A STUDY ON DESCRIPTIVE MEASURES OF VACCINE IN TAMILNADU USING SAMPLING TECHNIQUES

*1 CHAKALA ROJA, MPhil Scholar, Department of Mathematics Bharath Institute of Higher Education and Research, Chennai,-73, India.

*2 Dr. K. Ramalakshmi, Assistant Professor, Department of Mathematics, Bharath Institute of Higher Education and Research, Chennai,-73, India.

roja4394@gmail.com ramaug1984@vahoo.com

Address for Correspondence

*1 CHAKALA ROJA, MPhil Scholar, Department of Mathematics Bharath Institute of Higher Education and Research, Chennai,-73, India.

*2 Dr. K. Ramalakshmi, Assistant Professor, Department of Mathematics, Bharath Institute of Higher Education and Research, Chennai,-73, India.

roja4394@gmail.com ramaug1984@yahoo.com

Abstract.

Statistics is a division of arithmetic managing the gather, analysis, interpretation, presentation, and organization of information. Data are distinct pieces of information and is collected, observed, or created, for the purposes of analysis to produce original research results. There are many methods used to collect or obtain data for statistical analysis and it can be categorized as Census, Sample Survey, Experiment and etc. In the rapid growth of population and avaricious attitude of industries and residents are generated huge number of pollutions and diseases which affects our immune system at high level. Due to this reason, the health issues of people are uncontrolled and it becomes a big task to the government. So, many countries interested to influence the awareness among people through campaign, vaccination, and by conducting health camps. A vaccine is a biological

e-ISSN 2320 –7876 www.ijfans.org Vol.11, Iss.9, Dec 2022 © 2012 IJFANS. All Rights Reserved

Research Paper

preparation that provides an active acquired immunity to a particular disease. Vaccines led

to the eradication of smallpox, Hepatitis, polio, measles, mumps, and chicken-pox which are

deadly diseases in humans. In this paper, we analyze the people's awareness about

vaccination in and around Tamilnadu by using sampling techniques.

Introduction.

Statistics is the tool device to probability and anticipate through accurate model. An analyst

gathers test information by creating particular trial plans and study tests. Analogies may be one

of the fertile sources of hypothesis and it stimulate new valuable hypotheses. Concepts in

Hempel's deductive nomological model [1] play a key role in the development and testing of

hypotheses.

The standard move towards is to test an unacceptable hypothesis against an optional

hypothesis. The null hypothesis and the alternative hypothesis are chosen before the sample is

drawn in which we make a rule that according to acceptance of H_0 (i.e., reject Ha) or rejection

of H₀ (i.e., accept Ha).

Degree of freedom refers to the number of values which are free to differ after we have

allowed the number of constraints placed upon the data. It is widely discussed in relation to chi-

square $(\chi 2)$ and other types of hypothesis checking statistics. When assessing the importance of

a chi-square statistic and the validity of the null statement, the degree(s) of independence plays a

crucial role in it. If the significance rating is 5 per cent and the two-tailed test is to be applied, the

likelihood of the exclusion region would be 0.05. A single tail test informs us if the average

population is less than or greater than a hypothesized value.

The chi-squared test is to check if there is any difference between the observed value and

expected value and it is calculated by using the formula,

 $\chi 2 = (Observed - Expected)^2 / Expected Value$

658

1. Vaccine Action Plan

The vaccine and vaccination public health principles and the economic gains from immunization have been carried out in most countries by a regional study (17-19 out of 20) although several countries require technical support to further expand the evidence base, including the compilation, review and distribution of evidence (18-01-20) [17]. Most countries participate in the survey (18 of 20) have already included immunization in the agendas of governing body meetings while some Pacific island countries and areas (such as Fiji, Guam, Niue and Tokelau) need external support for this activity.

The School Wellness Initiative aims at promoting a safe school atmosphere, optimizing health status for students, recognizing health issues and delays in children in schools and establishing educational relationships. The Ministry of Health co-ordinates or offers health education, health assessment, immunization, curative and referral programmers, health dentistry and environmental health services in order to meet those goals. [4].

One part of student health care is the school-based immunization programmed which is provided by school health teams such as physicians, medical advisors, health staff, and community nurses. Like diphtheria and pertussis vaccinations, oral polio, measles, and tuberculosis for infants (BCG if no scar) are provided by a school's health staff. (see [5,6]).

For the past 20 years, the National Immunization Programmed has conducted much immunization-related research.

2. Main Results.

The proposed study is basically empirical in nature and analysis focused on the status and factors for the awareness of vaccination among the people in Tamilnadu districts by using sampling techniques. The survey data collected through interview and discussion with the residence of the study area. The study has used the following tools such as simple percentage

Research Paper

along with correlation and other suitable statistical tools for analysis and interpretation of the data.

The Sample Study covers 500 respondents comprising of 81.2 percent of male and 18.8 percent female, indicating that the male constitute the vast majority in total respondents (Table-1). The zone wise representation indicates that the south and west zones with 28.7 and 27.3 percent to the total respondents. While the representation is moderate with 24.2 precent in case of weastzone and it is least in case of north zone with 19.8 percent.

Table I. Statistics of gender based respondents at Zone level.

		Gender		Total
S. No.	Zone	Male	Female	
1	East	100(82.6)	21(17.4)	121(24.2)
2	West	104(75.9)	33(24.1)	137(27.3)
3	South	117(81.2)	27(18.8)	144(28.7)
4	North	86(86.9)	13(13.1)	99(19.8)
TOTAL		407(81.2)	94(18.8)	501(100)

Note: Figures in the parenthesis represent percentage.

Gender based intra-zone classification of respondents shows that it is almost of the representative of the overall picture in the case ofeast and south zones while in other zones, there has been a slight difference in the gender representation with in the zones as shown in

Fig.1. Thus it can be stated that inter and intra zone differnce are not so much in the distribution of the respondents under study.

Fig.1. Statistics of gender based respondents

Table II and Figure 2 represents are the details of the respondents pertaining to their nativity. A vast majority of the respondent's (95.8 per cent) have a permanent history of being the native of the same town panchayat. Those who migrated are accounted for a meager 4.2 per cent of the total respondents.

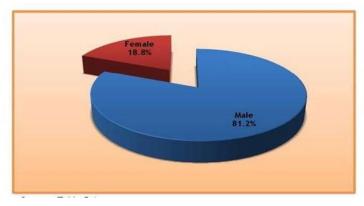


Fig.2. Pi- diagrammatic representation of gender based respondents

Especially the Table –II represents the zone wise vaccination samples participated for statistical analysis. Expect the north zone all other zones of chennai have shown significant success of the vaccination programme.

Table II. Statistics of respondents for vaccine at zone level

		Nativit Res		
S .No	Zone	Native	Migrant	Total
1	East	116 (95.9)	5 (4.1)	121 (24.2)
2	West	131 (95.6)	6 (4.4)	137 (27.3)
3	South	139 (96.5)	5 (3.5)	144 (28.7)
4	North	94 (95.0)	5 (5.0)	99 (19.8)
Total		480 (95.8)	21 (4.2)	501 (100)

Figures in the parenthesis represent percentage

The zone wise analysis indicates that there was no much difference across the zones with

Research Paper

the figures ranging from 95.9 per cent in east zone to 95.0 per cent in the north zone indicating that the percentage of inter-zone differences was very insignificant. Similar is the case of migrant respondents in all zones in the study area as shown in Fig.3.

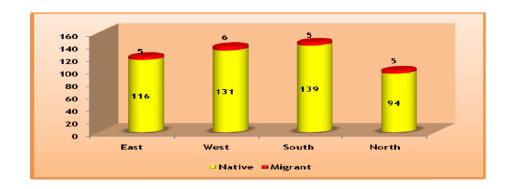


Fig. 3 Zone-wise Classification based on Nativity

An attempt to analysis the data on the vaccination by native and migrant families in Tamilnadu brought forth the fact that the total respondents by the native families contributed for the 98.9 per cent of the vaccination in Tamilnadu (Table II and Figure 3). It is so because of the fact that the native residents constituted the majority of the vaccination respondents.

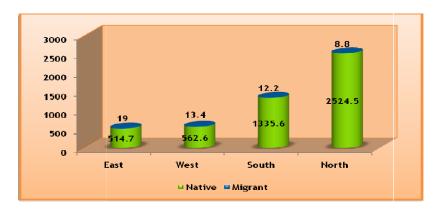


Fig.4. Zone-wise Classification based on Nativity

The migrant families which accounted for 4.2 per cent in the total have contributed less proportionately to native. Thus, it is evident that there is considerable difference between native and migrant respondents with regard to the extent of contribution to the vaccination in Tamil nadu Zone wise. The following table III gives the statistics for the awareness of vaccination among people in four regions from the year 2010 - 2020.

Table III. Statistics of respondents for vaccine at zone level between 2010 and 2020.

			IN YEARS				
S.NO	Zone	2011	2013	2015	2017	2019	TOTAL (in lakhs)
1	EAST	1 (1)	14 (15)	23 (22)	36 (30)	47 (53)	121
2	WEST	3 (2)	20 (14)	25 (25)	33 (35)	55 (60)	136
3	NORTH	1 (1)	12 (16)	25 (26)	31 (36)	75 (64)	144
4	SOUTH	0 (1)	09 (10)	18 (18)	28 (27)	44 (44)	99
ТОТ	TAL (in lakhs)	5	55	91	128	221	500

In parenthesis, the expected frequencies are given and the results are tested region-wise as well as year wise by using chi –square test formula,

Given that

$$X^2 = \sum$$
 (observed value – Expected value)² / Expected value.

The collected data between the years 2010 and 2020 are computed by using the following formula. Fig.4 shows that the year wise statistics of respondents of each zone. Among them the north zone has been shown more awareness towards other zone people. The same vaccination, related activities shown poor response in eastern zones. Every year the awareness program have shown remarkable improvement.

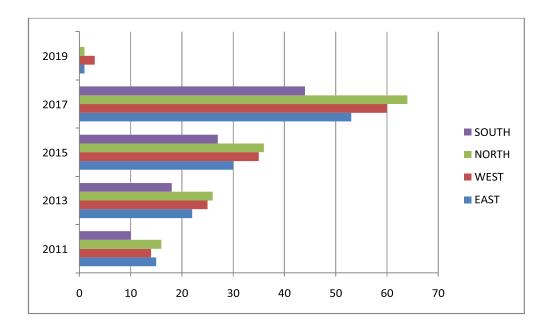
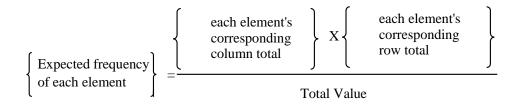



Fig. 5 Statistics of respondents for vaccine at Zone level from 2010 – 2020

METHODOLOGY The expected frequency of each elements are calculated by the following

Research Paper

For each east zone

E(1)	=	5 X 121 /500 =	1.2
E (14)	=	55X 121 / 500 =	15.31
E (23)	=	91 X121 /500 =	22.02
E (36)	=	$128 \times 121 / 500 =$	29.976
E(47) =	221 X	X 121 / 500 =	53.4

For each west zone

$$W(3) = 5 \times 136 / 500 = 1.56$$

 $W(20) = 55 \times 136 / 500 = 13.96$
 $W(25) = 91 \times 136 / 500 = 24.75$
 $W(33) = 128 \times 136 / 500 = 34.81$

W(55) = 221 X136 /500 =

For North Zone

N(1)	=	5 X144 /500	=	1.44
N (12)	=	55 X 144 / 500	=	15.84
N (25)	=	91X144 / 500	=	26.208
N (31)	=	128 X 144 / 500	=	36.36
N (75)	=	221 X144 / 500	=	63.548

60.1

For South Zone

$$S(0)$$
 = $5 \times 99 / 500$ = 0.99
 $S(9)$ = $55 \times 99 / 500$ = 10.39
 $S(18)$ = $91 \times 99 / 500$ = 18.018
 $S(28)$ = $128 \times 99 / 500$ = 27.34
 $S(44)$ = $221 \times 99 / 500$ = 43.758

All these frequencies are calculated in zone-wise as well as year-wise. Now, we have to check which region is having more awareness and which year the people have more awareness.

The following figure 5 shows that the no. of respondents for the vaccination from $2010-2020 \label{eq:control}$

Figure 6 Respondents for vaccine between 2010 and 2020

Let us assume that, all regions are having awareness in vaccination as Null hypothesis (H_0) and the alternative hypothesis (H_1) is either all regions are not having awareness or any one of the region has more awareness.

In 2011,
$$X^2 = (1-1)^2/1 + (3-2)^2/2 + (1-1)^2/1 + (0-1)^2/1 = 1.5$$

In 2013, $X^2 = (14-15)^2/15 + (20-14)^2/14 + (12-16)^2/16 + (9-10)^2/10 = 3.74$
In 2015, $X^2 = (23-22)^2/22 + (25-25)^2/25 + (25-26)^2/26 + (18-18)^2/18 = 0.08$
In 2017, $X^2 = (36-30)^2/30 + (33-35)^2/35 + (31-36)^2/36 + (28-27)^2/27 = 2.16$
In 2019, $X^2 = (47-53)^2/53 + (55-60)^2/60 + (75-64)^2/64 + (44-44)^2/44 = 2.57$

Hence we conclude that for the past ten years 2010 to 2020 (Calculated value) the value which is found by χ^2 method is lower than the given value at (n-1) (m-1) degrees of freedom.

That is, we can directly to accept the null hypothesis H_0 . Hence we can conclude that there is no difference in awareness of vaccination between four regions of children who has taken vaccination for the year 2010 - 2020.

References.

- 1. Hempel, C. G. (1952). Fundamentals of concept formation in empirical science. Chicago, Illinois: The University of Chicago Press, p. 36.
- 2. Fisher, R (1955). "Statistical Methods and Scientific Induction" ,Journal of the Royal Statistical Society, Series B. 17 (1): 69–78.
- 3. Hubbard, R.; Parsa, A. R.; Luthy, M. R. (1997). "The Spread of Statistical Significance Testing in Psychology: The Case of the Journal of Applied Psychology", Theory and Psychology.
- Lehmann, E. L.; Romano, Joseph P. (2005). Testing Statistical Hypotheses (3E ed.). New York: Springer. ISBN 0-387-98864-5.
- Lenhard, Johannes (2006). "Models and Statistical Inference: The Controversy between Fisher and Neyman–Pearson". Brit. J. Phil. Sci. 57: 69–91. doi:10.1093/bjps/axi152.
- 6. Siegrist, Kyle. (2018). "Hypothesis Testing Introduction", www.randomservices.org.in