
IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

6968

The Influence of Dynamic Coupling on Object-

Oriented Software and Its Implementation

L. K Suresh Kumar

Associate Professor, Department of Computer Science

UCE, Osmania University, suresh.l@uceou.edu

Abstract— Software quality is important to developers,

businesses, and governments. As is well-known, software

maintainability determines quality. Coupling measurement is

one way to benchmark an application's maintainability. Static

code analysis is used in traditional measurement techniques

during system testing or trial operations. When we were using

COBOL, FORTRAN, Pascal, and C, static analysis was

helpful. Dynamic coupling may be used to assess systems and

applications with the emergence of object-oriented (OO)

languages like C++, Visual C, and Java. Dynamic coupling

matches the reality of the tested application since it can

uncover problems and shortages that are not predicted with

static coupling. Dynamic coupling, on the other hand, requires

a lot longer to quality-test, particularly if the subject

application is substantial.

Maintenance is a follow-up activity in software

development, and maintainability is a post-delivery quality

attribute. In addition, realizing maintenance costs for a target

software system couldn't be decided off-hand for maintainers

on both sides (i.e., system supplier and developer on one side

and customer on the other). The author assumes coupling

measures as a proactive action for the quality of the target

application and cost-benefit considerations for the

stakeholders. OO modeling results in a more manageable and

reusable system. This research examines the link between

coupling measures and object-oriented system quality and

maintainability. This study covers dynamic coupling

measurements, data collection, conceptual coupling, static

coupling advantages, conclusions, and references.

Keywords — dynamic coupling measurements, static

coupling, Software quality, software development and

maintainability, coupling measures.

I. INTRODUCTION

Research on quality models in the context of object-
oriented systems has mostly focused on developing structural
metrics (such as class coupling) and examining their
correlations with external quality features (such as class
fault-proneness). The majority of the research in this field
has mostly focused on this path of investigation. The
ultimate objective is to create predictive models that may be
used for decision-making in some form, such as choosing
which classes should undergo more thorough verification
and validation. Most metrics have been established and
gathered up to this point based on a static study of the design
or code. This is true regardless of the structural attribute that
is being taken into consideration. In several situations, they
have proven time and time again to be reliable predictors of
external quality qualities including fault-proneness, ripple
effects after modifications, and changeability. On the other
hand, the majority of the systems that have been investigated

display a low level of inheritance and, as a consequence,
make only a limited use of polymorphism and dynamic
binding. We have noticed that inheritance and polymorphism
are being used more frequently in the industry as object-
oriented design and programming are increasingly used. This
is being done to improve the level of internal reuse within a
system and to make system maintenance easier. This is
evident when looking at the growing number of open source
projects, application frameworks, and library collections,
despite the fact that there has been no formal survey
conducted on the subject.

The issue is that when more intense usage of inheritance
and dynamic binding occurs, the static and coupling
measures — which constitute the key indications of the great
majority of the quality models that have been reported—lose
accuracy. It is projected that as a result, the prediction
accuracy of the quality models that depend on static coupling
measurement would decline.

The evidence that we currently have suggests that dynamic

coupling might be of significant interest. According to the

findings of a preliminary empirical study conducted on a

Small Talk system, there appears to be a significant link

between dynamic coupling and change susceptibility.

Furthermore, the results of a controlled experiment raise the

possibility that static coupling measurements may not always

be adequate to account for variations in changeability (such

as change effort) for object-oriented systems. According to

follow-up research, when trying to understand object-

oriented software, professional developers frequently trace

the actual flow of messages that occur between objects at

runtime. This is done in an effort to gain a better

understanding of how object-oriented software works.

 As a result of these findings, it appears as though dynamic
coupling measures might be of some use such as factors that
may be used to determine how cognitively difficult object-
oriented software is. Last but not least, dynamic coupling is
more accurate than static coupling for analyzing systems that
contain dead code, which is code that is not being used and is
therefore irrelevant to the analysis. This can seriously skew
results. Some of these may be assessed within the framework
of object-oriented designs, whereas others need a dynamic
study of the code.

II. DYNAMIC COUPLING MEASUREMENT

Research on quality models in the context of object-
oriented systems has mostly focused on creating structural
metrics (such as class coupling) and examining their
correlations with external quality criteria. Software

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

6969

architectures such as class fault-proneness and object-
oriented systems fall under this category. The ultimate
objective is to create predictive models that may be used in
decision-making in some form, such as choosing which
classes should undergo more thorough verification and
validation. Most metrics have been established and gathered
up to this point based on a static study of the design or code.
Regardless of the structural characteristic being considered,
this is accurate. They have proven time and time again to be
reliable predictors of characteristics of external quality, such
as fault-proneness, ripple effects from modifications, and
changeability. However, the bulk of the studied systems only
showed a little level of inheritance; hence, only a modest
amount of polymorphism and dynamic binding was
employed. We have seen that as the usage of object-oriented
design and programming advances, inheritance and
polymorphism are being employed more commonly in
business. This is being done to facilitate easier system
maintenance and increase the degree of internal reuse inside
a system. Despite the fact that there hasn't been a
comprehensive poll on the topic, this is clear from the rise in
open-source projects, application frameworks, and library
collections.

We shall first make a distinction between the several
categories of dynamic coupling metrics. Then, building on
this classification, we give both informal and formal
explanations of the words, clarifying the underlying ideas
through a real-world illustration. We shall then discuss the
mathematical characteristics of the suggested measurements.
We believe that all five of these features must be present for
a coupling measure to be considered well-formed. Our
policies were created with that goal in mind. To specify
measurements in a form that is independent of the
programming language being used, we use reference to a
generic data model that has been created using a UML class
diagram. The word "system" is often used to refer to the full
constellation of hardware, software, and human processes
that are being produced when discussing systems and
software engineering. Instead, one calls the system's software
components "software products."

A. Classifying the Different Types of Coupling Measures

Different definitions of dynamic coupling exist, and each
definition may be justified in light of the application
environment in which such metrics would be applied. The
use of three decision criteria forms the basis for the
formulation and categorization of dynamic coupling
measurements.\

The Measurable Objects: Dynamic coupling may be assessed
for a class as a whole or for a specific instance of a class
because it depends on dynamic code analysis. Consequently,
the thing being measured may be an object or a class.

Granularity: Independent of the object being measured, the
measurement of dynamic coupling can be aggregated at a
range of various degrees of granularity. It is possible to
monitor dynamic object coupling at the object level, but it is
also possible to aggregate measurements at the class level.
The dynamic coupling of every instance of a class may
therefore be combined into a single value. In reality, the class
will probably be the lowest degree of granularity, even when
assessing the object coupling. This is due to the fact that it is
hard to envision any situation in which the coupling
measurement of items would be useful. Aggregating all

dynamic couplings of objects that are a component of an
execution scenario is another option. Additionally, whole use
cases (also known as sets of scenarios), complete use cases,
and even an entire system (all objects of all use cases) can all
have their dynamic object coupling measured. The
aggregation scale will be different if the measurement object
is a class since we can aggregate the dynamic class coupling
over an inheritance structure, a subsystem, a collection of
subsystems, or a whole system. The characteristics of the
class being measured will determine how this works.

Scope: Another important factor that affects the precision of
our estimations of the dynamic coupling between systems is
the measurement range. This sets which objects or classes,
depending on the entity being tested, are to be taken into
consideration while measuring dynamic coupling. For
instance, depending on the application environment, we
might wish to omit library and framework classes in some
situations..

III. COLLECTION OF DYNAMIC COUPLING DATA

It is crucial to collect data on dynamic coupling in a
method that is both efficient and feasible. The two
approaches to the problem are covered in this section. While
the second technique calculates the measures based on
dynamic UML models, the first method determines the
measures by gathering the coupling data from running
programmes.

A. Tool for Gathering Dynamic Coupling Measures During

the Running of the Simulation

We developed the JDissect tool to get information on
dynamic coupling from Java programmes. An overview of
the architecture is shown in Figure 1 for your viewing
enjoyment. The device comprises two stages specifically
designated for the collecting and analysis of dynamic
coupling data. The first phase entails gathering and storing
data produced by an active Java software. This may be done
by telling the Java Virtual Machine (JVM) to load the
libjdissect.so library of data collecting tools. When specific
internal events that have been described occur, these
procedures are invoked. The interfaces used for
communication between the library and the JVM (Java VM
Debugging Interface) go by the titles Java Virtual Machine
Profiling Interface (JVMPI) and Java Virtual Machine Data
Interface (JVMDI). The great bulk of the data is gathered via
the profiling interface that is connected to a method. As a

result,
the

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

6970

Method Invocation syntax is connected to both the Class and
the Method.

Fig 1: Dynamic Coupling between Two Objects

B. Data Collection Through the Utilization of UML Models

The operation was under the premise that the dynamic
coupling data is compiled using the dynamic analysis of the
code up to this point. It was also hypothesized that it could
be feasible to get information on dynamic coupling by
examining dynamic UML models, such as interaction
diagrams. One of the proposals presented was this. The
ability to use the data from such studies to make quick
judgments makes the measurement of coupling on early
design artifacts of practical significance. For instance, if the
required UML diagrams for a certain design are available,
one may create test cases based on the UML diagrams and
calculate the dynamic coupling associated with each test case
(use case scenario). This would necessitate making the
supposition that the required UML diagrams are accessible.
For instance, because it is believed that they may find more
problems, test cases with a high dynamic coupling could be
run first. As a consequence, the test plan would include a
sequence for carrying out test cases based on knowledge of
the components' dynamic interaction. Interaction diagrams
represent the main difficulty when attempting to assess
dynamic coupling based on UML models. This would
necessitate making the supposition that the required UML
diagrams are accessible. For instance, because it is believed
that they may find more problems, test cases with a high
dynamic coupling could be run first. As a consequence, the
test plan would include a sequence for carrying out test cases
based on knowledge of the components' dynamic interaction.
Interaction diagrams represent the main difficulty when
attempting to assess dynamic coupling based on UML
models.

IV. THE CONCEPTUAL COUPLING METRIC

In order to complete many duties related to maintenance,
developers are required to measure, either directly or
indirectly, several aspects and evaluate the qualities of an
evolving software system. Researchers have come up with a
number of different suggestions for measurements that might
help engineers obtain more comprehensive perspectives on
the programme. Due to the fact that coupling has a direct
impact on maintainability, it is one of the qualities that has
the most sway over the maintenance process. The suggested
coupling measures are used for a number of tasks, such as
impact analysis, class fault-proneness evaluation, fault
prediction, re-modularization, software component
identification, design pattern evaluation, software quality
evaluation, and other related tasks. The lowest possible
degree of connection inside an OO system is one of the
broad objectives of software designers. The classes in the
system that are most likely to be impacted by changes and
issues caused by other classes are those that are related
tightly; as these classes frequently have a greater
architectural importance, they should be taken into account.
Coupling metrics are useful in these pursuits, and most of
them are based on a type of dependency analysis that makes
use of readily available design information or source code.
As a result of the fact that many of these measures are

founded on similar hypotheses and utilise similar data for
calculation, there are more suggested coupling measures than
dimensions that are represented by the measures. The
measurements only capture a smaller number of dimensions.

Based on the semantic data shared by source code
components, we introduced a new set of coupling metrics
that formulates and captures additional dimensions of
coupling, namely conceptual coupling. The notion that
conceptual coupling represents a new dimension of coupling
serves as the foundation for these new dimensions of
coupling. Our measurements may be thought of as gauging
how conceptually similar different method classes are to one
another. The measurements are based on the use of
information retrieval (IR) methodologies (i.e., through
comments and identifiers) to express and examine the
semantic information that is incorporated into software. The
conceptual link may be used to supplement existing metrics,
particularly in activities like impact analysis and change
propagation, as current models do not fully account for the
cascading consequences of changes made to existing
software. They are directly applicable to different types of
reverse engineering as well as re-modularization.

V. ADVANTAGES FOR USING DYNAMIC COUPLING

OVER STATIC

 A brand new evaluation and analysis tool for Java and
C++ software that is based on dynamic metrics and is
named Dyna Metrics. This tool is able to evaluate and
analyse all of the important dynamic metrics that have
been known up to this point. In order to determine the
value of each individual statistic, Dyna Metrics further
evaluates each by contrasting it with its static equivalent.

 Their capacity to examine the behaviour of software
while it is being executed, which is a skill that makes
them far more valuable than their static counterparts.
Suites developed by Yacoub et al. and Arisholm et al.
are examples of some of the most recent dynamic metric
suites to be released.

 Dynamic metric tools examine how a piece of software
behaves while it is actively being used.

 Regardless of the structural property that is being
evaluated at run time, it determines which classes should
be subjected to a more rigorous verification and
validation process.

 It is accurate predictors of external quality parameters
such as the fault-proneness and changeability of the
product.

 These dynamic coupling measures differ from one
another in terms of the entities that they measure, as well
as in terms of their scope and granularity, which both
contribute to a rise in the usage of inheritance and
polymorphism.

VI. CONCLUSION AND FUTURE WORK

A software performance measurement instrument based
on metrics, like dyna metric. The tool is flexible enough to
work with a number of static and dynamic metrics even if it
is still in the early phases of development. To the best of our
knowledge, no other tool has been able to manage the bulk of
the dynamic metrics that are included in the product. The

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

6971

instrument's main support system is the Java Virtual Machine
Tools Interface (JVMTI). The ability to process C++ is
something we are currently working to add to the tool.
Incorporating as many static and dynamic measures as is
practically possible is Dyna Metrics' long-term goal. As a
result, the tool will be able to establish an accurate set of
high performance metrics for application software, which
will eventually cause it to become an industry standard. As a
result, the tool will be able to establish an accurate set of
high performance metrics for application software, which
will eventually cause it to become an industry standard.

The combined results show that dynamic export coupling

metrics are important indicators of change proneness, even if

this prior work was unable to compare with static coupling

and size measurements.

REFERENCES

[1] Aine Mitchell and James F. Power, Run-time Cohesion Metrics: An

Empirical Investigation. In Proceedings of International Conference
on Software Engineering Research and Practice (SERP’04), Las
Vegas, Nevada, (2004).

[2] Aine Mitchell and James F. Power, Toward a Definition of Run-time
Object-oriented Metrics. In Proceedings of 7th ECOOP Workshop on
Quantitative Approaches in ObjectOriented Software Engineering
(QAOOSE’2003), Darmstadt, Germany, (2003).

[3] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite forObject-
Oriented Design,” IEEE Transactions on Software
Engineering.Dynamic Coupling Measurement for Object-Oriented

[4] Dynamic Coupling Measurement for Object-Oriented Software. Erik
Arisholm, Lionel C. Briand and Audun

Føyen.

[5] The Dynamic Function Coupling Metric and Its Use in Software
Evolution. A´ rpa´d Besze´des, Tama´s Gergely, Szabolcs Farago´,
Tibor Gyimo´thy and Ferenc Fischer University of Szeged,
Department of Software Engineering.

[6] The Impact of Static-Dynamic Coupling on Remodularization, Rick
Chern Kris De Volder, University of British Columbia, 2366 Main
Mall, Vancouver, BC, Canada frchern, kdvolderg@cs.ubc.ca

