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Abstract 
 

Starting from Maxwell’s theory of electromagnetism in a Minkowski spacetime, we generalize to 

arbitrary spacetimes and gauge groups. The gauge groups U(1) and SU(3) and their associated 

Yang-Mills theories are discussed in detail. This paper provides a view of Maxwell’s equations 

from the perspective of complex variables. The study is made through complex differential forms 

and the Hodge star operator in C2 with respect to the Euclidean and the Minkowski metrics. It 

shows that holomorphic functions give rise to nontrivial solutions, and the inner product between 

the electric and the magnetic fields is considered in this case. Further, it obtains a simple necessary 

and sufficient condition regarding harmonic solutions to the equations. In the end, the paper gives 

an interpretation of the Lorenz gauge condition in terms of the codifferential operator. 
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Arguably the most fundamental pursuit  of  theoretical  physics  is  that  of  unification  of  the 

laws of nature. The development of special relativity by Einstein in the early 20th century and 

the later development of Yang-Mills theory both have origins in Maxwell’s theory of 

electromagnetism. Naturally then, we begin by developing some of the formalism of special 

relativity and Maxwell’s theory of electromagnetism. Then, we develop some tools  from 

diff erential geometry to generalize the vector calculus used in the description of Maxwell’s theory. 

This development will in turn al- low us to understand what is considered the cornerstone  of 

modern theoretical physics, Yang-Mills theory, which more or less gives us a prescription for 

developing theories of the behavior of matter all around us (besides behavior that is due to gravity). 

Particularly we will discuss the theories of Quantum Electrodynamics (QED), which describes how 

electrically charged particles and photons interact, and Quantum Chromodynamics,  which 

describes how the nuclei of atoms are formed and behave. As we will see, these particular Yang- 

Mills theories are U(1) and SU(3) gauge invariant, respectively, and in some sense the only 

diff erence between them are described by the properties ofthese groups! 

 
We will find many pieces of notation useful, but not by any means universal, so we shall clarify 

maybe the most ubiquitous of these now, since the following we will begin using it immediately. 

We will work in what some call ―god-given‖ units, where the speed of light, c ≈ 3 × 10
8
  m/s and 

the reduced Planck’s constant, ℏ  ≈ 4 × 10
−15

 eV·s are set to unity. This will make Maxwell’s 

equations, Lorentz transforms, and the wave equations of quantum mechanics much less cluttered. 

For example, Einstein’s famous mass-energy equivalence, E = mc
2
 now reduces to 

 
E = m. (1.1) 

 
 

In practice this notation makes calculations less tedious, and in order to get back the desired units 

of some quantity, one simply multiplies by the correct (unique) factor of c’s and ℏ ’s. We will not 

really discuss the nuances of units after this point, but it is worth mentioning since some readers 

may be unfamiliar with this somewhat confusing (albeit convenient) practice. When it makes sense, 

we will keep these units around to make concepts more transparent. 
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2 Maxwell’s Equations and Special Relativity 

 
 Special Relativity 

 

Special relativity is concerned with how measures of space and time diff er from one inertial reference 

frame to another (that is, two frames moving at constant velocities). The fundamental quantities in 

relativity are four component vectors (or 4-vectors), like space-time, denoted using a Greek index 

that runs from 0 to 3, (e.g., µ = 0, 1, 2, 3). The space-time vector is defined as x
µ
 = (t, x, y, z)

T
 

=(t, ⃗r)
T
 , in terms of indices, 

x
0
 = t, x

1
 = x, x

2
 = y, x

3
 = z. (2.1) 

Specific points in spacetime x
µ
 ∈ R4, are called events. Particles follow continuous trajectories of 

events called world  lines.  We will be concerned with events and world lines as they are seen by 

two diff erent inertial reference frames, O and O
′
. As we will see shortly, Minkowski spacetime is a 

manifold, specifically, a manifold with a Lorentz metric 

 

 

µην = ηµν = 
(2.2) . 

1 0 0 0 

0 −1 0 0 

0 0 −1 0 

0 0 0 −1 
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Using this metric we can lower the index of our space-time vector 

in the following way 

3 ∑ 

xµ  =  ηµνx
ν
  = (t, −r⃗). (2.3) 

µ=0 

Following Einstein’s summation convention, we will suppress the 

summation notation whenever wesee a repeated index in an 

expression, so the above becomes 

 

 
 

(3.5) 

xµ  = ηµνx
ν
  = (t, −r⃗). (2.4) 

 

 Vector Fields 

 

As far as we are interested here, a vector field will be a diff erential 

operator defined at each point on a manifold whose sole ambition in 

life is to diff erentiate smooth functions. We will start by naming a 

few things. The set of smooth real valued functions on a manifold M 

is denoted C
∞
(M), and is a commutative algebra over the real 

numbers. Formally, this property means the following: 

let f, g, h ∈ C
∞
(M) and α, β ∈ R. Then at each point in M  we 

have 

f + g = g + f 

f + (g + h) = (f  + g) + hf(gh)  = (fg)h 

f(g + h) = fg + fh(f + g)h = fh + gh1f = f 

α(βf) = (αβ)f α(f + g) = αf + αg(α + β)f = αf + βf 

fg = gf 
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All a vector field does, in some sense, is take one function on a manifold to another function of 

the same manifold. Abstractly, we say v : C
∞
(M) → C

∞
(M), where v is a vector field. But 

before we define vector fields on a manifold, we will consider the familiar case in Rn. The 

directional derivative of a function f : Rn → R in the direction of the vector field v is written 

vf = v
µ
∂µf (3.6) 

 
where µ = 1, 2, ..., n (in general, but we will have n = 4 for our purposes). Actually, this 

formulawill hold for all f ∈ C∞
(Rn), so we can just write. 

v = v
µ
∂µ (3.7) 

 

A vector field on M will have the same basic properties as a diff erential operator in Rn. Namely, 

linearity and the Leibniz law define a vector field on M. 

Definition 3.3. Let v be a vector field on M, α ∈ R, and f, g ∈ C∞
(M). Then we have: 

 
v(f + g) = vf + vg 

 

v(αf) = αv(f) 

v(fg) =  (vf)g + f(vg), 
 

(3.8) where the first two are simply linearity, and the last is the Leibniz law or product rule. We 

should also note that the components of the vector field, v
µ
, can themselves be functions of M. We 

now let Vec(M) be the set of all vector fields on M. Then Vec(M) is a module over C
∞
(M), 

that is,for f, g ∈ C∞
(M) and v, w ∈ Vec(M) we have 

f(v + w) =  fv + fw 

(f + g)v = fv + gv 

(fg)v = f(gv)1v = v, 

where ―1‖ is the constant function equal to 1 ∈ R on all of M. 
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(3.9) 

Figure 1: S
2
 with a tangent vector at the point x ∈ S2

 [1] 
 

 

 Tangent Vectors 

 

A convenient way to imagine a vector field on M is  simply  as  an  arrow  assigned  to  each 

pointp ∈ M. This arrow is called a tangent vector at the point p, and is denoted vp. Where do these 

tangent vectors live? They belong to the set of all tangent vectors at p, called the tangent space at p, 

denoted Tp(M). We should note, however, that unlike the vector space Rn, it only makes sense to 

add and subtract vectors that are at the same point on a manifold. The reason we can get away with 

adding and subtracting vectors at diff erent points in Rn is because each tangent space has the same 

basis. 

 

What, then, is ―d‖ really doing here? We start first by recalling the gradient in Rn, ∇f, which 

wecan think of as an instruction to take v ∈ Vec(Rn) to the directional derivative vf as 

∇f(v) = vf. (3.17) 

 
The essential properties of the map are, once again, linearity and the Leibniz law.  That is, 

if 

f, g ∈ C∞
(Rn) and v, w ∈ Vec(Rn), we have 

 
∇f(v + w) =  ∇f(v) + ∇f(w) 
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∇f(gv) = g∇f(v) 

∇(fg)(v) = g∇f(v) + f∇g(v) 

 

or in other words, the gradient ∇f : Vec(Rn) → C
∞
(Rn) is linear over C

∞
(Rn). (3.18) 

We now define the diff erential forms on M, using only the above three properties to define 

our generalized gradient. Here it is: 

df(v) = vf. (3.19) 
 

The 1-form df is called the diff erential of f, or the exterior derivative of f. So what is a 1-form on 

Rn? It is what you obtain when attempting to make (3.17)  and (3.19), the gradient  multiplied by 

the basis of diff erentials in Rn, {dx
µ
}: 

 
df = ∂µfdx

µ
. (3.20) 

 

5 Quantized Yang-Mills Theories 

 
Strictly speaking, what we have developed in the last chapter  is  a  way  to  write  physical 

theories on arbitrary spacetimes. The applications of physical theories on curved spacetimes are 

generally either astrophysical in nature, or Beyond the Standard Model (BSM) of particle physics. 

An ex- ample may be helpful. One object of study that requires Maxwell’s equations in curved 

space are magnetars [11], which are extremely dense remnants of supernovae that have a very 

strong mag- netic field (about 10
10

 times stronger than any magnet on Earth). 

What we have developed so far is considered to be a classical Yang-Mills theory. In order to 

develop physical theories, we need to quantize the  Yang-Mills  field.  Proper  quantization  of a 

field is a very involved eff ort, so rather  than  actually  quantizing  a field,  we will sketch  how to 

do thisand interpret the results. 

 
 Lagrangian Mechanics 

 

In classical physics, there is a coordinate-free generalization of Newtonian mechanics called La- 

grangian Mechanics which relies on knowing the quantity 
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L = T − V, (5.1) 

 

 

 
called the Lagrangian of a system of particles, where T is the kinetic energy and V is the potential 

energy. The Lagrangian of a system of N particles in R3 will then be described by 3N 

coordinates 

dqi 

{qi(t) : i = 1, ..., 3N} and 3N  velocities {q˙i(t) =  dt  : i = 1, ..., 3N}, where qi   and q˙i   are 

treated as independent variables. Given the Lagrangian of a physical system, we can determine 

the pathsthat the particles take by minimizing the action [8] 

 

S = L(qi, q˙i)dt. (5.2) 

∫ t2 
 

t1 

 

We say an action is minimized when the variation δS = 0 to linear order in δqi(t) under 

thetransformation 

δqi(t) → qi(t) + δqi(t) (5.3) 
 

where δqi(t) is a smooth function that is zero at the limits of integration, i.e. 

 
δqi(t1) = δqi(t2) = 0. (5.4) 

 

 

The variation of the action is 

 
 

δS = 

 
 

t2 

 
∫
Lδqi 

t 

 

 

 

∂ 

 

∂q i 

 
 

∂L 

+ δq i̇ 
∂iq˙

 

) [ ] 
dt 
−

 

 
 
 
 

(5.5) 

∫ 1
 ( 

t2 ∂L 

= δqi  
∂q

 

d ∂L 
dt

 

dt ∂q˙ + 

∂L 
t2 

δqi 
∂q˙ 

t1 i i 
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i t1 

where we have performed integration by parts on the second term of the integrand. The term 

outside the integrand is 0 by (5.4), and since the function δqi(t) is arbitrary we have 

∂L 
 

 

 

∂qi 

d ∂L 

— 
dt 

∂q˙i 

 
= 0. (5.6) 

 

Hence, the action is minimized when (5.6), known as the Euler-Lagrange equation, is satisfied. 

 

For relativistic fields
5
, we cannot treat time as an entity distinct from spacial dimensions. In other 

words a field ϕ(x
µ
) is a function of spacetime. Instead of working with a Lagrangian, we will now 

∫ 
work with a Lagrangian density 3 

 

L =  L d x, (5.7) 

V 

and make the following substitutions in the Euler-Lagrange 

equation 

L → L, 

qi → ϕi,d 

dt 
→ ∂µ, 

we can obtain the relativistic Euler-Lagrange equation 

 
(5.8) 

 

∂L 
∂− (  ∂L ) = 0 (5.9) 

∂ϕi 
µ
 ∂(∂µϕi) 
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for N fields. Though this equation is relativistically invariant, like the electromagnetic field, it 

is still a classical field. In order to obtain a quantum field, it needs to be ―quantized‖, which 

formally amounts to promoting the dynamical variables (fields) to operators and imposing a 

canonical com- mutation relation [4]. 

The first field that we will look at is the Dirac field, which is a fermionic field whose excitations 

are spin 1/2 particles like electrons (e), as well as their heavier cousins the µ and τ ,  but  also 

quarks, which make up particles like protons and neutrons. Fermionic fields are perhaps the most 

fundamental in all of quantum field theory;  as  a matter of fact,  all physical matter (at least  the 

kind we are familiar with on Earth) is composed of fermions. 

 
 The Dirac Equation 

 

In the early 20th century, physicists sought a quantum mechanical wave equation that was com- 

patible  with  special   relativity.   To  obtain  the   non-relativistic  Schrödinger  equation,   we  start 

with the classical energy momentum relation for a single particle 

p2 

E = T + V  =  + V (5.10) 

2m 
 

and apply the ―quantum prescription‖, which amounts to the 

substitutions 

 

p → i∇ 
 

∂E → i
∂t

 

(5.11) 
 

 
 

 

 

to obtain the operator  
∂ 1 

i
∂t 

= − 

2m
∇

 

 

2
 + V. (5.12) 

The equation obtained by applying this operator to a function 
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1 2 ∂ 

− 
2m

∇  Ψ + V Ψ = i
∂t 

Ψ. (5.13) 

yields  the  Schrödinger  equation,  where  Ψ  is  called  the  wave  function,  and  is  a  function  of 

position and time (which are treated as independent). The integral of the square of the  wave 

function is set to unity 

∫ 

All space 

Ψ∗Ψ d
3
x = 1 (5.14) 

and we can find the probability that a particle will be in some region of space by simply 

integrating 

over that region. As the wave function evolves with time the integral remains unitary. Following 

the same procedure with the relativistic energy momentum relation 

p
µ
pµ − m

2
c

2
 = 0 (5.15) 

 
yields an equation that is second order in time. This turns out to be a problem, because a wave 

equation   constructed   using   (5.15)   will   not   remain   unitary   as   time   goes   on.     Schrödinger 

actually tried the second procedure before the first, and gave up when it failed to predict the 

hydrogen emission spectrum. Dirac later realized that an equation that was first order in time could 

be obtained by factoring the energy momentum relation, 

 

 Quantum Electrodynamics 
 

Writing down the Dirac Lagrangian
6
 only takes 3 more strokes of a pencil than the  Dirac 

equation, 

LDirac  = ψ̄ (iγ
µ

∂µ  − m)ψ (5.23) 

 
but we can get considerably more mileage from a Lagrangian than a wave equation, primarily for 

two reasons. The first is that we can tell the symmetries of a theory from the Lagrangian as a 

consequence of Noether’s theorem, which says that every conservation law (of energy, momentum, 

charge,  etc.)  correspond to a continuous symmetry of a Lagrangian.  The second is that we can 

read the Feynman rules for calculating diff erent processes directly off  of the Lagrangian. 
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Together with the Maxwell Lagrangian, 

1 µν 
 

 

 
 

LMaxwell = − 
4 

Fµν F 

 
we almost have all of the ingredients of the QED Lagrangian, 

 

 
(5.24) 

 

 

LQED = LDirac + LMaxwell + Lint (5.25) 

 
where the last term, Lint is a  yet  unspecified  interaction  term.  Without  it  we  have  a 

Lagrangian for a theory of two fields minding their own business. The interaction term can be 

determined by replacing ∂µ with the gauge covariant derivative [4] 

 
Dµ = ∂µ + ieAµ (5.26) 

 
 

and seeing what ―extra‖ term we pick up, where e is the coupling constant (the electrical charge) 

between the Dirac and electromagnetic field. Notice that if e = 0, the fields ―decouple‖, or go back 

to minding their own business. Actually, now we can just write the QED Lagrangian as 

LQED = 

ψ̄ (iγ
µ
Dµ 

1 

— m)ψ − 
4 

Fµν 

 
Fµν 

 
(5.27) 

and see what extra term the gauge covariant produces when compared to (5.23) and (5.24) alone. 

When we work this out, the interaction term is 

Lint  = −eψ̄ γ
µ

ψAµ. (5.28) 

 
The theory of  Quantum  Electrodynamics  is  in  some  sense  ―solved‖.  This  claim  is  due  to 

the fact that a quantitative description of all electromagnetic processes can be calculated to an 

incredible degree of precision by only evaluating a handful of integrals that can be read off  

from 
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the Lagrangian. More accurately, these integrals
7
 are terms in a series expansion of the scattering 

matrix, S: [4] 

( 

 
 
 
 
 

 
S(n) 𝖺 e2 n 

4π 
≈

 

 

  1 
n
 

137 

 
. (5.30) 

 

Since the coupling constant e is relatively small, we really only have to evaluate the first terms in 

this series to get an accurate approximation of S. For the theory of strong nuclear force (Quantum 

Chromodynamics, or QCD) this kind of method is only possible at energies on the order of several 

GeV, which are generally only achievable by particle accelerators. Thus, there has been a historic 

struggle to understand QCD at low energy scales. 

 
 Quantum Chromodynamics 

 

We will proceed to the theory of quarks and gluons (QCD) that describe the strong interaction of 

atomic nuclei by analogy with QED. First, while there is only one charge in QED, the electrical 

charge, there are three ―color‖ charges in QCD, denoted r, b and g, and their negatives, r̄ , b̄ and ḡ . 

Quarks carry a single color charge. Another diff erence arises from the fact that the gauge 

group is SU(3), rather than U(1). Whereas U(1) has a single element in the basis of it’s Lie 

algebra, SU(3) has 8, which correspond to the number of ―force carriers‖, or gauge bosons in the 

theory. 

 ∑∞  n) 

S = S 

n=0 

(5.29) 

with each term ( ) (  ) 
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1 

, 

1 

L = ψ 

µν ν µ µ    ν 

 

The Lagrangian for the theory of QCD does look almost identical to that of QED, save for 

threenew sets of indices that we are summing over 

∑
¯

 
QCD 

 
 

 
q 

 
q,i((iγ

µ
 

D 

 

)
ij
 − m 

δ
ij
)ψ 

1 a 
(5.31) 

µ 

ν 

q,j— 4 Fµν Fa 

µ q 

 

where the flavor index q = u, d, s, c, b, t runs over all flavors of quarks, i, j = r, b, g run over all 

quark color  charges  and  a = r b̄, gr̄ ...  runs  over  8  color-anticolor  pairs  of  gluons.  The  reason  we 

sum over flavors in QCD but not QED is because quarks undergo flavor mixing [4], or they 

spontaneously change from one flavor to another, whereas we do not see mixing between the 

charged leptons’ flavors e, µ, and τ 
8
. The gluon field strength tensor is 

 

F
a
 = ∂µA

a
 − ∂νA

a
 + gf

abc
A

b
 A

c
 (5.32) 

 
 

where f
abc

 is the structure constants of SU(3). By comparison with SU(2), the ―Pauli 

matrices‖for SU(3) are called the Gell-Mann matrices: 

1 0 

λ1 = 0 0 

-i 0 

λ2 = i 0  0 

 

 
λ3 = 

0 0 

-1 0  

0 0 0 0 0 0 0 0 0 
 

 
 

λ4 = 

0 1 

0 0 λ5 = 

0 -i 

0 0                                                              (5.33) 

1 0 0 

 
0 0 

i 0 0 

0 0 1 0 0 

0   1   0 0 i 0 

0 0 1 

, , 0 

0 0 

0 0 

0 0 
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, 0 

 

λ6 = 0 1 λ7 = 0 -i λ8 =√
3 

1 0 

 

 

a λa 

— gAµ  2 
. (5.35) 

Now that we have enumerated what every term in the Lagrangian is, we still do not know 

whatthe diff erence between QED and QCD, besides the fact that the latter has more indices. 

Conclusion 

 
 

First, quarks and gluons are never seen in isolation. They come primarily in pairs or tripletsof 

quarks called pions and nucleons (like protons and neutrons) that exchange gluons with  one 

another. Additionally, gluons interact with one another, whereas  photons do not. This means we 

can see ―glue-balls‖, or bound states of multiple gluons [10]. In any case, we never see net color 

charged particles of any kind. This phenomenon is called color confinement, and though we do not 

have a rigorous mathematical proof that QCD should have this property, it has become abundantly 

clear from experimental evidence as well as numerical evidence that this is the case [9]. 

 
A rigorous mathematical framework for much of quantum Yang-Mills theory is still very much 

lacking. Attempts to do so have, however, led to new and interesting insights into pure 

mathematics,particularly the study of three and four- manifolds [9]. Even on the practical side, the 

low energy dynamics in QCD are only accessible by numerical Monte Carlo calculations which 

require millions of hours of compute time. Indeed, many more advances in the underlying theory of 

physical simulation need to be better developed in order to make a broader range of phenomena in 

nuclear physics (among others) accessible by this method [12]. 
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