# DENSITY, XRD AND FTIR ANALYSIS ON GROWTH AND CHARACTERIZATION OF Mgz Zn(1-x) SO<sub>4</sub>.7H<sub>2</sub>O SINGLE CRYSTALS

**Dr. T.S.JAYANTHI**<sup>1\*</sup>Associate professor, Department of Physics, Vivekananda college, Agasteeswaram-629701. Affliated to Manonmaniam Sundaranar University, Thirunelveli, Abishekapatti, Tamilnadu, India

Dr. L. Jayaselvan<sup>2</sup>,

Assistant Professor of Physics, Vivekananda College, Agasteeswaram–629701.

Affliated to Manonmaniam Sundaranar University, Thirunelveli, Abishekapatti, Tamilnadu, India.

Dr. A. Prabumarachen<sup>3</sup>,

Assistant Professor of Physics, Vivekananda College, Agasteeswaram-629701.

Affliated to Manonmaniam Sundaranar University, Thirunelveli, Abishekapatti, Tamilnadu, India.

\* Corresponding author e-mail: jayajeeva555@gmail.com

#### **Abstract**

X-Ray diffraction analysis (XRD) is a non-destructive technique that provides detailed information about the crystallographic structure, chemical composition, and physical properties of a material. It is based on the constructive interference of monochromatic X-rays and a crystalline sample. X-rays are shorter wavelength electromagnetic radiation that is generated when electrically charged particles with sufficient energy are deceleratedMgSO<sub>4</sub>.7H<sub>2</sub>O and ZnSO<sub>4</sub>.7H<sub>2</sub>O are considered as metal sulphate single crystals. It was grown by slow evaporation method of pure and mixed Mg $\varkappa$  Zn(1-x) SO<sub>4</sub> .7H<sub>2</sub>Owith aqueous solution. The grown crystals werecharacterized structurally by using XRD and confirm that the crystals belong to orthorhombic system with space group p<sub>2</sub>, p<sub>2</sub>, p<sub>21</sub>. The variation in lattice volume of the mixed crystals confirms the formation of binary system.FTIR spectral investigations the strong absorption band visible in below 1067cm<sup>-1</sup>range was attributed to the v<sub>3</sub>SO<sub>4</sub>symmetric stretch. The bond peak observed 3120 to 3458 cm<sup>-1</sup>confirmed the presence of H<sub>2</sub>O molecules.

Keywords: X-ray diffraction, FTIR

### **1. INTRODUCTION**

Research Paper

MgSO<sub>4</sub>.7H<sub>2</sub>O and ZnSO<sub>4</sub>.7H<sub>2</sub>O are hydrogen bonded crystals and isomorphous to each other. We have grown by solvent evaporation method at room temperature and characterized

*Research Paper* © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal chemically, structurally and optically the single phased mixed crystals  $Mg_{\varkappa} Zn_{(1-\varkappa)} SO_4.7H_2O$  in an attempt to understand the physical properties of crystals formed by mixing MgSO<sub>4</sub>.7H<sub>2</sub>O and ZnSO<sub>4</sub>.7H<sub>2</sub>O.

# 2. PREPARATION METHODS

Aqueous solution of a particular supersaturated concentration ( $\varkappa$ ) of MgSO<sub>4</sub>.7H<sub>2</sub>O and ZnSO<sub>4</sub>.7H<sub>2</sub>O (solute) was prepared by dissolving the required amount (m) of the solute in slightly insufficient volume of the solvent (for example V is 40cc, then 35cc of the solvent may be used) at a temperature slightly higher than the experimental temperature and then the solution is transferred to a measuring jar and volume is made v<sub>cc</sub>by adding the required amount of solvent. Super saturation was obtained by natural cooling to experimental temperature (30<sup>o</sup>C in the present work)

Aqueous solution of  $Mg_{\varkappa}Zn_{(1-\varkappa)}SO4.7H_2O$  salt was prepared at supersaturated concentration. It was taken in the 100 ml glass beaker and stirred thoroughly using a magnetic stirrer. The crystals were grown in the unstirred conditions and best crystals were chosen for the characterization measurements.


PureMgSO<sub>4</sub>.7H<sub>2</sub>O and its isomorphs ZnSO<sub>4</sub>.7H<sub>2</sub>Ois representative of hydrogen bond materials which posses a wide range of applications in various fields. In an attempt to understand the physical properties of grown crystals by mixing MgSO<sub>4</sub>.7H<sub>2</sub>O (MSH) and ZnSO<sub>4</sub>.7H<sub>2</sub>O (ZSH),these two crystals were named as sample A and B.The mixed crystals were grown by slow evaporation method at room temperature and the single phased mixed crystals Mg  $_{\varkappa}$ Zn<sub>(1- $_{\varkappa}$ )SO4.7H<sub>2</sub>O with  $\varkappa$ =0.1, 0.4, 0.7 and 0.9 are named sample C, sample D sample E and sample F. The grown crystals werecharacterized structurally and optically.</sub>

The grown single crystals can be represented as

|                                           | e-ISSN 2320 –7876 www.ijfans.org<br>Vol.11, Iss.12, 2022          |
|-------------------------------------------|-------------------------------------------------------------------|
| <i>Research Paper</i> © 2012              | 2 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal |
| MSH                                       | ── <b>M</b> gSO <sub>4</sub> .7H <sub>2</sub> O crystal           |
| (MSH) <sub>0.1</sub> (ZSH) <sub>0.9</sub> | $\longrightarrow Mg_{0.1} Zn_{0.9} SO_4.7H_2O crystal$            |
| (MSH) <sub>0.4</sub> (ZSH) <sub>0.6</sub> | $\underline{M}g_{0.4} Zn_{0.6} SO_4.7H_2O crystal$                |
| (MSH) <sub>0.7</sub> (ZSH) <sub>0.3</sub> | $\underline{M}g_{0.7} Zn_{0.3} SO_4.7H_2O crystal$                |
| (MSH) <sub>0.9</sub> (ZSH) <sub>0.1</sub> | $\underline{M}g_{0.9}Zn_{0.1}SO_4.7H_2O crystal$                  |
| ZSH                                       | Zn <del>SO4.7</del> H <sub>2</sub> O Crystal                      |

Figure 1. shows a photograph of the sample crystals grown in the present study

The six grown crystals are found to be stable





Top: From left – MSH and ZSH

Bottom: From left –  $(MSH)_{0.1}$  (ZSH)<sub>0.9</sub>,  $(MSH)_{0.4}$  (ZSH)<sub>0.6</sub>,  $(MSH)_{0.7}$  (ZSH)<sub>0.3</sub>,  $(MSH)_{0.9}$  (ZSH)<sub>0.1</sub>

# **3. X-RAY DIFFRACTION ANALYSIS**

## **3.1JCPDS FOR X-RAY DIFFRACTION ANALYSIS**

The organization was found in 1941 as the Joint Committee on Powder Diffraction Standards (JCPDS). The International Centre for Diffraction Data maintains a database of powder diffraction patterns, the powder Diffraction File, including the d-spacing's and relative intensities of observable diffraction peaks. Patterns may be experimentally determined or computed based on crystal structure and Bragg's law. The x-ray diffraction data were indexed. The indexed data of MSH and ZSH was compared with JCPDS datas (File No. 75-0673) are presented in Table. 1

| ~ • • | Present Stud | У           | JC PDS Dat | a           |
|-------|--------------|-------------|------------|-------------|
| S.No. | 20           | Intensity % | 20         | Intensity % |
| 1     | 14.7128      | 12.53       | 14.736     | 15.5        |
| 2     | 16.4831      | 19.01       | 16.523     | 21.3        |
| 3     | 19.6764      | 11.47       | 19.747     | 18.8        |
| 4     | 20.9763      | 100         | 21.013     | 97.4        |
| 5     | 23.3678      | 17.98       | 23.424     | 8.6         |

#### Table.1 Indexed X-ray diffraction data for pure MSH Crystal

| 6   | 25.6768 | 14.37 | 25.739 | 9.8  |
|-----|---------|-------|--------|------|
|     |         |       |        |      |
| 7   | 26.7630 | 2.76  | 26.826 | 1.9  |
|     |         |       |        |      |
| 8   | 27.9945 | 6.39  | 27.003 | 1.8  |
| 9   | 29.9598 | 10.10 | 29.967 | 11.5 |
|     |         |       |        |      |
| 10  | 30.3272 | 1.64  | 30.053 | 13.3 |
| 11  | 30.9150 | 20.17 | 30.974 | 25.2 |
| 11  | 50.9150 | 20.17 | 50.974 | 23.2 |
| 12  | 31.7281 | 1.58  | 31.745 | 1.7  |
|     |         |       |        |      |
| 13  | 32.483  | 12.5  | 32.519 | 15.7 |
| 14  | 33.3443 | 19.16 | 33.403 | 20.5 |
|     |         |       |        |      |
| 15  | 33.6099 | 19.85 | 33.626 | 29.7 |
| 1.6 | 24.5152 | 1.10  | 24.205 |      |
| 16  | 34.5172 | 1.18  | 34.396 | 0.9  |
| 17  | 35.9054 | 1.40  | 35.941 | 1.2  |
|     |         |       |        |      |
| 18  | 37.5689 | 2.54  | 37.548 | 2.3  |
| 19  | 39.8516 | 3.28  | 39.862 | 5.2  |
| 17  | 57.0510 | 5.20  | 57.802 | 5.2  |
| 20  | 40.4658 | 2.26  | 40.463 | 2.0  |
|     |         |       |        |      |
| 21  | 40.8300 | 5.89  | 40.834 | 11.1 |
| 22  | 42.2561 | 1.71  | 42.250 | 5.1  |
|     |         |       |        |      |
|     |         |       |        |      |

|    | 1       | U    |        |     |  |
|----|---------|------|--------|-----|--|
| 23 | 46.3362 | 2.04 | 46.309 | 4.8 |  |
| 24 | 47.9245 | 4.02 | 47.905 | 4.0 |  |
| 25 | 48.7228 | 2.18 | 48.702 | 1.9 |  |
| 26 | 50.6413 | 1.76 | 50.593 | 2.4 |  |
|    |         |      |        |     |  |

## 4. DENSITY MEASUREMENTS

Research Paper

Measured values of the density were given in Table 4.4. The density values obtained in the present study for the end members compare well with those reported in the literature [4, 5]. The density of mixed crystal decreases with decreasing the concentration of Zn which confirms the formation of mixed system.

| Crystal                                   | Density |
|-------------------------------------------|---------|
| MSH                                       | 1.798   |
| (MSH) <sub>0.1</sub> (ZSH) <sub>0.9</sub> | 1.823   |
| (MSH) <sub>0.4</sub> (ZSH) <sub>0.6</sub> | 1.802   |
| (MSH) <sub>0.7</sub> (ZSH) <sub>0.3</sub> | 1.723   |
| (MSH) <sub>0.9</sub> (ZSH) <sub>0.1</sub> | 1.701   |
| ZSH                                       | 1.893   |

Table .2 Measured values of the density

# 5. FOURIER TRANSFORM INFRARED [FTIR] SPECTROSCOPY

FTIR spectrum helped to identify the functional group present in the crystal. The natural and chemical composition of the intermediate products studied with the help of FTIR spectrum. Infrared transmission spectrum was taken in the range from 400 to 3500 cm<sup>-1</sup>. The FTIR spectra of sample A (MgSO<sub>4</sub>. 7H<sub>2</sub>O) observed bands positioned at ~ 615 and ~ 648 cm<sup>-1</sup> could be due to  $v_4SO_4Stretching$  vibration band appearing at ~ 3185 ~ 3225 and ~ 3281 cm<sup>-1</sup> reveals the OH stretching vibration in H<sub>2</sub>O. The presence of the absorption band centred at 1661cm<sup>-1</sup> may be due to the OH<sub>2</sub>bending mode. The appearance of a strong band at ~1059 is due to the  $v_3SO_4$ symmetric stretch. The peak at ~ 700cm<sup>-1</sup> is due to the  $v_4SO_4$ bending mode.

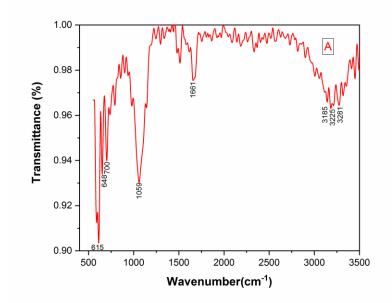
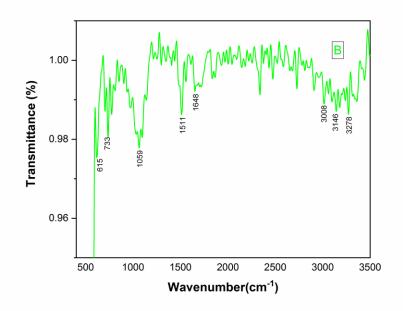




Fig. 2 FTIR spectrum of sample A (MSH)

*Research Paper* © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group



### Fig. 3 FTIR spectrum of sample B (ZSH)

Fourier Transform spectrum was recorded for sample B (ZnSO<sub>4</sub>.7H<sub>2</sub>O) (Fig.3). The band appearing at ~ 3008~ 3146 and ~ 3278and ~3152 cm<sup>-1</sup>reveals the OH stretching vibration in H<sub>2</sub>O. The presence of the combination band centered at 1511cm<sup>-1</sup>. The strong band appearance at~ 1059 cm<sup>-1</sup>may be due to the v<sub>3</sub>SO<sub>4</sub>symmetric stretch, the peaks at ~615cm<sup>-1</sup> shows the v<sub>4</sub>SO<sub>4</sub>Stretching vibration. The peak at ~733cm<sup>-1</sup> is due to the v<sub>4</sub>SO<sub>4</sub>bending mode. The presence of the absorption band centered at ~1661 may be due to the OH<sub>2</sub>bending mode.

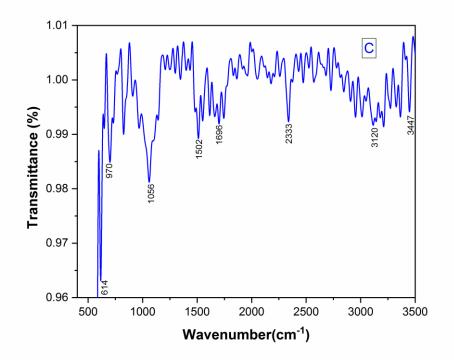



Fig. 4FTIR spectrum of sample C (MSH)<sub>0.1</sub> (ZSH)<sub>0.9</sub>

The FTIR spectra of sample C observed bands positioned at ~ 3120 and ~ 3447cm<sup>-1</sup> <sup>1</sup>FTIR spectrum of the sample reveals the OH stretching vibration in H<sub>2</sub>O. The presence of the absorption band centered at 2333cm<sup>-1</sup>may be due to the bending vibration of OH group in H<sub>2</sub>O. The band observed at ~614 cm<sup>-1</sup>v<sub>4</sub>SO<sub>4</sub>Stretching vibration. The peak observed at ~970cm<sup>-1</sup>v<sup>2</sup>and v<sup>3</sup>of SO<sub>4</sub><sup>2-</sup>mode. The band observed at 1056cm<sup>-1</sup> is assigned to the v<sub>3</sub>SO<sub>4</sub>symmetric stretch. The peak at 1655cm<sup>-1</sup> is due to the OH<sub>2</sub>bending mode. The presence of the combination band cantered at 1502cm<sup>-1</sup>

Fourier Transform IR spectra were recorded for prepared sample D. The band appearing at ~ 3137 and ~3365 cm<sup>-1</sup>in the FTIR spectrum of the sample reveals OH stretching vibration in H<sub>2</sub>O. The presence of the absorption band centered at~ 1696cm<sup>-1</sup> may be due to the bending vibration of OH in H<sub>2</sub>O. Appearance of weak peak at ~964 cm<sup>-1</sup>is assigned to the v<sup>2</sup>and v<sup>3</sup>of  $SO_4^{2-}$ mode. The appearance of strong bands ~1067cm<sup>-1</sup> is the clear evidence for the presence of v<sub>3</sub>SO<sub>4</sub>symmetric stretch. The presence of the absorption band centered at ~ 2338cm<sup>-1</sup>may be due to the bending vibration of OH group in H<sub>2</sub>O. The presence of the combination band cantered at 1513 cm<sup>-1</sup>. The observing Peaks at ~644 cm<sup>-1</sup>show the v<sub>4</sub>SO<sub>4</sub>Stretching vibration. The peak at ~704 cm<sup>-1</sup> is due to the v<sub>4</sub>SO<sub>4</sub>bending mode.

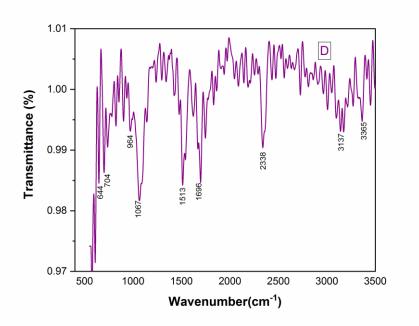



Fig. 5 FTIR spectrum of sample D (MSH)<sub>0.4</sub> (ZSH)<sub>0.6</sub>

**Research Paper** 

Fourier Transform IR spectra were recorded for the prepared sample E. The band appearing at ~ 3142, ~ 3218 and ~3362 cm<sup>-1</sup> in the FTIR spectrum of the sample reveals OH stretching vibration in H<sub>2</sub>O. Appearance of peak at ~2343cm<sup>-1</sup>shows the OH group. The peak at ~704 cm<sup>-1</sup> is due to the v<sub>4</sub>SO<sub>4</sub>bending mode. Appearance of weak peak at ~970 cm<sup>-1</sup> is assigned to the v<sup>2</sup>and v<sup>3</sup> of SO<sub>4</sub><sup>2-</sup>mode. The appearance of strong bands ~1062 cm<sup>-1</sup> is the clear evidence for the presence of v<sub>3</sub>SO<sub>4</sub>symmetric stretch. The presence of the absorption band centered at~ 1507 and ~1703cm<sup>-1</sup> may be due to the bending vibration of OH in H<sub>2</sub>O.



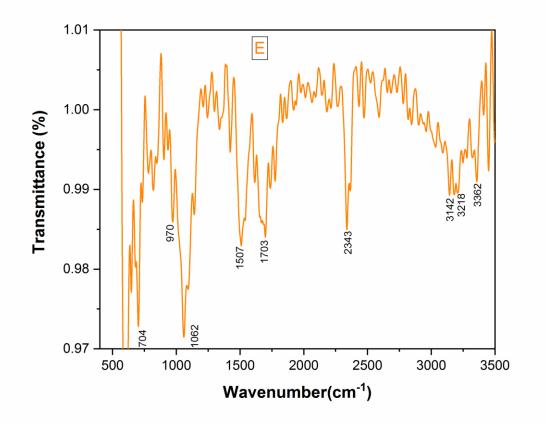
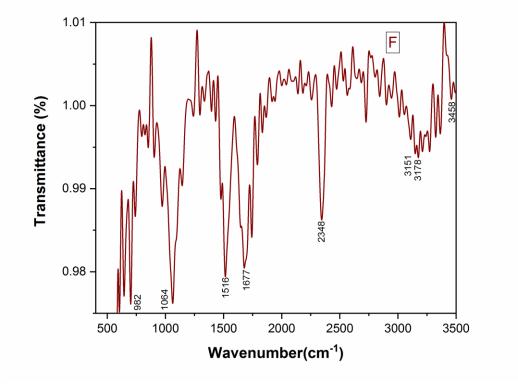




Fig. 6 FTIR spectrum of sample E (MSH)<sub>0.7</sub> (ZSH)<sub>0.3</sub>

Fourier Transform IR spectra were recorded for the prepared sample F. The band appearing at ~ 3157, ~ 3178 and ~3458  $\text{cm}^{-1}$  in the FTIR spectrum of the sample reveals OH stretching vibration in H<sub>2</sub>O. Appearance of peak at  $\sim$ 2348cm<sup>-1</sup>shows the OH group. Appearance of weak peak at ~ 982 cm<sup>-1</sup> is assigned to the  $v^2$  and  $v^3$  of SO<sub>4</sub><sup>2-</sup>mode. The appearance of strong bands ~1064 cm<sup>-1</sup> is the clear evidence for the presence of  $v_3SO_4$ symmetric stretch. The presence of the absorption band centered at~ 1516 and ~1677cm<sup>-1</sup> may be due to the bending vibration of OH in H<sub>2</sub>O.



| Fig. 7 | FTIR | spectrum | of sample I | F (MSH) <sub>0.9</sub> | (ZSH) <sub>0.1</sub> |
|--------|------|----------|-------------|------------------------|----------------------|
|--------|------|----------|-------------|------------------------|----------------------|

|        | Absorption band                 | Assignment                                          |
|--------|---------------------------------|-----------------------------------------------------|
| Sample | Wave number (cm <sup>-1</sup> ) |                                                     |
| A      | 615                             | v <sub>4</sub> SO <sub>4</sub> Stretching vibration |
|        | 648                             | v <sub>4</sub> SO <sub>4</sub> Stretching vibration |
|        | 700                             | v <sub>4</sub> SO <sub>4</sub> bending mode         |
|        | 1059                            | v <sub>3</sub> SO <sub>4</sub> symmetric stretch    |
|        | 1661                            | OH <sub>2</sub> bending mode                        |
|        | 3185                            | Presence of H <sub>2</sub> O molecules              |
|        |                                 |                                                     |

|   | 3225 | Presence of H <sub>2</sub> O molecules                |
|---|------|-------------------------------------------------------|
|   | 3281 | Presence of H <sub>2</sub> O molecules                |
|   |      |                                                       |
| В | 615  | v <sub>4</sub> SO <sub>4</sub> Stretching vibration   |
|   | 733  | v <sub>4</sub> SO <sub>4</sub> bending mode           |
|   | 1059 | v <sub>3</sub> SO <sub>4</sub> symmetric stretch      |
|   | 1511 | combination bond                                      |
|   | 1648 | OH <sub>2</sub> bending mode                          |
|   | 3152 | Presence of H <sub>2</sub> O molecules                |
|   | 3008 | Presence of H <sub>2</sub> O molecules                |
|   | 3146 | Presence of H <sub>2</sub> O molecules                |
|   | 3278 | Presence of H <sub>2</sub> O molecules                |
|   |      |                                                       |
| C | 614  | v <sub>4</sub> SO <sub>4</sub> Stretching vibration   |
|   | 970  | $v^2$ and $v^3$ of SO <sub>4</sub> <sup>2-</sup> mode |
|   | 1056 | v <sub>3</sub> SO <sub>4</sub> symmetric stretch      |
|   | 1502 | combination bond                                      |
|   | 1655 | OH <sub>2</sub> bending mode                          |

|   | 2333 | OH group                                              |
|---|------|-------------------------------------------------------|
|   | 3120 | Presence of H <sub>2</sub> O molecules                |
|   | 3447 | Presence of H <sub>2</sub> O molecules                |
|   |      |                                                       |
| D | 644  | v <sub>4</sub> SO <sub>4</sub> Stretching vibration   |
|   | 704  | v <sub>4</sub> SO <sub>4</sub> bending mode           |
|   | 964  | $v^2$ and $v^3$ of SO <sub>4</sub> <sup>2-</sup> mode |
|   | 1067 | v <sub>3</sub> SO <sub>4</sub> symmetric stretch      |
|   | 1513 | combination bond                                      |
|   | 1696 | OH <sub>2</sub> bending mode                          |
|   | 2338 | OH group                                              |
|   | 3137 | Presence of H <sub>2</sub> O molecules                |
|   | 3365 | Presence of H <sub>2</sub> O molecules                |
|   |      |                                                       |
| E | 704  | v <sub>4</sub> SO <sub>4</sub> bending mode           |
|   | 970  | $v^2$ and $v^3$ of SO <sub>4</sub> <sup>2-</sup> mode |
|   | 1062 | v <sub>3</sub> SO <sub>4</sub> symmetric stretch      |
|   | 1507 | combination bond                                      |
|   |      |                                                       |

*Research Paper* © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journa

|   | 1703 | OH <sub>2</sub> bending mode                          |
|---|------|-------------------------------------------------------|
|   | 2343 | OH group                                              |
|   | 3142 | Presence of H <sub>2</sub> O molecules                |
|   | 3218 | Presence of H <sub>2</sub> O molecules                |
|   | 3362 | Presence of H <sub>2</sub> O molecules                |
|   |      |                                                       |
| F | 982  | $v^2$ and $v^3$ of SO <sub>4</sub> <sup>2-</sup> mode |
|   | 1064 | v <sub>3</sub> SO <sub>4</sub> symmetric stretch      |
|   | 1516 | combination bond                                      |
|   | 1677 | OH <sub>2</sub> bending mode                          |
|   | 2348 | OH group                                              |
|   | 3157 | Presence of H <sub>2</sub> O molecules                |
|   | 3178 | Presence of H <sub>2</sub> O molecules                |
|   | 3458 | Presence of H <sub>2</sub> O molecules                |
|   |      |                                                       |

# **CONCLUSION**

XRD is a non destructive technique to identify crystalline phase and orientation. MgSO<sub>4</sub>.7H<sub>2</sub>O, ZnSO<sub>4</sub>.7H<sub>2</sub>O and single phased mixed crystals Mg<sub> $\varkappa$ </sub> Zn<sub>(1- $\varkappa$ )</sub> SO<sub>4</sub>.7H<sub>2</sub>O were grown in slow evaporation method. The influence of the concentration of MgSO4 has been identified from the recorded XRD. Using XRD technique, the lattice parameters, lattice volumes and densities were found. The presence of functional group was confirmed by FTIR spectrum and the FTIR spectra confirm the metal coordination of zinc and magnesium.

#### REFERENCES

- [1] T.H. Freeda and C.K. Mahadevan (2000) Bull. Matter. Sci. 23, 335
- [2] S. Karan and S.P. Sen Gupta (2006) Indian J. Phys. 80, 781
- [3] C.K. Mahadevan and R.S.S. Saravanan (2000) Matter .Manuf. Processes 22, 357
- [4] M. Theivanayagom and C. Mahadevan (2001) Bull. Mater. Sci 24, 441.
- [5] J.M. Kavitha and C.K. Mahadevan Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 128 (2014) 342.