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ABSTRACT  

Periodic boundary conditions are commonly applied in molecular dynamics simulations in 

the microcanonical (NVE), canonical (NVT) and isothermal-isobaric (NpT) ensembles. In 

their simplest application, a biological system of interest is placed in the middle of a solvation 

box, which is chosen ‘sufficiently large’ to minimize any numerical artefacts associated with 

the periodic boundary conditions. This practical approach brings limitations to the size of 

biological systems that can be simulated. Here, we study simulations of effectively infinitely-

long nucleic acids, which are solvated in the directions perpendicular to the polymer chain, 

while periodic boundary conditions are also applied along the polymer chain. We study the 

effects of these asymmetric periodic boundary conditions (APBC) on the simulated results, 

including the mechanical properties of biopolymers and the properties of the surrounding 

solvent. To get some further insights into the advantages of using the APBC, a coarse-grained 

worm-like chain model is first studied, illustrating how the persistence length can be 

extracted from local properties of the polymer chain, which are less affected by the APBC 

than some global averages. This is followed by all-atom molecular dynamics simulations of 

DNA in ionic solutions, where we use the APBC to investigate sequence-dependent 

properties of DNA molecules and properties of the surrounding solvent. 

 

1. INTRODUCTION  

 

The structure and function of DNA depends on its nucleotide sequence and on the properties 

of the surrounding solvent.1 Since DNA is negatively charged, concentrations of ions are 

perturbed from their bulk values in the region close to DNA. The resulting ‘ion atmosphere’ 

has been studied using ion counting experiments.2 From the theoretical point of view, allatom 

molecular dynamics (MD) simulations can be applied to provide detailed insights into DNA, 

ions and water interactions.3 For example, the effect of mobile counterions, Na+ and K+ on a 

DNA oligomer was studied by Várnai and Zakrzewska,4 who used periodic boundary 

conditions for MD simulations of the solvated DNA oligomer at constant temperature and 

pressure and studied the counterion distribution around the DNA structure.  

 

However, the applicability of all-atom MD studies is limited to relatively small systems. To 

simulate larger systems, several coarse-grained approaches have been developed in the 

literature. In adaptive resolution studies,5,6 DNA and its immediate neighbourhood are 

simulated using the full atomistic resolution, while a coarse-grained description is used to 

describe the solvent molecules which are far away from DNA. Solvent can also be treated 

implicitly in far away regions.6 To model even larger systems, the DNA molecule itself can 

be described by coarse-grained models.7–10 Examples vary from models using several 

coarsegrained sites per nucleotide11 to Brownian dynamics simulations.12,13 Using a 

systematic ‘bottom-up approach’, the interaction potential between coarse-grained sites can 
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be derived from the underlying atomistic force field, with results dependent on the 

microscopic forcefield used. 

The properties of ions in bulk water can be studied using all-atom MD simulations,15,16 

which provide ‘bottom-up’ estimates of the values of diffusion constants of ions. Some 

biological processes include transport of ions across relatively large distances which are out 

of reach to all-atom MD simulations. Brownian dynamics descriptions of ions are instead 

used for modelling such systems.17,18 While the transport of ions in bulk water can be 

described on a sufficiently long time scale as a standard Brownian motion, more detailed 

coarse-grained stochastic models of ions in bulk water have to be used at time scales studied 

by MD simulations.16 Coarse-grained stochastic models of ions can be written as systems of 

stochastic differential equations or by the generalized Langevin equation.16,19 To 

parametrize such models, detailed all-atom MD simulations of ‘long’ chains of nucleic acids 

can be used, but this can be computationally intensive. In this paper, we investigate 

simulations of effectively infinitely-long DNA by applying asymmetric periodic boundary 

conditions (APBC) 

 

Figure 1: (a) Schematic of the simulation domain (1) for the case with 10 base pairs of DNA, 

i.e. for n = 1. (b) Discrete worm-like chain segment in an APBC simulation is denoted by the 

black line. Its periodic image copies by the green line. 

in the cuboid computational domain 

 
The main idea behind the APBC is that DNA is periodic with the period of 10 base pairs, i.e. 

the APBC will allow us to use 10 n base pairs of DNA in domain Ω, where n ∈ N is an 

integer denoting the number of helical pitches. A schematic of our simulation domain is 

presented in Figure 1(a) for the case of the simulation with 10 base pairs, i.e. for n = 1. The 

DNA molecule is positioned parallel to the z-axis and we use periodic boundary conditions in 

the z-direction. Such a periodic boundary condition in z-direction is less common in allatom 

MD simulation studies, where the biomolecule of interest is often placed in the middle of the 

computational domain and it is solvated on all its sides by a layer of water molecules 

separating the biomolecule from the domain boundary. 

 

Considering the projection into the xy-plane, the DNA molecule is positioned in the middle 

of the simulated domain. In particular, the DNA molecule is separated by the layer of water 

molecules from the boundaries of the simulated domain in both x-direction and y-direction. 

While we use periodic boundary conditions in all three directions, there is an asymmetry 

(highlighted in our terminology APBC): a modeller has a relative freedom to choose the 

values of Lx and Ly in the computational domain defined by (1), while the value of Lz is 

dictated by the properties of the simulated biomolecule. The imposed DNA periodicity fixes 

the helical twist of the DNA molecule with the simulation box size Lz chosen such that it 
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exactly corresponds to n helical pitches. However, considering simulations at isothermal-

isobaric (NpT) ensemble, standard isotropic barostats introduce fluctuations in the domain 

size leading to changes in Lz as well. To fix Lz, an asymmetric barostat is used in Section 3 

of this paper. 

 

The APBC has been used in previous studies5,21,22 to mimic an infinitely long DNA 

molecule. Except of the asymmetry between the z-direction and x-direction (resp. ydirection), 

the APBC can lead to a relatively standard all-atom MD set up, with the domain periodic in 

all three directions, which was previously used to explore the ion atmosphere around the 

DNA.21,22 However, it is more challenging to use the APBC to study mechanical properties 

of biopolymers, as we will first illustrate in Section 2 by considering a discrete worm-like 

chain model. This is followed by all-atom MD simulations of DNA in Section 3, where we 

present the use of APBC to investigate mechanical properties of the DNA and the properties 

of the surrounding solvent. 

 

2. WORM-LIKE CHAIN MODEL  

 

Let us consider the discrete worm-like chain (WLC) model where DNA consists of N 

segments li , i = 1, 2, . . . , N, each having the same length, ℓ. Denoting the angle between the 

adjacent i-th and (i+1)-th segments by θi , for i = 1, 2, . . . ,(N −1), the chain bending energy 

is 

 
where α is a dimensionless constant. We define the persistence length of the first j-th 

segments, for j ≤ N, by 

 
That is, aj is the average value of the projection of the vector connecting the end points of the 

first and the j-th segment on the direction of the first segment. Then the persistence length of 

the WLC model can be defined as the limit 

 
which effectively is the average value of the projection of the end-to-end vector of a long 

chain on the direction of the first segment. The average in (3) can be evaluated as 

 
where the average hcos(θ)i is given by 

 
To get formula (6), we note that the distribution of angles between adjacent segments is 

proportional to sin(θ) exp [−α θ2 ]. Using (4), (5) and (6), we deduce 
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In Figure 2(a), we present how the persistence length aorig depends on the stiffness 

parameter α in interval [0, 3/2], illustrating the accuracy of both expansions (7) and (8). 

While (7) is derived in the limit α → ∞, it approximates the exact result well for persistence 

lengths 

 

Figure 2: (a) Plot of persistence length aorig, given by (4), as a function of the stiffness 

parameter α, together with asymptotic results (7) and (8). The dimensionless parameter α can 

be viewed to express energy in units kBT, while all persistence lengths are plotted in units of 

the segment lentgh, ℓ. (b) Plot of persistence length aorig, given by (4), and persistence 

lengths aj , given by (5), for j = 10, 20, 50, 100, as a function of parameter α. 

satisfying aorig > 2ℓ or equivalently for α > 0.62. In Figure 2(b), we plot the dependence of 

the persistence length aorig on the stiffness parameter α in a larger interval [0, 20] together 

with the values of aj given by (5). Using the exact result for aorig given on the left hand side 

of equation (7), we can rewrite (5) as follows 

 
Considering the limit α → ∞ in (6), we have 

 
where the first three terms of the expansion on the right hand side provide an approximation 

of hcos(θ)i with about 5% relative error for α > 1, and the relative error decreases as we 

increase α, for example, the relative error is smaller than 1% for α > 2. Substituting this 

expansion for hcos(θ)i into equation (9), we obtain that for sufficiently large values of α, say 

for α > 1, we can calculate the persistence length aorig from aj by using the following 

formula 

 
2.1 The dependence of persistence length on APBC 

Considering that the polymer chain is simulated in the domain (1) with APBC, we have an 

extra constraint 

 
where N denotes the number of simulated segments along the z-direction. As it is illustrated 

in Figure 1(b), such a model can be viewed as a model of an (infinitely) long polymer chain 

by using the periodicity 

 



IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES  

 

 ISSN PRINT 2319 1775 Online 2320 7876 
 

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed ( Group -I) Journal Volume 11 , Iss 2, Feb  2022 

   

 

1071 | P a g e  
 

However, substituting (11)–(12) into the definition of persistence length (4), we would obtain 

that aorig = ∞ because the periodic boundary means that the infinitely long filament is 

effectively straight. Since equation (11) postulates that the vector connecting ends of N 

segments is fixed, we obtain the most variability in this model by looking at the behaviour of 

the ⌊N/2⌋ consecutive segments. Due to the symmetry of the problem and condition (4), the 

average of the vector P⌊N/2⌋ i=1 li is equal to [0, 0, Lz/2] for any value of α, but the 

deviations from this average will depend on α. To illustrate this, we define the average 

distance of the polymer middle point from the axis of the polymer by 

 
that is, we calculate the (Euclidean) norm of the projection of the vector P⌊N/2⌋ i=1 li on the 

x–y–plane. The average (13) is plotted in Figure 3(a) for different values of parameter α and 

 

 

 

 

 

 

 

 

 

Figure 3: (a) The average distance of the polymer middle point from the axis of the polymer, 

defined by (13), estimated from Monte Carlo simulations of the WLC model with N = 100 

segments for Lz ∈ {10, 20, . . . , 90} and α ∈ {0, 1, 5, 10}. The red line shows a⌊N/2⌋ = a50 

as a function of the domain length Lz (theoretical result (14) confirmed by simulations for all 

considered values of α). 

 

 (b) The estimate of aorig given by equation (15), where hcos(θ)i is estimated from Monte 

Carlo simulations of the WLC model with N = 100 segments for Lz ∈ {10, 20, . . . , 90} and 

α ∈ {0, 1, 5, 10}. The theoretical result (without APBC, independent of Lz), given by 

equation (6), is plotted by dashed lines for each value of α. 

 

domain length Lz. We observe that, for fixed value of Lz, the average (13) increases with the 

value of the stiffness parameter α. Moreover, Figure 3(a) also shows that the value of the 

average (13) approaches zero as Lz approaches its maximum possible value, N ℓ. Indeed, if 

Lz = N ℓ, the polymer is straight and the value of (13) is exactly equal to zero. On the other 

hand, if Lz is smaller then we obtain a larger value of (13), especially for polymers with 

larger persistence length (i.e. for large values of α). On the face of it, one possible way to 

estimate aorig could be to estimate a⌊N/2⌋ from our Monte Carlo simulations and then use 

formula (10) for j = ⌊N/2⌋. However, formula (10) has been derived for the case of the WLC 

model in the 3-dimensional physical space R 3 . Considering the APBC, we obtain that 

a⌊N/2⌋ is independent of α (see Appendix A). We have 
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which simplifies to a⌊N/2⌋ ≈ (ℓ/2) + L 2 z /(2ℓN) for large values of N. This result is also 

visualized in Figure 3(a). In particular, a better strategy to obtain the real persistence length 

aorig from the APBC simulations is to estimate 

 
and then use the exact result for aorig given on the left hand side of equation (7), namely 

 
The results are presented in Figure 3(b). 

 

3. APBC IN ALL-ATOM MD SIMULATIONS 

 

In this section, we investigate the use of APBC in all-atom MD models of DNA. Our 

simulations are performed with 10–100 base pairs (bp) of double-stranded DNA (dsDNA). 

Since we use the APBC, all simulations are effectively simulating (infinitely) long DNA 

chains. In particular, MD results with the longest simulated chain (100 bp) can be used as the 

‘ground truth’ for the presented APBC simulations with shorter 10–50 bp long DNA chains. 

We note that the MD simulations of relatively short 50 bp DNA segments without APBC 

have been previously used in the literature to estimate the DNA persistence length by using a 

middle section of the simulated DNA segment. 

 

We consider 6 types of (infinitely) long DNA sequences, with repeated nucleotides, namely 

poly(A), poly(C), poly(AT), poly(CG), poly(AC) and poly(AG), where poly(X) means that 

the correspoding nucleotide sequence is periodically repeated. We note that these 6 cases 

correspond to all possible cases of pairs of nucleotides which are repeated infinitely many 

times. For example, repetitions of dinucleotides AC, CA, TG and GT all correspond to the 

poly(AC) case, because AC and CA are equivalent due to the periodic boundary conditions 

along the chain length, and TG is on the complementary strand, with GT being equivalent to 

TG because of the periodic boundary conditions.  

 

Each infinitely long sequence is modelled in our computational domain (1) with APBC using 

N = 10 n base pairs of DNA, where n ranges from 1 to 10. The APBC is implemented along 

the z-direction as detailed in Appendix B.1. First, an (N + 1) bp long dsDNA configuration is 

constructed in such a way that the (N + 1)-th base pair is equivalent to the first base pair 

translated to the z-direction. Then, a nucleotide at the 3’-end of each strand is removed and 

the bond to the 3’-end (removed) nucleotide is substituted with that to the first base at the 5’-

end. The corresponding angles and dihedrals are added to MD structural files as detailed in 

Table 1 in Appendix B.1. In all MD simulations, we consider domain (1) with Lx = Ly = 200 

Å and we vary Lz. In Figures 4, 5 and 7, we choose Lz as a multiple of n (resp. N) with 

 
while we study the effect of stretching and shrinking of DNA in Figure 6 by using Lz 

obtained as the 95%, 100% and 105% of the value given by equation (16). All MD 

simulations are done in KCl solutions, with K+ ions neutralizing the negatively charged DNA 
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segments. We use the concentration 150 mM KCl in Figures 4, 5 and 6, while we vary the 

concentration of KCl in Figure 7.  

When using APBC with polymer models, there are (locally) two important directions: parallel 

to the polymer chain and perpendicular to the polymer chain. We consider both of them, in 

Sections 3.1 and 3.2, respectively. In Section 3.1, we study the effects of APBC on the 

properties of the DNA chain, where we can make direct analogues to the results obtained for 

the persistence length of the WLC model in Section 2. This is followed by studying the 

characteristics of the surrounding solvent in Section 3.2, where we investigate the ion 

athmosphere around DNA for different concentrations of KCl. 

 

3.1 Mechanical properties along the chain 

 The persistence length for our (infinitely) long sequences of dinucleotides can be determined 

by various experimental and theoretical studies23 as summarized in Appendix B. In Figure 4, 

we present the results of all-atom MD simulations with APBC of N = 10 bp segments using 

the six cases of repeated dinucleotides. Technical details of these MD simulations are given in 

Appendix B. 

To analyze our MD results, we associate a unit orientation vector hi with each base pair, i.e. i 

= 1, 2, . . . , N, where N = 10n is the total number of simulated base pairs. Denoting the angle 

between the i-th and (i + j)-th base pair as φj , we have cos(φj ) = hi · hi+j , which we 

calculate for all i = 1, 2, . . . , N. Averaging the calculated results over all possible values of i, 

we have 

 
where the accuracy of this average is further improved by calculating it as a time average 

over long MD time series. More precisely, we calculate three independent time series of 

length 10 ns and sample our results every 10 ps, disregarding the beginning of each 

simulation as the time required to equilibrate the system, see Appendix B for more details. 

Considering N = 10 (i.e. n = 1), we plot the averages (17) in Figure 4(a) for values j = 1, 2, 3, 

4, 5. We note that 

 
because we use APBC. In particular, the values of the averages (17) for j = 6, 7, . . . are 

already represented in Figure 4(a) by the corresponding values for j = 1, 2, 3, 4, 5. In Figure 

4, we observe that the results are clearly sequence dependent for j = 1, with the j = 4 case 

providing the best match to the j = 1 case. On the other hand, the results are less sequence 

dependent for j = 2 or j = 5. Given the APBC, there is no variation for j = N = 10 as we have 

already observed for the WLC model, because of the constraint (11). In Figure 4(b), we 

present the average separation between the subsequent base pairs for each of the studied 
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Figure 4: The results of all-atom MD simulations of DNA chains with APBC. (a) The average 

(17) for each of the 6 considered sequences of repeated nucleotides is calculated using three 

independent MD simulations. (b) The average separation between the base pairs calculated 

using three independent MD simulations (blue bars). The results for each individual 

realization is plotted as a black dot. 

 

Case.  

Our MD simulations in Figure 4 use the smallest possible value of N (corresponding to n = 

1), while one can expect that the results of all-atom MD simulations should be less influenced 

by the APBC for larger values of n (in theory, the APBC-induced errors should decrease to 

zero in the limit n → ∞). To investigate this further, we study the dependence of our results 

on n for the poly(A) case in Figure 5(a). We use three independent MD simulations for n = 1, 

2, 3, 4, 5, 10 corresponding to simulations with N ranging from 10bp to 100bp. In each case, 

we plot the averages (17) for j = 1, 2, . . . , 10. We note that this average is trivially equal to 1 

in the case j = 10 for N = 10 bp (because the first and the eleventh base pairs are identical for 

N = 10 bp), so we omit this artificial value from our plot for 10 bp in Figure 5(a). We observe 

that the results for n = 1, 2, 3, 4, 5 are matching some trends of the results for 100 bp. In 

particular, we can make similar conclusions as in Section 2 that the local properties (smaller 

values of j) are less influenced by using APBC than the averages estimated over the whole 

simulated polymer length (for j comparable to N).  

In Figure 3, we have considered the WLC model with N = 100 segments while varying the 

 

 

 

 

 

 

 

 

Figure 5: The results of all-atom MD simulations with APBC using the poly(A) DNA chain 

with N in the range 10–100 bp. (a) The average (17) for each of the 6 values of N considered 

is calculated using three independent MD simulations. The results are presented for j = 1, 2, . 

. . , 10 and n = 1, 2, 3, 4, 5, 10. (b) The average separation between the base pairs calculated 

using three independent MD simulations (blue bars). The results for each individual 

realization is plotted as a black dot. 

 

domain length Lz. In Figure 6, we present the results of a similar study using all-atom MD 

simulations with N = 100 bp. The middle bars in Figure 6(a) and Figure 6(b) correspond to 

the results of the poly(A) case with 100 bp which has already been included in Figure 5(a). 

Using equation (16), this corresponds to Lz = 337.5 Å. The other simulations correspond to 

the same set up where we either extend or shrink the value of Lz by 5%, i.e. we use the 

values of Lz given as 

 
In Figure 6(b), we observe that the average separation between base pairs increases as we 

increase Lz. On the other hand, the behaviour of averages (17) is less monotonic as we stretch 

or shrink the DNA chain, see Figure 6(a). Another way to visualize the results of all atom MD 
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simulations is to consider the average (17) as a function of the distance between the base 

pairs,20 which is visualized as function hHi in Figure 6(c). To calculate hHi, we 

 

 

 

 

 

 

 

 

Figure 6: The results of MD simulations of 100 bp poly(A) dsDNA with APBC that use the 

values of Lz given by equation (18). We average over three independent MD time series for 

each of the presented case. (a) The average (17) for j = 1, 2, . . . , 10. (b) The average 

separation of base pairs (blue bars). Dots include the results for individual MD realizations 

(i.e. we have averaged over the dots to calculate blue bars). (c) The average hHi as a function 

of distance d. We present results for the 95% (blue), 100% (red) and 105% (green) cases 

using different colours. Different symbols (circle, square, triangle of the same colour) denote 

data points calculated by different MD realizations. 

average hhi · hj i over all pairs i and j such that the corresponding base pairs are the distance 

d apart. We present this average, hHi, as a function of the distance d in Figure 6(c). The rate 

of decay of function hHi with distance d can be used as an alternative way to define and 

estimate the persistence length from MD simulations. 

 

3.2 Ion atmosphere  

The APBC are useful for investigating solvent properties in the direction perpendicular to the 

polymer chain. In Figure 7, we present the results of such a study, calculating the radial 

distribution of K+ and Cl− ions. We use three different concentrations of KCl, namely 0.25M, 

0.5M and 1M. In each case, we use n = 1, i.e. we use the APBC with 10 bp of poly(A) 

dsDNA. The results are calculated by averaging over four independent MD time series, each 

calculated for 10 ns. After the initial transient (of 1 ns) and at equidistant time intervals of 10 

ps, we calculate the distance of each ion from the nearest atom of DNA, so our raw data are 

given in terms of the histograms 

 
To get the radial distribution function, these numbers have to be divided by the volume, V (r, 

∆r), giving the volume of all points which have their distance from the DNA in the interval (r, 

r + ∆r). Then the radial distribution of K+ ions and Cl− ions is defined by 

 
where r is the distance from the DNA. To calculate Figure 7, we approximate the limit in 

equation (19) by choosing (relatively small) value ∆r = 1 Å and we approximate the DNA as 

a straight line (or equivalently as a straight cylinder) in the z-direction, i.e. V (r, ∆r) = 2π r ∆r 

Lz, giving 

 
Formulas (20) are visualized in Figure 7 as histograms. 
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4. DISCUSSION 

 

Using MD simulations at constant pressure and temperature, we can solvate the DNA with 

water and ions, fixing the concentration of ions in the bulk. In Section 3.2, we have presented 

illustrative results of such all-atom MD investigations with APBC. Such simulations can also 

be used to estimate other solvent properties, for example, the moments of force distributions 

on ions, which can be used for parametrizing coarse-grained stochastic models of ions used in 

 

 

Figure 7: The results of all-atom MD simulations with APBC using the poly(A) DNA chain 

with N = 10 bp and three different concentrations of KCl in the bulk. (a) The concentration of 

K+ ions given by (20) as a function of the distance from DNA. (b) The concentration of Cl− 

ions given by (20) as a function of the distance from DNA. 

 

multiscale and multi-resolution simulations.16,19 The APBC simulations can also be coupled 

with coarse-grained models of water to design adaptive resolution simulation 

techniques.5,24,25 In Section 3.2, we have presented the results calculated with APBC using 

n = 1 helical pitch. In particular, the simulated domain length is around 3.4 nm long and 

considerably smaller than the DNA’s persistence length, which is about 50 nm. To study 

mechanical properties of DNA, we need to increase the number of helical pitches as we have 

shown in Section 3.1 with our MD simulation results considering up to n = 10 helical pitches 

along the z-direction of APBC simulation domain (1). 

 

To get further insight into the correct use of the APBC, we have started our investigation 

using a discrete worm-like chain (WLC) model in Section 2, where we have observed in 

Figure 3 that the APBC affect less some local properties of the polymer chains than some 

global averages. In particular, the persistence length of the polymer chain can be estimated 

from local properties of relatively short polymer chains, simulated with the help of APBC. 

The APBC are also applicable to simulations of biopolymers with larger persistence length 

(for example, actin filaments26,27), when a modeller is interested to understand the 

properties of the surrounding solvent.  

 

In Appendix B, we provide the technical details of all-atom MD simulations, including the 

treatment of constant pressure simulations. The barostat used is again asymmetric with no 

fluctuations of Lz. In the APBC simulations, we have different treatment of the z-direction 

and all perpendicular directions in the x − y plane. Simulations with 2D periodicity have also 

been used to study behaviour of a slab of water between two metallic walls,28 which can be 

treated using three-dimensional Ewald techniques by including the image charges. One 

advantage of the APBC simulations is that they can be implemented with relatively minor 

modifications of standard all-atom MD tools29–32 as detailed in Appendix B. Note that, the 
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number of helical turns in the DNA model with APBC is fixed, and thus the model does not 

allow for over-winding or under-winding of DNA. 
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