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ABSTRACT 

Adaptive filters have gained popularity over the years due to their ability to adapt 

themselves to different environmental scenarios without the user taking much action. 

Here, an adaptive noise cancellation filter technique is put into practice. The Recursive 

Least Square (RLS) algorithm is used in the filter design because it is computationally 

straightforward, exhibits robust performance when implemented in hardware with finite 

precision, and exhibits well-understood convergence performance. Through the use of the 

MATLAB/Simulink tool, the RLS algorithm can verify the accuracy and responsiveness 

of the adaptive noise cancellation filter. Utilizing the Xilinx Tool Box, this algorithm is 

implemented using the Simulink model as a guide. The System Generator ("SysGen") 

tool in the Xilinx block set is used to build the bit file that can be downloaded onto the 

FPGA through hardware co-simulation in order to construct the adaptive filter on Xilinx. 

The study proposes an adaptive noise cancellation filter that uses the noise-cancelling 

RLS algorithm, and the outcomes are verified by visualising the output using MATLAB. 

 

Keywords : Cancelling noise, adaptive filtering process, Recursive Least Square (RLS) 

algorithm 

 

1. Introduction 

Beamforming Adaptive weight calculation (AWC) has Numerous wireless 

communication applications, such as adaptive beamforming, equalization, predistortion, 

and multiple-input multiple-output (MIMO) systems, call for the use where A is the 

observations matrix which is assumed to be noisy, b is a known training sequence and x 

is the vector to be computed by using least squares method. This is described more 

compactly in matrix notation as Ax = b + e. If there is the same number of equations as 

there are unspecified, i.e., n = m, this system of equations has a distinctive solution, x = 

A−1b. Applications requiring high sample rates are frequently over-determined, or, i.e., n 

> m. By reducing the residuals, the least squares method—min n e2 n—helps to 
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overcome the issue. Generally speaking, the least squares method (LMS), Normalized 

LMS (NLMS) and Recursive Least Squares (RLS), is used to find an approximate 

solution to these kinds of system of equations. Among them, RLS is most commonly 

used due to its good numerical properties and fast convergence rate. However, it requires 

matrix inversion which is not efficient in terms of precision and hardware 

implementation.  

 
Figure 1. Adaptive Weight Calculation (AWC) using QRD-RLS method 

Figure 1 shows the Adaptive Weight Calculation (AWC) using QRD-RLS method which 

consists of two different parts to calculate the weights, QR decomposition and back-

substitution. It is recommended to use QR decomposition to carry out adaptive weight 

computation based on RLS as it produces more precise outcomes and effective 

architectures. In order to create an adaptive weight calculation (AWC) core that uses QR 

decomposition in its solution steps, we use our tool GUSTO. After transforming b into a 

different column matrix, c, so that it becomes the solution of the QR decomposition, the 

resulting upper triangular matrix, R, is used to obtain the coefficients of the system using 

back substitution. Rx = c 

2. Algorithm Description 

 

QR decomposition is an elementary operation, which decomposes a matrix into an 

orthogonal and a triangular matrix. QR decomposition of a real square matrix A is a 

decomposition of A as A = Q×R, where Q is an orthogonal matrix (QT × Q = I) and R is 

an upper triangular matrix. And Factor (m × n) matrices (with m ≥ n) of full rank as the 

product of an (m × n) orthogonal matrix where QT × Q = I and (n× n) upper triangular 

matrix. 

Different techniques can be used to calculate QR decomposition. The techniques for QR 

decomposition are householder transformation and the givens rotations. But above all 

method, the Coordinate Rotation Digital Computer "CORDIC" algorithm is effective 

technique and using for QR decomposition.  

Consider the estimation of the N-dimensional parameter vector 𝜃 for the following linear 

model: 

𝑑(𝑘) = 𝑥𝑇(𝑛) 𝜃 + 𝑣(𝑛)                                      (1) 
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where 𝑑(𝑘) and 𝑥𝑇 (n) are the desired signal and input vector respectively, and 

𝑒(𝑗) = 𝑑(𝑗) − 𝑥𝑁
𝑇(𝑗)𝜃(𝑛)                                (2) 

 

In least squares parameter estimation, the following time-averaged squared magnitude 

error is: 

𝜉𝑁(𝑛) = ∑ 𝜆𝑛−𝑗|𝑒(𝑗)|2                               (3)

𝑛

𝑗=0

 

 

where the constant ּג is the forgetting factor with a value between 0 and 1. Equation (1) 

can be written more compactly in matrix form as: 

                            (4) 

Where 

  
XN(n) and XN(n) are the received signal vector and the data matrix, respectively. Then, 

the least squares objective function £(𝑘) in becomes 

£(𝑘) = e𝐻w2(𝑘)e(𝑘) = |w(𝑘)e(𝑘)|2 

Where w(n) is a diagonal weighting matrix given by 

                                      (5) 

The optimum value of Ө()can be obtained by solving the normal equation: 

 

 

are, respectively, the weighted autocorrelation matrix of 𝑥𝑁(𝑘), and the weighted 

cross correlation vector of 𝑥𝑁(𝑘) and 𝑑(𝑘). Due to the lower numerical accuracy in 

solving the normal equation, a better method, called the QR-LS method, is employed. 

The following QRD of w(𝑘)X𝑀(𝑘) is performed 

(𝑘)w(𝑘)X𝑁(𝑘) = [
𝑅𝑁(𝑘)

] 

where 𝑄(𝑘)is some (𝑘 + 1)(𝑘 + 1) unitary matrix and 𝑅𝑁 (𝑘) is (N x N) an upper 

triangular matrix. Using can be rewritten as 

        (6) 
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where 𝑄(𝑘)W(𝑘)𝑑(𝑘) =[𝑑𝑁(𝑘)𝐶𝑛+1−𝑁] T. Since (𝑘) is a unitary matrix, the square of the 

Euclidean norm  is equal to £(𝑘). The two-norm achieves its minimum value when Ө(𝑘) 

is chosen as 𝑅𝑁(𝑘)Ө(𝑘) = 𝑑𝑁(𝑘), and 𝑚i𝑘Ө(𝑘)£𝑁(𝑘) = £∗ (𝑘) = ‖𝐶𝑁+1−𝑁‖2. Since (𝑘) is 

an upper triangular matrix Ө(𝑘), can be obtained by back-substitution. There are several 

methods to perform the QRD of the weighted data matrix W(𝑘)X𝑁(𝑘). 

The inverting a matrix [A] using Gaussian elimination has a complexity of (𝑘3). For 

real-time applications and high values of n, the complexity of matrix inversion in 

hardware becomes unmanageable. Our objective is to physically invert a matrix of 

dimensions (12×12) in hardware. The results for inverting an 8 x 8 matrix can be shown 

in this publication. For bigger matrix sizes, the same principle can be applied with a 

minor hardware adjustment. Systolic arrays and QR decomposition were used in the 

hardware design. Figure (2). 

 
Figure 2. Systolic Array for QR Decomposition 

 

 

3. Matlab simulation result of Adaptive Beamforming: 

In this section, An example of the MVDR beamformer from [6] can be shown in Figure 3 

where the correlation/covariance matrix is built from the snapshot of K samples of data 

from each channel, and passed to an MVDR processor which calculates the adaptive 
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beamforming weights which are applied across each channel, then coherently summed to 

form the output beam y(n). Note, in, the channel count is denoted by M instead of N. 

 
Figure 3. Block Diagram of a MVDR Beamformer for a ULA 

Using the same example from the deterministic beamforming section, we can apply the 

MVDR-calculated beamforming weights and compare the spectrum to the quiescent 

beamforming spectrum from Figure 3. To repeat the scenario, a desired signal at 300 

MHz is impinging the array at θd = 5◦and an interference source at 270 MHz is 

impinging the array at θ in f = 30◦. The MVDR narrowband beamformer output is thus 

given by equation below  

                                (7) 

 
Figure 4. Output Spectrum from the MVDR Beamformer for a ULA 
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As seen in Figure 4, the desired SOI has a visibly high SINR, due to the applied 

beamforming gain, and the interference signal is no longer present in the output spectrum 

at all. Further demonstration that the interference source has in-fact been nulled can be 

seen by examining the MVDR output weights in sine space. This can be seen in Figure 3 

where the interference angle sees a deep null, and as such, the interference signal is 

attenuated. 

 
Figure 5. Radiation Plot of the MVDR Beamforming Weights 

 

Based on the spatial response of a given number of antenna elements, the degrees of 

freedom (DOF) of an N element array is fundamentally driven by the number of 

independent nulls that can be produced by the MVDR algorithm, as defined in Equation 8. 

DOF = N − 2                 (8) 

In the context of interference mitigation, this means that up to N − 2 interference sources 

can be cancelled out using MVDR [6]. To show this in practice an 8-element ULA can be 

shown to have 6 interference sources, at varying narrowband frequencies and varying 

incident angles, which completely muddies the output spectrum in the quiescent 

beamforming  

 

4. Conclusion : 

In this research work, we’ve covered the background knowledge of RF array processing 

in the context of current, and next generation, MIMO systems. We then explored the 

current state-of-the-art in Adaptive Beamforming processes for embedded FPGA devices. 

After creating a baseline implementation forperformance and resource comparisons, we 
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explored a novel Deep Learningmodel to solve Adaptive Beamforming weights in a more 

efficient process then the current closed-form, statistical solution 
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