applied in different fields 5 of engineering [15]. 
Diminution of higher-order systems has been 
investigated across the world for several decades and 
several methods have been developed to obtain reduced 
models in both time and frequency domain [16-17]. 
Recently, several metaheuristic algorithms and their 
variants [18-22] have either been employed alone or in 
combination with classical techniques for order 
reduction of both continuous and discrete-time systems. 
The bottom line of these evolutionary based techniques 
in order reduction is usually based on minimization of a 
performance index, obtained between the step responses 
of higher order and reduced order systems.  

In controller design, a given plant is compensated 
so that the controlled system follows the reference 
model either exactly or approximately, satisfying certain 
time and frequency domain specifications. With the 
development of the delta operator, interest has kick-
started in the discrete-time controller design 
methodologies as well. Few noteworthy contributions in 
this context include predictive control [23], optimal 
frequency matching control [24], fractional order control 
[25], sliding mode control [26] and optimal control of 
network control system [27]. Most commonly used 
control applications namely, control of fighter planes, 
fuel injectors, automobile spark timer etc. possess a 
mathematical model with a higher order. These models 
are often difficult to handle for which lower-order 

system modelling is preferred, which helps in reducing 
the computational burden and implementation issues 
involved in the design of controllers and compensators 
for higher-order systems. Although intelligent control 
techniques like fuzzy logic [28] and neural network [29] 
for speed control of permanent magnet synchronous 
motor drives are reported in the literature, yet 
Proportional-Integral (PI) controller continues to attract 
industries owing to its simple structure and robust 
performance for a wide range of operating conditions.  

 

 

2. LITERATURE REVIEW  

2.1 BFA: applications and 

variants  

Bhushan et al. [11] explored the use of BFA to 
estimate the nonlinear parameters of a dc motor and 
control its speed adaptively. Das et al. [30] investigated 
chaos synchronization in a master-slave configuration 
with a fractional order PID controller tuned by BFA. 
Santos et al. [31] introduced the concept of bacterial 
foraging to determine the efficiency of an induction 
motor in field conditions with unbalanced voltages. 
Rajasekar et al. [32] applied BFA to estimate solar PV 
model parameters under environmental conditions. 
Hussain et al. [33] utilized BFA technique to address 
mobile robot navigation in an unrecognised environment 
containing dynamic obstacles.  

Supriyno et al. [34] developed three novel 
adaptive mechanisms for the chemotactic step size of 
BFA to model flexible manipulator systems. Daryabeigi 
et al. [35] proposed a smart BFA method to optimize 
controller parameters for the speed control of switched 
reluctance motor drives. Panda et al. [36] incorporated 
adaptive chemotaxis of BFA with crossover mechanism 
of GA to attain linear discriminant analysis-based face 
recognition. Wang et al. [37] proposed a new bacterial 
foraging algorithm based on control mechanisms and 
updating population strategies in order to achieve feature 
selection to classify images. Pandi et al. [38] integrated 
bacterial foraging with differential evolution to develop a 
hybrid algorithm in order to solve congestion 
management problem in restructured power system 
scenario. Kim [39] dealt with a hybrid combination of 
BFA and GA to establish an intelligent controller for an 
automatic voltage regulator.  

Gollapudi et al. [40] hybridized particle swarm 
optimisation technique with bacterial foraging algorithm 
to validate a few unimodal and multimodal test 
functions. Further, this algorithm had also been applied 
to determine the resonant frequency of rectangular 
microstrip antenna. Hooshmand et al. [41] made a 
combination of BFA and NM algorithms for phase 
balancing and network reconfiguration simultaneously in 
a distribution network. Vaisakh et al. [42] incorporated 
particle swarm and differential evolution operators in the 
original bacterial foraging algorithm to introduce a new 
hybrid topology and applied it to solve dynamic 
economic load dispatch problem. Okaeme et al. [43] 
combined BFA and GA for the controller design of 

2560 



[Downloaded free from http://www.ijfans.org] 
B.Girirajan and D.Rathikarani 2022 

  |   International Journal of Food and Nutritional Sciences | Volume 11 | Special Issue 3 | Dec  2022 

 

 

electric drives. Nasir et al. [44] made a blend of bacterial 
foraging and spiral dynamics to evolve two new hybrid 
strategies. The performance of the algorithm was 
validated with some well-known benchmark 
optimization problems as well as controlling flexible 
manipulator system. El-Wakeel et al. [45] proposed a 
hybrid algorithm with the fusion of PSO with BFA to 
determine the tuning parameters of a PID controller 
required for speed control of a permanent magnet 
BLDC motor.  

Panda et al. [46] put together BFA and Many 
Optimization Liaisons (MOL) for the design of FACTS 
based damping controller necessary in order to improve 
the stability of power system. Zhao et al. [47] mixed 
bacterial foraging and gravitational search algorithms to 
test twenty-three numerical benchmark functions as well 
as to identify the parameters of a chaotic system. A 
gravitational search strategy was assimilated with the 
chemotaxis step of the bacterial foraging algorithm so as 
to adjust its unit length as per the swarming information. 
Then a swarm heterogeneity strategy was combined with 
the reproduction step so as to increase the reproduction 
mode based on this concept.  

Wu et al. [48] made an aggregate of BFA, PSO 
and fuzzy support vector machine to identify the fatigue 
status of electromyography signal. Vishnuvarthanan et al. 
[49] made a merger of BFA with modified fuzzy-k means 
algorithm for improved tumour and tissue segmentation 
in magnetic 7 resonance brain images. Turanoğlu et al. 
[50] developed a hybrid strategy with the union of 
bacterial foraging with simulated annealing algorithm to 
address the dynamic facility layout problem. Roy et al. 
[51] connected BFA with ANN for energy management 
of microgrid. The proposed method proved better as 
compared to some existing methods like GA and ABC. 

2.2 Some new metaheuristic 

algorithms 

Meng et al. [5] developed a new nature-
inspired optimization technique based on the social 
behaviours and interactions of bird swarms. The 
algorithm was successfully evaluated using eighteen 
benchmark problems from the literature. Meng et al. [52] 
further developed another bio-inspired technique 
simulating the hierarchy in the chicken swarm and the 
behaviours of the chicken swarm, including roosters, 
hens and chicks. Both unconstrained and constrained 
optimization problems were handled successfully using 
this technique. Mirjalili [53] developed a novel 
metaheuristic approach based on the navigation strategy 
of moths found in nature. The algorithm was tested with 
twenty-nine benchmark functions and seven real-time 
engineering problems. Mirjalili [54] formulated a new 
algorithm based on the hunting behaviour of ant-lions 
found in nature. Mirjalili [55] developed another nature-
inspired algorithm mimicking the static and dynamic 
swarming behaviours of dragon fireflies.  

Mirjalili et al. [56] drew inspiration from the 
three concepts in cosmology viz. white hole, black hole, 
and wormhole to develop a new metaheuristic algorithm 
coined as multi-verse optimizer (MVO). Mirjalili [57] 
presented a novel algorithm utilizing a mathematical 
model based on sine and cosine functions. The 

performance of the algorithm was evaluated for a set of 
unimodal, multi-modal and composite functions. Mirjalili 
et al. [58] came up with a new nature-inspired 
metaheuristic algorithm based on the bubble-net hunting 
mechanism of humpback whales. The strength of the 
proposed method was assessed using twenty-nine test 
functions and six structural design problems. Saremi et 
al. [59] formulated a new optimization algorithm 
imitating the swarming behaviour of grasshoppers 
available in nature. The performance of this algorithm 
was verified using CEC2005 test benchmarks.  

Mirjalili et al. [6] stated a novel optimization 
algorithm based on the salp swarms while they navigate 
and forage in oceans. The proposed technique was 
evaluated using well-known benchmark test functions. 
Ali et al. [60] presented a new real coded GA to solve 
complex optimization tasks.  

2.3 Identification using 

metaheuristic approaches 

Al-Duwaish [61] applied GA to solve the 
problem of hammerstein model identification. 
Tötterman et al. [62] applied support vector method to 
identify wiener models. Nanda et al. [63] developed two 
new versions of PSO to identify hammerstein plant 
model. Xu et al. [12] proposed a hybrid combination of 
PSO and BFA to identify nonlinear system models. Sun 
et al. [64] applied an adaptive particle swarm 
optimization technique with a maximum likelihood 
estimate to identify non-linear Hammerstein model 
parameters. A simulation example from the discrete-time 
system had been taken up to justify the effectiveness of 
the proposed method. Chen et al. [65] dealt with the 
problem of parameter identification of Hammerstein 
system with continuous non-linearity applying particle 
swarm optimization algorithm. The applicability of the 
proposed method was illustrated with the help of a 
simulation example.  

Gotmare et al. [66] addressed the problem of 
nonlinear system identification of hammerstein model 
using cuckoo search. Pal et al. [13] presented the 
identification of several practically relevant open and 
closed-loop discrete-time Wiener systems using brain 
storm optimization algorithm. Prawin et al. [67] 
presented a three-stage parameter identification 
algorithm integrating dynamic quantum PSO with 
neighbourhood search strategy.  

2.4 GAPS IN THE RESEARCH 

From the literature, it can be concluded that 
though the firefly algorithm has been hybridized with 
many metaheuristic algorithms, still there is a lot of 
scopes to formulate new hybrid topologies. Even 
hybridizations of firefly algorithm with bacterial foraging 
and grey wolf optimizer are missing in the literature. 
Moreover, pattern search proves to a good candidate in 
the hybrid algorithm for its local search abilities and 
hence can be considered to be integrated with firefly 
algorithm.  

Further, it is seen from the literature that chaos 
feature incorporated in a metaheuristic algorithm 
enhances its performance to a considerable extent. 
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Though Hammerstein and wiener model identification 
with metaheuristic approaches are popular in the 
discrete-time domain, similar analyses are rarely reported 
for continuous-time systems. Hence system 
identification with hybrid metaheuristic techniques can 
be thought of to unify both continuous and discrete-time 
systems leveraging the properties of delta operator.  

Moreover, model order reduction via soft 
computing techniques has so far been performed in the 
continuous and discrete-time system separately; 
therefore, there is a need to provide a unified framework 
for model order reduction in delta domain, capitalizing 
the benefits of hybrid metaheuristic algorithms. 

 In classical control literature, “Truxal” method 
is an established technique in control system synthesis, 
based on the philosophy of exact model matching in 
which first the parameters of the reference model are 
computed to meet the given time and frequency domain 
performance specifications and then the controller 
parameters are computed such that the overall 
closedloop controlled system match both time and 
frequency responses of the reference model.  

The main drawback of exact model matching 
is that the controller so designed does not give guarantee 
for its physical hardware implementation. To overcome 
the same, approximate model matching may be a viable 
alternative in which model order reduction scheme as 
proposed above can be applied to design control scheme 
in the delta domain. A new application area involving 
identification and control of converter fed electric drives 
in the delta domain may also be thought of.  

Though literature supports modelling and 
control of electric drives for the continuous and discrete-
time domain, yet practically no work in electric drives has 
been explored using the delta operator approach. Thus, 
order reduction and suitable controller design in the delta 
domain could be devised for converter fed permanent 
magnet synchronous motor drives, in particular applying 
hybrid metaheuristic algorithms. 

3. CONCLUSION AND FUTURE 

SCOPE 

Metaheuristic algorithms, namely bacterial 
foraging, pattern search, firefly algorithm, flower 
pollination algorithm, grey wolf optimizer and their 
variants are emerging areas of research in the literature 
on artificial intelligence and evolutionary computation. A 
significant volume of works has been reported on its 
applications in different fields of science, engineering, 
economics, management, sociology, medicine and others 
as an alternative of classical optimization techniques. 
Applications of these tools are also gaining momentum 
in the area of system and control theory. Based on a 
survey of literature and gaps identified, the objectives 
future work carried out are as follows:  

To study and explore the available bacterial 
foraging algorithm (BFA) techniques. 

To develop hybrid metaheuristic algorithm 
based search tools.  

To develop unified method for identification 
and control in the delta domain based on above. 

To apply the hybrid metaheuristic algorithm 
search based unified approach for identification and 
control of electric drives.  
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