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ABSTRACT:  

Various algorithms comparing 2D NMR spectra have been explored for their ability to 

dereplicate natural products as well as determine molecular structures. However, 

spectroscopic artefacts, solvent effects, and the interactive effect of functional group(s) on 

chemical shifts combine to hinder their effectiveness. Here, we leveraged Non-Uniform 

Sampling (NUS) 2D NMR techniques and deep Convolutional Neural Networks (CNNs) to 

create a tool, SMART, that can assist in natural products discovery efforts. First, an NUS 

heteronuclear single quantum coherence (HSQC) NMR pulse sequence was adapted to a 

state-of-the-art nuclear magnetic resonance (NMR) instrument, and data reconstruction 

methods were optimized, and second, a deep CNN with contrastive loss was trained on a 

database containing over 2,054 HSQC spectra as the training set. To demonstrate the utility of 

SMART, several newly isolated compounds were automatically located with their known 

analogues in the embedded clustering space, thereby streamlining the discovery pipeline for 

new natural products. 

INTRODUCTION: 

As a discipline, natural products research 

(NPR) enables and benefits numerous 

downstream research fields, such as 

chemical biology, chemical ecology, drug 

discovery and development, pharmacology 

and the total chemical synthesis of natural 

products (NPs). In this regard, 

approximately 70% of all approved drugs 

are NPs, their analogues, or a chemical 

modification of an existing NP1 . In 

addition to these academic and societal 

benefits, NPR provides a powerful 

incentive for the conservation and 

sustainable use of biodiversity and 

biodiverse habitats. 

An important step in NPR is dereplication, 

the process of assessing the uniqueness of 

a new compound in relationship to all 

known ones. In most NPR, traditional 

compound dereplication practices have 

entailed the collection and analysis of 

nuclear magnetic resonance (NMR) 

spectra, including running 1D and 2D 

NMR spectroscopic experiments for the 

purposes of molecular framework 

construction, assembly, and relative 

stereochemistry determination. More 

recently, mass spectrometric approaches 

and mass spectrometry (MS)-based 

molecular networking3 , in part stimulated 

by integration with DNA sequencing and 

genome mining4,5 have been integrated 

into NPR workflows. Nevertheless, 

conventional NMR practices are still 

indispensable to the characterization and 

dereplication of NPs. Unfortunately, 2D 

NMR experiments can be time consuming, 

especially when the sample is relatively 

scarce. Furthermore, 2D NMR-based 

structural assignments can sometimes take 

protracted periods of time to accomplish 

due to the inherent structural complexity of 

some NPs. 
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Along with relatively recent improvements 

in mass spectrometry, circular dichroism 

and infrared spectroscopy techniques, 

state-of-the-art cryoprobe NMR 

instruments have reduced the sample 

requirements for NPs discovery to just a 

few nanomoles6 . Nevertheless, 

acquisition of NMR spectra may still 

require a relatively large number of time 

consuming scans before Fourier 

transformation of the data. Furthermore, 

conventional 2D NMR spectroscopy relies 

upon linear sampling of the frequency 

evolution in the indirect dimension 

(usually the 13C dimension). When 

generating high frequency resolution in the 

indirect dimension, extensive sampling is 

required and the experiments become very 

time consuming. Modification of 

conventional uniform sampling to non-

uniform sampling (NUS)7–13 allows the 

number of experiments in the indirect 

dimension to be reduced, thereby reducing 

the overall time of the experiment. The 

NUS method is designed to reduce the 

number of data collection experiments 

while at the same time delivering an 

accurate estimation of the fully sampled 

spectrum. 

To streamline compound dereplication or 

even structure determination, algorithms 

have been applied for 2D NMR spectra 

comparisons, such as the 2D NMR peak 

alignment algorithm14,15. However, these 

techniques are not powerful enough to 

accurately classify 2D NMR spectra into 

the correct NP family. This arises for 

several reasons, such as compound 

concentration, solvent effects, and the 

interactive effect of a single functional 

group alteration on 1 H and 13C NMR 

chemical shifts, all of which combine to 

increase the difficulty for computer 

assisted 2D NMR data analysis. At the 

same time, artefacts are often introduced 

into NMR spectra, and this makes it 

difficult for existing pattern recognition or 

overlap methods to distinguish genuine 

peaks from artefacts. However, artificial 

intelligence technologies, such as deep 

learning16,17, have generated new 

approaches for meeting these challenges. 

Compared with conventional machine 

learning methods, which require the 

cumbersome process of selecting and 

creating features that might be suboptimal 

for a given task, deep learning allows 

creation of the most suitable set of features 

within the process of training, without any 

design or involvement by the investigator. 

Moreover, some deep learning methods 

work well even when the number of 

categories is very large and unknown 

during the training process. Thus, deep 

learning is an ideal method by which to 

analyse and categorize 2D NMR spectra of 

NPs. For NPs, there are an essentially 

unlimited number of categories for 

different compound families, with many 

being unknown at the present time. 

Additionally, it is quite common for each 

category to contain fewer than 50 different 

members; in the work of our laboratory 

with marine cyanobacterial NPs, this is the 

case for all of the molecular families we 

have encountered over the past 40 years, 

including the curacins18–20, apratoxins21, 

lyngbyabellins22 and majusculamides. 

Other approaches for automatic 

recognition of NMR spectra have appeared 

in the literature or private sector. The 

typical approach is to create grids over the 

data and then compute similarities based 

on how many points fall into the same grid 

cells26. This approach can miss peaks that 

are near one another that happen to fall in 

different grid cells, so an enhancement of 

this approach is to use multiple grid 

resolutions and offsets before computing 

the similarities27. Our convolutional 

network approach automatically does this 

by using overlapping convolutions 



597 

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 

Research paper © 2012 IJFANS. All Rights Reserved,Journal Volume 10, Iss 9,2021 
  
 

  
 

combined with increasing-sized receptive 

fields through pooling the results from 

previous layers. However, our method of 

deciding similarity is learned by the 

network through nonlinear dimensionality 

reduction via training it to map together 

those compounds it recognizes as being 

from the same family, and to map different 

families to different locations in the 

underlying space. 

Another method involves computer-aided 

structure elucidation (CASE, ACD/Labs) 

which is largely based on applying a least-

squares regression (LSR) approach for 

comparing NMR chemical shifts; this 

tactic is not powerful enough to 

satisfactorily accommodate solvent effects, 

instrumental artefacts, or weak signal 

issues14,15. An early effort using machine 

learning applied to NMR spectra was 

reported in (Wolfram et al., 2006)28. They 

used Probabilistic Latent Semantic 

Indexing (PLSI), a method usually applied 

to text documents for information retrieval 

purposes. PLSI maps documents into a 

lower dimensional space using a 

probabilistic analogue to Singular Value 

Decomposition (SVD) applied to a 

document by word count matrix. To apply 

PLSI to compounds, the typical multi-

scale and shifted grid cell approach was 

used, treating each grid cell as a “word” in 

the compound. This is essentially learning 

a linear mapping from the feature space to 

a reduced space, and thus is not as 

powerful as using a nonlinear deep 

network. 

In our approach, heteronuclear single 

quantum correlation (HSQC)29 spectra are 

recorded using a 2D NMR pulse sequence 

that uses the large heteronuclear coupling 

between directly bonded nuclei within an 

organic molecule to correlate directly 

bonded atoms (e.g. 1 H and 13C, with 1 H 

being defined as the direct dimension and 

13C the indirect dimension). The peaks of 

those correlated nuclei in the 2D HSQC 

spectra are generated by detecting 

coherences that connect states whose total 

z-angular momentum quantum numbers 

differ by one order (i.e. single-quantum 

coherences). In this regard, an HSQC 

spectrum is deemed as the ‘fingerprint’ or 

‘face’ for a natural product molecule, and 

thus is highly discriminating. Specifically, 

within a 2D HSQC spectrum, signals in 

the direct dimension can be distinguished 

if they have shifts of 0.02 ppm or greater, 

and in the indirect dimension if they have 

shifts of 0.1 ppm or greater. Furthermore, 

most 1 H chemical shifts occur between 

0.5 and 9.5 ppm, whereas in the 13C 

dimension chemical shifts typically occur 

between 10 and 215 ppm, which gives rise 

to 922,500 distinguishable positions within 

a 2D HSQC spectrum. When summed over 

all protonated carbons in a molecule of 20 

carbons with attached protons, the number 

of potential combinations is in the tens of 

millions, and is thus highly discriminatory. 

In addition, this technique avoids detection 

of double-quantum coherence, resulting in 

relatively few artefacts. In contrast, the 

commonly used heteronuclear multiple 

bond correlation (HMBC) experiment 

detects two and three bond correlations by 

selecting smaller multiple bond 

heteronuclear coupling constants (around 

5–10Hz for 1 H-13C versus one bond of 

125–170Hz) for double-quantum and zero-

quantum transfer. Therefore, while the 

HMBC experiment produces an even 

larger amount of theoretical information, it 

is prone to introducing artefacts and its 

complexity makes it more difficult to 

interpret. In addition, the HSQC when 

performed with NUS discussed above is a 

relatively quick and efficient experiment 

for data accumulation. 

Here, we report the development of the 

Small Molecule Accurate Recognition 
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Technology (SMART) prototype, a system 

that integrates the benefits of NUS NMR 

with advances in deep learning to enhance 

and improve the efficiency of NP 

dereplication. To create SMART, a 

database of training examples containing 

2D HSQC spectra of 2,054 compounds 

was compiled. These examples were used 

to train a deep network that learns to map 

the spectra into a cluster space where 

similar compounds are near one another 

and dissimilar compounds are far apart. To 

perform this function, we use a deep 

convolutional neural network (CNN) 

employing a siamese architecture30 as 

described in the methods section. A 

siamese network amplifies the number of 

training examples by training on pairs of 

spectra that are labelled “same” or 

“different,” rather than training on 

individual examples. The network then 

learns features of the spectra that are 

relevant to their similarities and 

differences, and uses this to create the 

cluster space. The resulting mapping then 

generalizes to new compounds, placing 

them in the space near compounds with 

similar HSQC spectra. We evaluate 

SMART by holding back several known 

NPs from different families from the 

training set, and then show that SMART 

maps them into their proper location 

within the cluster space. We also present 

here the rapid identification of a newly 

isolated natural product compound family 

as a result of SMART’s ability to cluster 

similar compounds together. HSQC 

spectra were collected for several 

nonribosomal peptide synthetase (NRPSs)-

derived NPs that had been isolated from 

two marine cyanobacteria. These novel 

spectra were accurately mapped by 

SMART into the ‘viequeamide’ subfamily 

of NPs. 

RESULTS AND DISCUSSION 

 The SMART prototype. SMART is a 

user-friendly, AI-based dereplication and 

analysis tool that uses 2D NMR data to 

rapidly associate newly isolated NPs with 

their known analogues. SMART has been 

designed to mimic the normal path of 

experiential learning in that additional 2D 

NMR spectral inputs can be used to enrich 

its database and improve its performance. 

In short, SMART aims to become an 

experienced associate to natural products 

researchers as well as other classes of 

organic chemists. The SMART workflow 

consists of three steps, 1) 2D NMR data 

acquisition by NUS HSQC pulse 

sequence, 2) 2D NMR spectral analysis by 

deep CNN, resulting in an embedding of 

the spectra into a similarity space of NPs, 

and 3) molecular structure dereplication or 

determination by the user (Fig. 1). This 

process gives users rapid access to a well-

organized map of structurally determined 

NPs, and helps ensure that SMART’s 

insights are chemically rational. In this 

regard, SMART capitalizes on the wealth 

of molecular fingerprints, namely 2D 

HSQC spectra, built over the past four 

decades31,32, and reciprocally, we 

anticipate that 2D HSQC spectral 

databases will experience an accelerating 

expansion as a result of SMART’s 

application. 

The workflow (Fig. 1) of SMART begins 

with recording the NUS HSQC spectrum 

for a pure small organic molecule; in the 

case of NPR, this is a substance extracted 

and purified from an organism of interest, 

but just as easily could be a small molecule 

produced from organic synthesis, 

biosynthesis or from a metabolomic study. 

A small molecule is defined here as one 

whose transverse relaxation time constant 

(T2) is on the same order of magnitude as 

its longitudinal relaxation time constant 

(T1) when dissolved in liquid solution. In 

other words, the nuclear spins of a small 
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molecule should be synchronized between 

107 to 108 Larmor precession cycles 

during a liquid state 2D HSQC 

experiment33. Nevertheless, the SMART 

concept is not inherently confined to small 

molecule NUS NMR spectra, considering 

the ability of NMR to structurally 

characterize molecules of many sizes and 

types. NUS HSQC experiments are highly 

advantageous for small molecule structure 

elucidation compared with conventional 

pulse sequences due to their rapid 

acquisition, few spectral artefacts, and 

intrinsic high resolution. Nevertheless, as 

discussed below, conventional 2D HSQC 

spectra can be provided to the AI system 

and spectral recognition achieved. In fact, 

the initial database of HSQC spectra that 

were compiled to train the SMART system 

was acquired in this manner. 

Due to lower sampling density, NUS 

HSQC requires alternative approaches to 

convert the indirectly sampled time 

domain into visual spectra of the frequency 

domain, and thus methods other than the 

Discrete Fourier Transform are required. 

To this end, Iterated Soft Thresholding 

(IST)34,35 followed by the Maximum 

Entropy Method (MEM)36,37 was applied 

to NUS data collected for the model 

compound strychnine. In order to achieve 

convergence to a local minimum, a 

Lagrange multiplier was applied to weight 

the regularization function, the L1 norm, in 

the IST routine. Previous studies12 have 

shown that IST is superior to Maximum 

Entropy Reconstruction (MaxEnt)38 (not 

to be confused with MEM) in NUS NMR 

data reconstruction, owing to the 

simplicity of IST with fewer adjustable 

parameters and the resultant ease of 

application. Nevertheless, IST suffers 

slower convergence compared to MaxEnt 

for spectra with a high dynamic range. 

However, it has been shown that changing 

the step sizes in IST can achieve 

visualization of the final spectra 

indistinguishable from those reconstructed 

by a well-tuned MaxEnt process39. The 

MEM can then be applied after Fourier 

Transformation of the IST reconstructed 

data in the direct dimension, resulting in an 

improvement that derives from the fact 

that MEM is biased towards the 

enhancement of smaller line widths40. For 

the model compound, the HSQC 

correlation signals of the C-11 methylene 

protons (3.11 ppm and 2.67 ppm) to their 

subtending carbon were visibly 

strengthened after sequentially applying 

IST (400 iterations) and MEM (3 

iterations) compared with application of 

IST (400 iterations) with Linear 

Predictions (LP) during data reconstruction 

of the non-uniformly sampled 2D NMR 

spectra (Fig. 2). 

g. 2). Our deep learning method is based 

on a siamese neural network 

architecture41. A siamese network is 

comprised of a pair of identical networks 

that are trained with pairs of inputs. These 

are mapped to a representational space 

where similar items are near one another 

and different items are further apart. As a 

result, it produces a clustering of the input 

space based on a similarity signal. In our 

case, it first maps the input HSQC spectra 

into a ten dimensional space, which then 

can be mapped into a two dimensional 

space by Principal Components Analysis 

(PCA) for visualization purposes 
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Figure 1. Workflow for the Small 

Molecule Accurate Recognition 

Technology (SMART). Experimental 

HSQC spectra of newly isolated pure 

natural product molecules collected using 

either NUS HSQC pulse sequences or 

conventional HSQC techniques, are 

automatically embedded by SMART into a 

cluster space near similar, previously-

characterized compounds. The resultant 

embedding in the cluster map is visualized 

using the Bokeh visualization package72, 

where each node represents an HSQC 

spectrum processed by SMART. The node 

colours in a local area of the clustering 

map designate compounds from the same 

journal articles and thus of the same 

natural product family. This facile method 

allowed tracking of compounds into 

SMART, but is not of paramount 

significance in that some compounds 

reported in different publications display 

closer relationships in SMART and by 

structural comparison than to compounds 

within the same article. When available, 

the node labels are the compound names; 

otherwise, the labels are for the organism 

from which the compound derives. Node 

distance is proportional to relatedness, a 

quantification of molecular structural 

similarity. The 2D cluster map is created 

by performing Principal Component 

Analysis (PCA) of the 10D space outputs 

to reduce to 2D. Optionally, the top 5, 10 

and 20 closest nodes in the 10D space are 

available in text format. The proof-of-

concept experiments are illustrated: 

Dereplication (solid blue arrow) of 

viequeamides A (1) and B (4), and 

determination (dashed orange arrow) of 

viequeamides A2 (2), A3 (3), C (5) and D 

(6), isolated from 1) Rivularia sp., 

collected in Vieques, Puerto Rico and 2) 

Moorea sp., collected in American Samoa. 

are trained by backpropagation of errors45. 

CNNs are structured to learn local visual 

features that are replicated across the 

input, hence the term “convolutional”. The 

local maximum of these features are then 

input to another layer that learns local 

features over the previous layer of 

features, and this process is repeated for 

several layers. In previous work, it has 

been shown that the feature maps resulting 

from each convolutional layer become 

more abstract as the layers of the network 

are traversed. We show the first layer 

features in Fig. 3. By using the local 

maxima of feature responses over nearby 

locations in the input, the network will 

generalize to patterns that are shifted in the 

( , f f ) 1 2 plane of the spectra, i.e., it 

achieves some translation invariance. 

Thus, the network is inherently 

hierarchical, like the mammalian visual 

system, and learns more and more abstract 

features in deeper layers of the network. In 

a siamese network, the final layer is not 

trained to classify the inputs; instead, a set 

of units are trained to give similar patterns 

of activation for similar inputs (as given in 

the teaching signal) and different patterns 

of activation for inputs that are labelled as 

different. Hence, they produce a clustering 

in the space of unit activations46. 
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Figure 2. Data reconstruction results of a 

non-uniformly sampled (NUS) HSQC 

experiment. All of the three full HSQC 

spectra were recorded with a 50 nmole 

strychnine sample in CDCl3 on a 600MHz 

Bruker 1.7 mm cryoprobe instrument, 

using 32 out of a total 128 increments 

(25% sampling density) in the indirect 

dimension and 8 scans. The differences 

between the three spectra were that (a) was 

transformed with the maximum entropy 

method (MEM) alone, (b) was transformed 

with the iterative soft thresholding (IST) 

alone, and (c) was transformed with IST 

followed by MEM. The doublet (see black 

arrows and circles in (b) and (c)) 

associates with the protons on the 

methylene (C-11) adjacent to the ketone in 

strychnine (see text for discussion). 

As a result, molecules that are similar in 

HSQC spectra will be mapped to nearby 

locations in the output space. If the 

network generalizes well, it will place 

novel molecules near known ones that 

have similar NMR spectra. This allows the 

system to rapidly identify candidate known 

molecules that may have similar chemical 

features to the novel molecule, allowing 

the user to search through a small subset of 

known molecules for similar compounds. 

In our initial approach, we used ten output 

units (i.e., a 10 dimensional space), which 

can be visualized by applying Principal 

Components Analysis (PCA) to reduce the 

10 dimensions to two. 

Network training and results. The neural 

network was trained using stochastic 

gradient descent47 with the Adagrad48 

update rule. To speed the training, we 

employed batch normalization49, which 

reduces the internal covariance shift by 

standardizing the distribution of features 

on each layer. The network was found to 

train 7 times faster (wall clock time) using 

batch normalization. When training the 

CNN, the datasets (see the Methods 

section for details) were divided into three 

subsets; the training set containing 80% of 

the spectra, used to adjust the parameters 

of the network, the validation set 

 

Figure 3. Features learnt by the first 

convolutional layer of the CNN. Feature 

maps were extracted from convolution 

layer 1 in Table 1, with the eight blocks of 
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4×4 pixels in this figure corresponding to 

the results of each of the eight filters 

applied to the HSQC dataset. 

 

Table 1. The Architecture of the Deep 

CNN Used in This Studya . a The 

dimensionality of the input data is 

512×512. 

containing 10% of the data used for early 

stopping, and a test set containing the 

remaining 10% of the data (for details, see 

Methods). The test set consisted of HSQC 

spectra that were not used during the 

training process. The error from the 

validation set was monitored to prevent 

overfitting on unseen data. The test spectra 

were then embedded in the cluster map to 

locate their nearest neighbours. In this 

way, the test HSQC spectra were matched 

with other structurally similar compounds 

(e.g., from the same compound family or 

by possessing a high Tanimoto similarity 

score). 

 

Figure 4. The SMART cluster map based 

on training result of 2,054 HSQC spectra 

over 83,000 iterations, with inset boxes 

representing different compound classes 

discussed in the text. 

training iterations (Figures S1 and S2 in 

the Supplementary Information for the 

cluster map with analysis), and 

subsequently, we trained on a larger 

dataset of 2,054 for a total of 83,000 

iterations. The tight structural similarity 

between the compounds and their locations 

in the cluster map is evident (Fig. 4). 

Related work. Again, the aforementioned 

grid-cell approaches28 are similar to ours 

in that the shifted grid positions can be 

thought of as corresponding to the first 

layer of convolutions, which have small 

receptive fields (like grid cells), and they 

are shifted across the input space like 

shifted grids. Also, our approach uses 

layers of convolutions that can capture 

multi-scale similarities. The grid-cell 

approaches, however, use hand-designed 

features (i.e. counts of peaks within each 

grid cell), and the similarities are 

computed by simple distance measures. In 

particular, PLSI and LSR are linear 

techniques applied to hand-designed 

features. Furthermore, other 

representations, for example the ‘tree-

based’ method59, also rely on data 

structures designed by the researcher. Our 

approach, using deep networks and 

gradient descent, allows higher-level and 

nonlinear features to be learned in the 

service of the task. This approach is 

similar to modern approaches for computer 

vision, which since 2012 has shifted away 

from hand-designed features to deep 

networks and learned features, and has led 

to orders of magnitude better performance. 

Similarly to how deep networks applied to 

computer vision tasks have learned to deal 

with common problems, such as 

recognizing objects and faces in different 

lighting conditions and poses, our CNN 
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pattern recognition-based method can 

overcome solvent effects, instrumental 

artefacts, and weak signal issues. 

SMART recognition of noisy HSQC 

spectra. Because white Gaussian noise is 

often seen in experimental HSQC spectra, 

we investigated the robustness of the 

SMART to recognize HSQC spectra in the 

presence of significant noise. By adding 

noise to HSQC spectra in the SMART10 

database and measuring the Euclidean 

distance of those noisy spectra to their 

original ones, we were able to observe that 

as noise intensity increases so does the 

distance increase from the original location 

in the 2D cluster map. However, the noisy 

spectra were still effectively recognized as 

being closely related to their original 

compounds (Fig. 7 and Supplementary 

Information). 

SMART characterization of 

Viequeamides of NRPS origin. As a 

practical example of the functional use of 

the SMART workflow to discover new 

NPs, we used it to rapidly characterize a 

group of unknown marine cyclic 

depsipeptides from two marine 

cyanobacteria: 1) Rivularia sp. collected in 

Vieques, Puerto Rico and 2) Moorea sp. 

collected in American Samoa. These 

compounds were isolated in the course of 

our ongoing efforts to discover marine 

cyanobacterial NPs with anti-cancer 

properties60. Metabolites from these two 

collections were purified by high 

performance liquid chromatography 

(HPLC), and then 1 H-13C HSQC data 

were collected with 100% sampling 

density, but using the NUS pulse sequence 

in the indirect dimension for all six 

purified compounds. Data reconstruction 

as described above for the six samples 

yielded HSQC spectra, and these were 

subjected to the SMART workflow to 

embed them in the cluster map. We found 

that the six nodes clustered with nodes for 

the previously characterized viequeamides 

A (1) and viequeamides B (4). After an 

analysis of various 2D NMR spectra, and 

MS, IR and UV data, the planar structures 

of the four new compounds were 

determined (Fig. 1, compounds 2, 3, 5, 6). 

The absolute configurations of these 

compounds were then elucidated by 

Marfey’s analysis and/or X-ray 

crystallography, completing their structure 

determination. Evaluation of the toxicity of 

the pure compounds to H-460 human lung 

cancer cells revealed that two possessed 

relatively potent cancer cell toxicity 

properties; viequeamide A2 (2) had an 

IC50=0.62 μM and viequeamide A3 (3) 

had an IC50=1.98 μM. Viequeamides B 

(4), C (5) and D (6) showed no appreciable 

H-460 human lung cancer cytotoxicity. 

METHODS 

 Training set collection and processing. 

The dataset of HSQC spectra was 

compiled from available online sources. 

We removed spectra that showed no peaks 

(i.e., the spectra in the publication 

appeared blank). We collected all usable1 

H-13C HSQC spectra (4,105 in total), 

including a few cases of the same 

compound in different deuterated solvents, 

from the supporting information of the 

Journal of Natural Products, years 2011, 

2012, 2013, 2014 and 2015. In addition, 

the HSQC spectra of somocystinamide 

A61 and swinholide A62 in the supporting 

information of Organic Letters were also 

included in the dataset. Around 2,056 

spectra were removed from this series, 

because their molecular class had less than 

5 HSQC spectra. All spectra were 

collected and initially 
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Figure 5. Precision-recall curves measured 

across 10-fold validation for different 

dimensions (dim) of embeddings. (a) and 

(b) Mean precision-recall curves on test 

HSQC spectra for SMART5 and 

SMART10 datasets, respectively. (c) and 

(d) Mean precision-recall with error curves 

(grey) for SMART5 and SMART10, 

respectively. (e) and (f) Mean precision-

recall curves for SMART5 and SMART10 

clustered by Principal Component 

Analysis (PCA) without use of the CNN. 

AUC: area under the curve. 

processed by the following steps: (1) The 

HSQC spectra were saved as png format 

grayscale images at a resolution of 

512×512 pixels (the minimum resolution 

in the proton dimension is 51.2 pixels per 

ppm and in the 13C dimension it is 2.8 

pixels per ppm.); (2) lines surrounding 

spectral edges, annotations, chemical 

structures, and other annotations were 

deleted using Photoshop such that only the 

HSQC signals and noise were present in 

the 

 

Figure 6. Distribution in the Training 

Dataset of Numbers of Families 

Containing Different Numbers of 

Individual Compounds. The SMART5 

training set contains 238 compound 

subfamilies, giving rise to 2,054 HSQC 

spectra in total. (Blue and Green) The 

SMART10 training set contains 69 

compound subfamilies and is composed of 

911 HSQC spectra in total. (Green only). 

images; (3) images were rotated and/or 

flipped when necessary to ensure that the 

horizontal dimension was the direct1 H 

dimension with chemical shifts increasing 

from right to left, and the vertical 

dimension was the indirect13C dimension 

with chemical shifts increasing from top to 

bottom; (4) images were uniformly 

converted into black (signal and noise) and 

white (spectral background); (5) images 

from the same publication were pooled and 

labelled as the same training class, as all of 

the publications we used reported 

compounds from a single family; (6) a 

cross shaped 3×3 median filter63 was 

applied to remove unwanted salt-and-

pepper noise; however, no other 

enhancements were applied (Figure S4 in 

the Supplementary Information for an 

example of spectra input preparation). 

Essentially, in this study, the relevant 

quantity for measuring similarity was the 

positions and shapes of the various peaks 
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relative to one another, rather than their 

absolute positions 

NUS 2D NMR data generation. In order 

to generate an independent test set, we 

developed an optimized NUS pulse 

sequence using an NMR standard 

(strychnine, 50 nmole TCI America, 

Catalog No. S0249). This optimized 

method was then applied to several newly 

isolated NPs (e.g., the viequeamides). The 

viequeamides were isolated from two 

different marine cyanobacteria; Rivularia 

sp. collected in Vieques, Puerto Rico60 

and Moorea sp. collected in American 

Samoa. Detailed isolation and structural 

elucidation of these compounds will be 

published separately. The 2D NMR spectra 

were recorded on a 600MHz Bruker 

Avance III spectrometer with a 1.7 mm 

Bruker TXI MicroCryoProbeTM using 

TopSpin 2.1. The solvent CDCl3 contained 

0.03% v/v trimethylsilane (δH 0.0 and δC 

77.16 as internal standards using 

trimethylsilane and CDCl3, respectively). 

All spectra were recorded with the sample 

temperature at 298 °K. 

 

Figure 7. Distance of the noisy spectra 

measured against the original spectra of 

ebractenoid C and hyphenrone I. The 

distance measure in the y axis of the 

ebractenoid plot (a) and hyphenrone plot 

(b) is the same as the cluster map in Figs 4 

and 7(f). The noise level is defined by 

dividing pixels altered over the total 

number of pixels of the HSQC spectra. 

The results visualized in the 2D cluster 

maps with each node representing one 

noisy spectra, and with node color 

intensity as a function of the noise level, 

for the ebractenoids (c) and hyphenrones 

(d). The original image without added 

noise is shown as the black node in these 

2D cluster maps. We then embedded the 

nodes for the ebractenoids in (c) to a 

global view of the 2D cluster map in (f), 

and zoom in on the red box in (f) as shown 

in (e). Note, larger node sizes are used to 

depict compounds in (e) versus (c). 

The deep siamese network. As depicted 

in Table 1, the overall deep CNN siamese 

architecture used in this study is similar to 

AlexNet42, and consists of 8 layers 

comprised of 4 convolutional layers 

followed by 4 fully connected layers. This 

network is used as the two “twins” in the 

siamese network. The output layer 

contains vectors in K. Here, K is the 

embedding dimension. The energy loss 

function defined in equation 2 (below) is 

applied to the outputs of the embedding 

layer (layer 8). We ran several experiments 

to find the best K and measured the 

accuracy on the validation set. Empirically, 

for the given dataset, K = 10 gave us the 

best results. 

Loss function. 

Siamese networks are trained with an 

energy function that is minimized by 

gradient descent. The design of the energy 

function determines the way in which pairs 

of items are pushed together or pulled 

apart. There are at least two such functions 

that have been used30 in the literature; 

here, we used a modified version of the 
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spring model developed by Hadsell et al. 

41. The energy function is described with 

the following notation; for example i, the 

input vector is represented as xi , and the 

output label as yi . The output label is 

defined as a “one hot” vector, where if 

there are k categories, yi is a k-

dimensional binary vector, and if the 

category is c, yi is 1 at the cth position and 

0 everywhere else. Meanwhile, xi , the 

input HSQC spectra, is treated as a vector. 

We treat our neural network as a function 

GW, where W is the weights of the 

network. Then the output of the neural 

network is GW( ) x . GW( ) x is a vector of 

dimension K, a hyperparameter of the 

system. We then define the distance 

function d between images xi and xj : 

 

where ⋅ is the Euclidean distance function. 

Now we can define the energy function L 

to be minimized as41: 

 

Training details of the siamese network. 

We implemented our system using the 

Theano67 and Lasagne 

(http://tinyurl.com/hl9dy9y) deep network 

packages. The siamese network was 

trained using mini-batch stochastic 

gradient descent with the Adagrad45 

update rule, following the protocol 

introduced by Hadsell et al. 41. 

Specifically, 50% of each mini-batch has 

negative samples ((x x , , y y, ) i j i j s.t. ( ) 

y y ) i j ≠ , and 50% has positive samples 

((x x , , y y, ) s t. .( ) y y = ) i j i j i j . The 

Adagrad update rule tunes the step size 

automatically in real time, making learning 

stable in later iterations. We used 

hyperbolic tangent as the activation 

function for all layers including the output 

layer. The weights were initialized using 

Xavier initialization68. The initial learning 

rate was α = . 0 001, and the mini-batch 

size was 256. We applied dropout 

regularization69 on layers 5, 6, and 7 of 

the network, and batch normalization49. 

We found that applying batch 

normalization speeds convergence by a 

factor of 7. The total number of parameters 

in the network is 399,102, considering that 

the number of parameters triples when 

batch normalization is applied. We used 

Amazon EC2 instances to run our 

experiments. 

We also used 10-fold cross validation to 

estimate performance (Figs 8 and 9). 

Specifically, a different 10% of the training 

set was held out as a test set 10 times, and 

the results were averaged to report 

performance. For each fold of the cross 

validation, we held out 10% of the data for 

early stopping. In this way, all of our 

HSQC spectra were used for testing. Here, 

the complete split was 8:1:1, 

training:validation:test. The iterations stop 

at the point in training where the error on 

the hold-out set is minimized. Here, the 

error was a measure of average precision 

on the hold-out set. 

 

Figure 8. Plot of the Accuracy of SMART 

as the radius around a project point 

increases. This figure shows the fraction of 

correct families captured by a hypersphere 

of the given radius around each node in the 

cluster map. The distances between nodes 

in the cluster map has no physical 

meaning, but is a quantification of HSQC 
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spectral similarity. SMART can achieve 

good accuracy (proper placement in the 

map of a new compound to its correct 

compound family) within 0.5 radius of a 2-

dimensional cluster map, and even better 

for a 10-dimensional map. 

Validation of the model on “novel” 

categories. To evaluate whether the 

system performs properly with new 

categories of molecules, we performed the 

following three experiments. In SMART5, 

we removed the HSQC spectra of three 

categories of compounds (ebractenoids, 

naphthomycins, and veraguamides) from 

each of three common NP families 

(terpenoids, polyketides, and peptides, 

respectively), for each experiment, and 

used those removed spectra as a test set. 

During training, each subfamily was given 

a different label, however, this information 

was only provided to the training 

algorithm in the sense of “same/different 

category” as in Equation 2. This 

experiment thus tested whether a 

subfamily of terpenoids that was 

unfamiliar to the network would be 

mapped close to the other terpenoids. For 

example, there are 10 compounds in the 

terpenoid subfamily of ebractenoids that 

were not used during training. During 

testing, they were presented to the 

network, and their distance to the other 

terpenoids measured. This experiment was 

repeated for the naphthomycins, and 

veraguamides, and their location in the 

embedding space was evaluated for 

whether they were properly mapped to 

their respective families (e.g. polyketides 

and peptides, respectively). This 

experiment revealed that the ebractenoids 

clustered with the terpenes and terpenoids 

in the 10-dimensional space (Table S2). 

Similarly, the naphthomycins and 

veraguamides were subjected to a similar 

experiment (Table S3,S4) and confirmed 

that SMART was able to properly place 

compounds to which it was naïve. 

Recognition of noisy HSQC spectra. 

Using Matlab 2013, we created a 2D 

matrix of white Gaussian noise to simulate 

the noise in real-time measurements. Next, 

we applied 2D Fast Fourier Transform 

(FFT) to this 2D noise matrix. The 

transformed FFT results for these noisy 

spectra were sized to match those of two 

randomly selected compounds 

(hyphenrone I and ebractenoid C) from the 

SMART10 database57,71. We also 

calculated the noise intensity in the spectra 

by dividing the number of noisy pixels by 

the total number of pixels. The noise 

matrix was then added to the two HSQC 

spectra, and the intensity of the noise was 

then increased consecutively in a finite 

arithmetic progression of 140 steps, 

rendering 140 noisy spectra for each 

compound. In addition, at each noise level, 

the white noise was again randomized 100 

times, rendering a total of 14,000 noisy 

spectra. These noisy HSQC data were then 

processed by the convolutional neural 

networks pre-trained with SMART10 for 

over 10,000 iterations. The results are 

shown as two distance vs. noise plots in 

Fig. 7(a) and (b). The distance measure 

displayed in the vertical axis of these two 

plots was in the same units as the cluster 

map in Fig. 4. The results were also 

visualized in 2D cluster maps with each 

node representing one noisy spectrum, 

with the intensity of the node color 

representing the noise level (Fig. 7(c) and 

(d)). The original image without added 

noise is shown as the black node in those 

2D cluster maps. In order to further 

visualize the internode distance between 

nodes that represent noisy spectra and 

those that represent our training dataset, 

we embedded the nodes of the noisy 

spectra 
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Figure 9. Closest retrieval curves measured 

across 10-fold validation for different 

dimensions (dim) of embeddings. For (a) 

and (b), mean closest retrieval curves on 

test sets for SMART5 and SMART10 

datasets, respectively. For (c) and (d), 

mean closest retrieval curves with error 

curves (µ ± σ, dashed lines) for SMART5 

and SMART10, respectively. In (c) and 

(d), the black plot (MO, most frequently 

occurring) is a baseline prediction of 

random compound associations on the 

basis of the number of members in a 

compound family. Specifically, the 

category with the most members is picked 

as the first compound association, the 

second most members as the second one, 

etc. This order is the same irrespective of 

the compound being considered. 

in Fig. 7(c) in a global view of the 2D 

cluster map shown in Fig. 7(f), and 

provided a zoomed-in view of the 

ebractenoids clusters in Fig. 7(e). 

Figure 7(e) shows that noisy HSQC 

spectra are clustered close to their original 

spectrum, and thus, noise to the levels we 

have evaluated, has little effect on the 

ability of SMART to accurately place 

compounds into their appropriate location 

(ebractenoids in this case). Selected noise 

maps are provided in the Supplementary 

Information. 

CONCLUSIONS AND FUTURE 

WORK 

 SMART is the first combination of NUS 

2D NMR and deep CNNs. This tool 

streamlines dereplication and 

determination of natural product families 

from multiple organisms and facilitates 

their isolation and structural elucidation. 

While compound families represented the 

metadata associated with HSQC spectra in 

this study, it is very possible to associate 

and integrate biological, pharmacological 

and ecological data with SMART, and 

thereby create new tools for enhanced 

discovery and development of biological 

active NPs as well as other small 

molecules. Ultimately, this leads to an 

increased appreciation for the structural 

diversity and therapeutic potential of 

natural products. 

By both quantitative and qualitative 

inspection of SMART's cluster space, the 

following properties were suggested by the 

results: 1) the distance between nearby 

nodes of a clustering map is a measure of 

the structural similarity between 

compounds that share molecular moieties 

(e.g., functional groups, carbon skeletons, 

etc.), 2) chimeric compounds with 

structural features comprised of two 

independent families of compounds reside 

near or in between the component clusters 

(for example, saponins are located near 

and between other glycosides and 

terpenoids, in Fig. S2), 3) this accuracy of 

placement of new compounds in SMART 

should be enhanced as the size of the 

training set grows, 4) as the size of the 

training set increases for a given 

compound class, the accuracy of 

placement of a new test compound in that 

family improves, 5) even in the presence 

of random spectral noise, spectra are 

strongly associated to their structural 

chemical analogues. Nevertheless, the 
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accuracy of recognition correlating to the 

signal-to-noise ratio of HSQC spectra 

remains to be determined, as does the 

impact of solvent effects on chemical 

shifts or extraneous peaks appearing in the 

spectrum from electronic sources or 

impurities. As more compounds are added 

to the training set, the SMART system will 

naturally improve in accuracy and 

robustness, thereby accelerating natural 

product structural elucidation and thus 

drug discovery. 

SMART has an immediate value in NP 

drug discovery efforts by providing rapid 

and automatic compound dereplication and 

assignment to molecular structure families. 

With further refinement of the SMART 

workflow, such as training for spectra of 

the same compound with different S/N 

ratios, deeper understanding of other 

parameters that impact spectral 

recognition, combining with other fast 

NMR techniques, SMART has the 

potential to enhance NPR and enable new 

directions of experimentation at the 

chemistry-biology interface. 
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