Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

STRUCTURAL AND DOCKING STUDIES ON (2R, 3R)-2-AZANIUMYL-3-HYDROXYBUTANOATE METAL COMPLEXES

 Maria Claribel Sujatha, Research Scholar (Reg. No: 11774) and Assistant Professor, Department of Chemistry, S.T. Hindu College (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-12), Nagercoil - 629002,India.
P. Shanthini Grace, Associate Professor, Department of Physics, Pope's College, Sawyerpuram, Thoothukudi – 628 251
J.Angel Mary Greena, Assistant Professor, Department of Chemistry, Arignar Anna College, Aralvaimozhi - 629301,India.
C.Vaithyanathan, Associate Professor, Department of Chemistry, S.T. Hindu College, Nagercoil - 629002,India.
*Corresponding Author: amgreena72@gmail.com

ABSTRACT

Chemistry gives the collective behaviour of atoms in molecule, and varies accordingly with the presence of elements, form metal to non-metals. Amino acids and metal ions are the key components of life. This work is the study of blending metal ions of II A & B, Be, Mg and Zn as sulpahtes and L-threonine through the computational studies. The surfaces were obtained by Crystal Explorer/DFT/B3LYP/631G**. Computations were done through Firefly/B3LYP method using 6-31G** basis set. All the calculations were performed at 25 °C in gas phase. It was observed that hydroxyl group has poor binding ability due to the covalently and strongly held hydrogen. The metal ion stabilises the ligand in the metal complexes and metal ion can act as drug carrier. In docking the complexes have H-bond, hydrophobic, π -stacking and complex formation interaction with the proteins. It was concluded that chemistry is the chemistry of hydrogen

Keywords: azaniumyl-3-hydroxybutanoate, metal complexes, docking studies, COVID strains.

1. INTRODUCTION

Molecular dynamics (MD) is the study of physical movements and interaction of atoms and molecules on the basis of time using ab initio and molecular mechanics. MD has applications in the fields of biology, chemical reactions and physical behaviour of atoms and molecules in bulk. Molecular docking is a molecular mechanics model to predict the binding modes, site and affinity between protein and ligand. Computational chemistry helps to assist laboratory synthesis of compounds, understanding the experimental data, predict the feasibility of a reaction, spectroscopy, explore reaction mechanism, correlation between chemical structures and properties, drug design,

Research paper © 2012 UFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022 catalysis, calculating the ground state, intermediate, excited state, reaction mechanism and modelling[1-6].

Amino acids are the basic building blocks for the life forming molecule the protein. A challenging aspect of life formation is the self condensation of amino acid in the ambient temperature, pressure and solvent. In order to manage and overcome the environment as well as function in the normal conditions amino acids have a self defending mechanism of forming zwitter ion. Chemistry of zwitter ion is a mysterious one and the molecule can be classified as self naturalized neutral salt and in another sense astautomeric forms of amino acid and ammonium and carboxylato. The chemistry of zwitter ion makes it to swing between active to passive molecule and kept the scientific community in achaos like Schrödinger's cat in quantum mechanics [7-11]. Many studies are going on to unearth the misty behind the chemistry of zwitter ion and this work is a *pry*.

To fulfill the above objectives, it was observed that the hydroxyl amino acid got importance and (2R,3R)-2-azaniumyl-3-hydroxybutanoate (AA-Z) has been taken for this study along with II A & B group metal ions of oxidation state two are beryllium, magnesium and zinc. The study focus on the crystallography, crystal growth, DFT, molecular dynamics, biological study and molecular docking.

DFT calculations will be performed for the amino acid, metal salts and complexes to study the Energy, Thermo chemistry, Surface scan, Structural parameters-bond length, bond angle, dihedral angle and bond order, Dipole moment, Charge density, HOMO, LUMO and orbitals, IR (Normal coordinate analysis), NMR, UV-VIS (TDDFT), Frontier molecular orbital-band gap, chemical stability, chemical potential, ionisation potential, electron affinity, and CD spectrum. The applications of the amino acid, metal salt and complexes for NLO, and Molecular Docking for COVID-7R98 and COVID-7N0R.

2. RESULTS AND DISCUSSION

2.1 Structure of metal complexes

The computational structural parameter and structure of metal complexes of Be, Mg and Zn with L-threonine (MAA) are given in Table 1 (a-c) and Fig.1. Due to higher computational cost through the ZnAA complex is of 1:3 ratio of Zn : AA, the 1:1 ratio of M : AA are chosen for the study. Here the AA is considered as a bidendate ligand through the carboxylato group and

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

coordinate bond through the amine nitrogen. The total charge on the **MAA** complex is +1. The geometrical parameter are comparable with the literature value [12-15]. There is slight elongation in the C-O and C-N bond length due to the involvement in the complex formation process [16-19]. The order of N_3 - M_{15} and O_1 - M_{15} bond length is; Be > Zn > Mg. This is also the order of covalency of the complex and the Mg complex is weak and may be ionic and water stable. The bond angle O_1 - M_{15} - N_{14} indicate that the complex have octahedral geometry. The dihedral angle inform that the complex is non-planar. The complexes are in ground state.

2.2 Charge density of MAAcomplexes

Table 2 and Fig.2 have the details about charge density of the compound. Due to complex formation the charge density of O_1 is reduced and increased for Be and rest of the metals by 46, 7.2 and 2.1 % respectively from Be, Mg and Zn from **AA**-N. This implies that the O_1 gets the electron from Mg and Zn, while it donates electron to Be. The order of change of O_1 is; Mg > Zn > Be. In the case of N_3 , invariable of metal ion it gain electron from the metal ion. This can be accounted as proton can abstract more electrons from the nitrogen than metal ion [20-22]. In other words H⁺ is more electropositive than metal ion [23-24]. The order of negative charge on N_3 is; Zn > Mg > Be. That is Zn forms a strong bond with **AA** or Zn can donate electron easily than other metal ions. At the end nitrogen can get more electron from the metal than oxygen due to the later's less electronegativity [25-27]. The electron donating ability of the metal ion is; Mg > Zn > Be. In all the above observations, Mg have a different behaviour from Be and Zn [28-29].

2.3 Dipole moment of MAA complexes

Dipole moment of the molecules is given in Table 3 and Fig. 3. The order of total dipole moment is; Mg > AA > Be > Zn. This is also the measure of bulk or molecular polarisability. The dipole moment is higher along *x*-axis. As the **AA** is studied as **AA-Z** form it has higher dipole moment. This further confirmed that proton is more electropositive than the metal ion and it may be difficult to remove the proton by metal ions but, by the change of medium to basic, it is possible [30].

2.4 Orbitals of MAAcomplexes

The MO of the complexes are given in Fig.4. In the case of Be the HOMO is contributed by the px orbital of C12 and N3 and LUMO on N3 s and Be pz. That is the metal ion can accept the electron for the nitrogen. For Mg the HOMO is on the pzcarboxylato oxygen and LUMO on the Mg

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022 s orbital. The Zn follows the similar trend of Mg, and in addition LUMO is on Zn p_x . Thus, the hetero atoms carboxylato oxygen and nitrogen are electron donors and metals are acceptor [31].

2.5 Docking of MAA complexes with COVID-7N0R

The docking details of the complexes with the title strain is given Table 4 and Fig. 5. The docking were obtained for MgAA and ZnAA. The docking effect is higher for MgAA over ZnAA due to the size to polarisability of Mg [32-34]. But the docking energies are comparable to each complexes. Both the complexes have H-bond, hydrophobic π -stacking and complex formation with the proteins. In the case of MgAA the strong H-bond with aspartin, hydrophobic and π -stacking with tryptophan. The Mg forms complex with protein chains. For ZnAA. The H-bond is formed with glutamic acid, salt bridge with histamine and complex with proteins.

2.6 Docking of MAA complexes with COVID-7R98

Table 5 and Fig.6 have the docking with COVID-7R98. In general the effect of complex on 7N0R is higher than 7R98 by 8.4 %. Here ZnAA has higher docking effect than MgAA. The complex-protein interactions are H-bond and complex formation. The H-bond is with leucine and complex with protein for MgAA. For ZnAA H-bond with glutamine and complex with protein. The docking energy is higher for the complex than **AA**.

3. CONCLUSION

Molecular dynamics of MAA the MSO₄ forms M-O bond and O---H-NH-bonds. The AA-Z form covalent bond with M through its carboxylate oxygen and H-bond with ammonium ion. In the surface scan AA is a monodendate ligand and the metal ion accept electron from the oxygen. MAA is in ground state. Mg have a different behaviour from Be and Zn. The dipole moment is higher along *x*-axis. It may be difficult to remove the proton by metal ions and can through basic medium. The hetero atoms carboxylato oxygen and nitrogen are electron donors and metals are acceptor. The complex are ionic in nature. Most of the transitions from HOMO \rightarrow LUMO. All the complexes can transfer one electron and metal ions play a major role in intra and inter fragments electron transfer. The polarisation in the organic compound through it electrons donating and accepting groups. In docking complexes have H-bond, hydrophobic, π -stacking and complex formation with the proteins. The effect of complex on 7NOR is higher than 7R98.

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

2D structure and numbering pattern

3D structure

M-green; O-red; C-black; H-white

	0					
A 4 a ma i m	Bond length (Å)					
Atom pair	BeAA	MgAA	ZnAA			
01-02	2.2784	2.2516	2.2467			
O1-N3	2.5875	2.8248	2.8745			
O1-C4	1.1921	1.2063	1.2029			
N3-O5	2.5428	2.5609	2.5427			
O5-C6	2.4653	2.4573	2.4593			
C6-H7	1.0938	1.0938	1.0936			
C6-H8	1.0926	1.0917	1.0918			
C6-H9	1.0939	1.0945	1.0942			
O5-C10	1.4295	1.4298	1.4289			
C10-H11	1.1018	1.1050	1.1043			
N3-C12	1.5474	1.5315	1.5338			
C12-H13	1.0922	1.0926	1.0921			
N3-H14	1.0232	1.0217	1.0218			
N3-M15	1.4297	1.8423	1.8029			
N3-H16	1.0366	1.0302	1.0329			
O5-H17	0.9675	0.9665	0.9670			

Table 1(a) : Bond length of MAA complexes

Figure 1: Structure of MAA complexes

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

A tom noin	I	Sond angle (°)
Atom pair	BeAA	MgAA	ZnAA
O1-O2-N3	97.0729	91.5756	90.5875
O1-O2-C4	29.9530	29.2246	30.0841
O1-N3-O5	116.0724	108.9707	108.6219
N3-O5-C6	100.4965	99.8684	100.2986
O5-C6-H7	89.7085	89.9017	89.7345
С6-Н7-Н8	109.1501	108.7492	108.8508
C6-H7-H9	108.0052	108.2404	108.1158
N3-O5-C10	72.6081	71.0493	71.4231
O5-C10-H11	109.6863	109.3781	109.487
O1-N3-C12	123.1348	60.5733	60.0564
N3-C12-H13	108.1374	107.9476	107.8271
N3-C12-H14	110.1073	108.8539	110.3098
N3-H14-M15	34.3521	46.5365	41.241
N3-H14-H16	105.714	105.8117	106.926
O5-C10-H17	109.9774	109.8739	110.0704

Table 1(b) : Bond angle of MAA complexes

Table 1(c) : Dihedral of MAA complexes

A tom poir	Dihedral (°)					
Atom pair	BeAA	MgAA	ZnAA			
O1-O2-N3-C4	3.2446	8.7685	8.2169			
01-02-05	-48.8116	-58.1022	-59.0913			
O1-N3-O5-C6	41.9469	38.829	37.6462			
O2-O5-C6-H7	109.4201	102.4465	101.8472			
O2- C6-H7-H8	46.7016	44.9392	45.1813			
С6-Н7-Н8-Н9	-117.933	-117.8641	-117.8585			
O1-N3-O5-C10	21.2178	18.8236	17.936			
O5-C6-C10-H11	123.1033	121.8768	122.5002			
O1-N3-C4-C12	177.6369	-13.3516	-14.2171			
N3-C10-C12-H13	119.6883	119.8553	119.6278			
N3- C12-H13-H14	7.4672	22.7078	22.0124			
N3- C12-H14-M15	178.782	-98.3182	178.1182			
N3- H14-M15-H16	42.4032	40.6463	41.2192			
O5-C10-H11-H17	63.9729	73.9747	69.7213			

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

A 4 0 mg	Mulliken'	Mulliken's atomic Charge density							
Atom	BeAA	MgAA	ZnAA						
O1	-0.3168	-0.6382	-0.6076						
O2	-0.3640	-0.4208	-0.3876						
N3	-0.5405	-0.7270	-0.7529						
C4	0.6400	0.6787	0.6379						
O5	-0.5653	-0.5679	-0.5648						
C6	-0.3444	-0.3454	-0.3432						
H7	0.1456	0.1425	0.1473						
H8	0.1723	0.1726	0.1721						
H9	0.1453	0.1318	0.1392						
C10	0.1580	0.1645	0.1675						
H11	0.1317	0.1088	0.1178						
C12	-0.0934	-0.0586	-0.0976						
H13	0.2022	0.1814	0.1988						
H14	0.3454	0.3341	0.3523						
M15	0.5746	1.1491	1.1046						
H16	0.3568	0.3506	0.3672						
H17	0.3524	0.3438	0.3491						

Table 2 : Mulliken's atomic charge density of MAA complexes

Figure 2 :Mulliken's atomic charge density of MAA complexes

A	Dipole moment (Debye)						
AXIS	BeAA	MgAA	ZnAA				
Х	6.4417	10.5035	6.4470				
Y	-4.9686	-4.4748	-3.6790				
Z	1.4860	-0.3716	2.6230				
Total	8.2699	11.4230	7.8727				

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

Figure 5(a): Docking of MAA (a) MgAA (b) ZnAA complexes with COVID-7N0R

Figure 5(b): Binding energy from the Docking of MAA (a) MgAA (b) ZnAA complexes with COVID-7N0R

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

	MgAA								
Mode	Binding energy (kcal/mole)	Cluster r _{msd}	Reference r _{msd}						
1	-6.99	0.00	24.22						
2	-6.96	0.24	24.20						
3	-6.64	0.00	18.52						
4	-6.61	0.12	18.56						
5	-6.55	0.80	19.04						
6	-6.51	1.74	19.30						
7	-6.50	0.00	18.06						
8	-6.15	0.00	18.75						
9	-6.12	0.00	17.49						
10	-6.11	0.04	17.50						

Table 4 (a) : Docking of MAA (MgAA) complexes with COVID-7N0R

Hydrophobic interaction

Index	Residue	AA	Distance	Ligand Atom	Protein Atom
1	52A	TRP	3.63	4806	43

Hydrogen bonds

Indox	Dagidua	A A	Distance	Distance	Donor	Protein	Side	Donor	Acceptor
muex	Residue	AA	H-A	D-A	Angle	donor	chain	Atom	Atom
1	000	TVD	2 47	2 75 10	5 101.86 yes	yes	n 0	3392	4808
1	99C	IIK	5.47	5.75			110	[Nam]	[O3]
2	150 4	ACNI	2.06	2.20	101 77	NO.C		1009	4805
2	130A	ASIN	2.80	5.39	121.77	/ yes	по	[Nam]	[N2]
2	1544	ACNI	2.27	2.71	102 70		VIQ.0	1051	4802
3 154	134A	IJ4A ASN	2.37	2.71	105.70	yes	yes	[Nam]	[O2

Pi-stacking

Index	Residue	AA	Distance	Angle	Offset	Stacking Type	Ligand Atoms
1	52A	TRP	4.78	73.79	1.67	Т	4800, 4801, 4803, 4804, 4805

Metal complexes								
Index	Residue	AA	Metal	Target	Distance	Location		
Complex 1: Mg, linear (2)								
1 1A UNL 4804 4803		4803	1.43	ligand				
2	1A	UNL	4804	4803	1.43	protein.mainchain		

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

ZnAA							
Mode	Binding energy (kcal/mole)	Cluster r _{msd}	Reference r _{msd}				
1	-6.40	0.00	28.35				
2	-6.22	0.00	15.45				
3	-5.70	1.66	15.05				
4	-6.09	0.00	23.00				
5	-5.82	1.46	23.20				
6	-5.76	1.57	22.90				
7	-5.86	0.00	12.80				
8	-5.69	0.00	28.67				
9	-5.66	0.20	28.75				
10	-5.66	0.00	27.68				

Table 4 (b) : Docking of MAA (ZnAA) complexes with COVID-7N0R

Hydrogen bonds									
Indov	Dosiduo		Distance	Distance	Donor	Protein	Side	Donor	Acceptor
muex	Residue	AA	H-A	D-A	Angle	donor?	chain	Atom	Atom
1	105 \	SED	2.07	2.80	165 20	VOS	VOS	576	4806
1	103A	SEK	2.07	2.89	103.20	yes	yes	[O3]	[O2]
C	172D		2.14	2 75	107.01	NOG		2445	4810
Z	1/3D	ALA	2.14	2.75	127.01	yes	IIO	[Nam]	[O3]
2	172D		2.25	2.65	102 62			4810	2448
3	1/3D	ALA	2.23	2.03	105.05	no no	по	[O3]	[O3]
4	174D	CLU	1.04	2.65	124.25			4803	2458
4	1/4B	GLU	1.94	2.05	124.23	110	yes	[N3]	[O2]

[Salt bridges										
	Index	Residue	AA	Distance	Protein positive	Ligand Group	Ligand Atoms				
	1	59A	HIS	4.36	yes	Carboxylate	4800, 4806				

Metal complexes										
Index	Residue	AA	Metal	Target	Distance	Location				
Complex 1: Zn, square.planar (4)										
1	1A	UNL	4807	4800	1.80	ligand				
2	1A	UNL	4807	4800	1.80	protein.mainchain				
3	1A	UNL	4807	4810	2.99	protein.mainchain				
4	173B	ALA	4807	2448	2.39	protein.mainchain				

Figure 6(a) : Docking of MAA (a) MgAA (b) ZnAA complexes with COVID-7N98

Figure 6(b) : Binding energy from Docking of MAA (a) MgAA (b) ZnAA complexes with COVID-7N98

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

MgAA									
Mode	Binding energy (kcal/mole)	Cluster r _{msd}	Reference r _{msd}						
1	-6.28	0.00	44.31						
2	-6.27	0.27	44.23						
3	-6.26	0.30	44.25						
4	-5.87	1.51	43.93						
5	-5.86	1.32	44.47						
6	-5.86	1.53	43.85						
7	-6.27	0.00	37.36						
8	-5.84	0.00	42.38						
9	-5.83	0.08	42.35						
10	-5.35	0.00	48.77						

Table 5 (a): Docking of MAA complexes (MgAA) with COVID-7R98

Hydrogen bonds

Index	Deciduo	AA	Distance	Distance	Donor	Donor	Acceptor
muex	Index Residue		H-A	D-A	Angle	Atom	Atom
2	174D	CLU	2 21	2.01	126.92	6989	2280
5	1/4D	GLU	3.21	5.91	120.82	[N3]	[O3]
2	161D	LEII	2.08	2 02	122 65	6996	2163
2	101D	LEU	2.08	2.85	155.05	[O3]	[O2]
1	161D	IEII	1.90	2 75	171 42	2160	6996
1	101D	LEU	1.89	2.73	1/1.45	[Nam]	[O3]

Metal complexes

Index	Residue	AA	Metal	Target	Distance	Location
1	1A	UNL	6993	6986	1.84	ligand
2	1A	UNL	6993	6986	1.84	protein.mainchain

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

ZnAA								
Mode	Binding energy (kcal/mole)	Cluster r _{msd}	Reference r _{msd}					
1	-6.88	0.00	37.52					
2	-6.26	0.00	44.22					
3	-5.97	1.54	44.00					
4	-5.91	1.48	43.75					
5	-5.89	1.46	43.90					
6	-5.87	1.59	43.76					
7	-5.85	1.41	44.62					
8	-5.83	1.55	43.47					
9	-5.83	1.46	43.66					
10	-5.82	1.43	44.67					

Table 5 (b): Docking of MAA complexes (ZnAA) with COVID-7R98

Hydrogen bonds

Indox	Dociduo		Distance	Distance	Donor	Protein	Side	Donor	Acceptor
muex	Residue	AA	H-A	D-A	Angle	donor	chain	Atom	Atom
1	161D	IEII	2.12	2.66	112.83	no	no	6996	2163
	101D	LEU	2.15					[O3]	[O2]
2	161D	LEU	2.22	2.07	169.01	NO.		2160	6992
Z	101D	LEU	2.22	5.07	108.91	yes	по	[Nam]	[O2]
2	162D	CIN	2.21	2 20	150 71		NO.	6989	2183
3	103D	GLN	2.51	5.29	138.71	по	yes	[N3]	[O2]

Metal complexes

Index	Residue	AA	Metal	Target	Distance	Location
1	1A	UNL	6993	6986	1.80	ligand
2	1A	UNL	6993	6986	1.80	protein.mainchain
3	1A	UNL	6993	6996	2.97	protein.mainchain

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

REFERENCES

- T. Ito, Y. Kangawa, 11 Ab initio-Based Approach to Crystal Growth: Chemical Potential Analysis, in: T. Nishinaga (Ed.), Handb. Cryst. Growth Second Ed., Elsevier, Boston, 2015: pp. 477–520.
- 2) L. Piela, Chasing Correlation Dragon: Density Functional Theory (DFT), Ideas Quantum Chem. (2014).
- R. Berger, Computational Chemistry. Introduction to the Theory and Applications of Molecular and Quantum Mechanics. Von Errol G. Lewars., Angew. Chem. 116 (2004) 5087–5089.
- 4) LucjanPiela, 2020, 'Chapter 3 Chasing the Correlation Dragon: Density Functional Theory (DFT)', Ideas of Quantum Chemistry, vol. 2, pp. 191-252.
- 5) Azizeh Abdolmaleki, Fereshteh Shiri and Jahan B Ghasemi (2021) Use of molecular docking as a decision-making tool in drug delivery, Molecular Docking for Computer Aided Design: Fundamentals, Techniques, Resources and Applications, Academic Press, First edition, Chap. 11:229-243
- 6) Errol G. Lewars (Ed) 2016, 'Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics Hardcover', Springer, pp. 309-319.
- 7) Ashvin SanthiaSV,B. Aneeba, S. Vinu, R. Sheela Christy, Amal M. Al Mohaimeed, and Dunia A. Al Farraj (2020)Studies on physicochemical and antibacterial deeds of amino acid based L-Threoninum sodium bromide, Saudi J Biol Sci.,27: 2987–2992.
- 8) David C Meddan, Marian L Bentley, Stephen J Jenkins, Stephen M Driver (2014) On the role of molecular chirality in amino acid self-organization on Cu {311}, Surface Science, 629:81-87
- 9) Davut Avci, Sümeyye Altrük, Fatih Sönmez, Ömer Tamer, Adil Başoğlu, Yusuf Atalay, Belma Zengin Kurt, Necmi Dege (2020) Synthesis, spectral properties, α-glucosidase inhibition, second-order and third order NLO parameters and DFT calculations of Cr(III) and V(IV) complexes of 3-methyl picolinic acid, J. Mol. Struct., 1220:
- 10) Diego Rativa, S. J.S. da Silva, J. Del Nero, A. S.L. Gomes, and R. E. de Araujo (2010), Nonlinear optical properties of aromatic amino acids in the femtosecond regime, J. Opt. Soc. America B 27:2665-2668
- 11) Durga Prasad Karothu, Ghada Dushaq, Ejaz Ahmed, Luca Catalano, Srujana Polavaram, Rodrigo Ferreira, Liang Li, Sharmarke Mohamed, Mahmoud Rasras and Panče Naumov (2021), Mechanically robust amino acid crystals as fiber-optic transducers and wide bandpass filters for optical communication in the near-infrared, Nature Communications 12:1326-
- S. Farhadi Javid, H. Moravej, M. Ghaffarzadeh, M.B. Esfahani, Comparison of Zinc Sulfate and Zinc Threonine Based on Zn Bioavailability and Performance of Broiler Chicks, Biol. Trace Elem. Res. 199 (2021) 2303–2311.

- 13) Subrakant Jena, Juhi Dutta, Kiran Devi Tulsiyan, Akshay Kumar Sahu, Subhranshu Shekar Choudhury and Himanshu S. Biswal, (2022) Non covalent interactions in proteins and nucleic acids: Beyond hydrogen bonding and π stacking, Chem. Soc. Rev., 51:4261-4286.
- 14) Takenori Tanno, Riyo Shimeda, Takumu Takaya, Wataru Sesaki, Manabu Yamada, Emi Adachi, Shinichi Yodokawa, Toru Kurabayashi (2022) Terahertz liner polarizer made of an organic crystal, Optics & Laser Technol., 147:
- 15) Ying-Li Shi, Ming-Peng Zhuo, Xue-Dong Wang and Liang-Sheng Liao (2021) Two Dimensional Organic Semiconductor Crystals for Photonics Applications, ACS Appl. Nano. Mater. 3:1080-1097
- R.F. See, R.A. Kruse, W.M. Strub, Metal–Ligand Bond Distances in First-Row Transition Metal Coordination Compounds: Coordination Number, Oxidation State, and Specific Ligand Effects, Inorg. Chem. 37 (1998) 5369–5375.
- 17) Luca Pinzi and Giulio Rastelli (2019) Molecular Docking: Shifting paradigms in drug delivery, Int. J. Mol. Sci., 20:4331
- 18) Olga S Scficheva, Alina A Nesterova, Alexey B Dobrynin, Ekaterina M Zueva, Toachim W Heinicke, Oleg G Sinyashin, Dmitry G Yakharov (2020) The effect of N-substituent on the relative thermodynamic stability of unionised and zwitter ionic forms of α-diphenyl phosphine-α-aminoacides, Mendeleev Communications, 30:516-518
- 19) Sooryakala K, Ramalingam S, Maheswari R, Aarthi R, Venkateswarlu (2021) Electronic controlled optical activity analysis on NLO crystal; 4-amino-5 nitroindole using morphological, spectroscopic and theoretical tools, Physica B: Condensed Matter, 604:
- 20) M. Prejanò, M.E. Alberto, N. Russo, M. Toscano, T. Marino, The Effects of the Metal Ion Substitution into the Active Site of Metalloenzymes: A Theoretical Insight on Some Selected Cases, Catalysts. 10 (2020) 1038.
- 21) Mitsuhashi, R.; Imai, Y.; Suzuki, T.; Hayashi, Y. 2020, 'Selective Formation of Intramolecular Hydrogen-Bonding Palladium(II) Complexes with Nucleosides Using Unsymmetrical Tridentate Ligands', Molecules, vol. 27, no. 2098.
- 22) Prejanò, Mario, Marta Erminia Alberto, Nino Russo, MarirosaToscano, and Tiziana Marino 2020, 'The Effects of the Metal Ion Substitution into the Active Site of Metalloenzymes: A Theoretical Insight on Some Selected Cases', Catalysts, vol. 10, no. 9.
- 23) X. Dong, A.R. Oganov, H. Cui, X.-F. Zhou, H.-T. Wang, Electronegativity and chemical hardness of elements under pressure, Proc. Natl. Acad. Sci. 119 (2022) e2117416119.
- 24) Zhiqiang Zhuo, Chuanxin Wei, Mingjian Ni, Jiangli Cai, Lubing Bai, He Zhang, Qiang Zhao, Lili Sun, Wei Liu, Xuehua Ding, Kang Shen Wei Huang (2022) Organic molecular crystal with a high ultra deep-blue emission efficiency of $\approx 85\%$ for low threshold laser, Dyes and Pigments, 204:
- 25) Y. Ren, C. Yu, X. Tan, Q. Wei, Z. Wang, L. Ni, L. Wang, J. Qiu, Strategies to activate inert nitrogen molecules for efficient ammonia electrosynthesis: current status, challenges, and perspectives, Energy Environ. Sci. 15 (2022) 2776–2805.

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

- 26) Javid, Siavash, Moravej, Hossein, Ghaffarzadeh, Mohammad and Behjatian, Mohammad 2021, 'Comparison of Zinc Sulfate and Zinc Threonine Based on Zn Bioavailability and Performance of Broiler Chicks', Biological Trace Element Research, vol. 199.
- 27) See, Ronald, Kruse, Rebecca and Strub, William 1998, 'Metal–Ligand Bond Distances in First-Row Transition Metal Coordination Compounds: Coordination Number, Oxidation State, and Specific Ligand Effects', Inorganic Chemistry, vol. 37, no. 10.
- 28) Y. Hu, X. Guo, Y. Qiao, X. Wang, Q. Lin, Preparation of medical Mg–Zn alloys and the effect of different zinc contents on the alloy, J. Mater. Sci. Mater. Med. 33 (2022) 9.
- 29) TomonoriIto & Yoshihiro Kangawa, 2015, '11 Ab initio-Based Approach to Crystal Growth: Chemical Potential Analysis', Handbook of Crystal Growth Fundamentals, vol. 2, pp. 477-520.
- 30) G. Rudnick, Unconventional transport of metal ions and protons by Nramps, J. Gen. Physiol. 151 (2019) 1339–1342.
- 31) A. Martínez, R. Vargas, Electron donor–acceptor properties of metal atoms interacting with pterins, New J. Chem. 34 (2010) 2988–2995.
- 32) Xiao Donga, Artem R. Oganovb, HaixuCuic, Xiang-Feng Zhoud, and Hui-TianWange 2022, 'Electronegativity and chemical hardness of elements under pressure', PNAS, vol. 119, no. 10.
- 33) T. Damena, M.B. Alem, D. Zeleke, T. Desalegn, R. Eswaramoorthy, T.B. Demissie, Novel zinc (II) and copper (II) complexes of 2-((2-hydroxyethyl) amino) quinoline-3carbaldehyde for antibacterial and antioxidant activities: A combined experimental, DFT, and docking studies, ACS Omega. 7 (2022) 26336–26352.
- 34) Yongwen Ren, Chang Yu, Xinyi Tan, Qianbing Wei, Zhao Wang, Lin Ni, Linshan Wang and Jieshan Qiu 2022, 'Strategies to activate inert nitrogen molecules for efficient ammonia electrosynthesis: current status, challenges, and perspectives', Energy and Environmental Science, vol. 15, pp. 2776-2805.

