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Abstract 

The use of machine learning (ML) and artificial intelligence (AI) in predictive maintenance for 

civil engineering structures is investigated in this study. This study uses machine learning (ML) 

and artificial intelligence (AI) to present a novel approach for predictive maintenance in civil 

engineering structures. Class imbalances in maintenance applications present intrinsic issues 

that are addressed by this study through the substantial use of a rigorous machine learning 

process workflow and techniques, especially in the prediction of unusual failures. Using 

publicly accessible datasets, the study demonstrates how to statistically analyze telemetry data 

to reveal descriptive statistics and sensor activity that are essential for making well-informed 

decisions. While taking particular concerns for component relevance into account, 

performance evaluations of the Random Forest and Artificial Neural Network models in the 

validation and test sets show generally excellent results. In addition to offering definitive 

results, the research highlights the significance of taking into account actual failure predictions 

and optimizing metrics, acting as a methodological manual for managing various data kinds 

in predictive maintenance applications. In the end, this study adds to the field of artificial 

intelligence (AI) and machine learning (ML) applications in civil engineering by providing a 

viable method for improving maintenance plans using cutting-edge data analytics. 

Keywords: Predictive maintenance, Civil engineering structures, Artificial intelligence, 

Machine learning, Industry 4.0. 

1. INTRODUCTION 

The field of civil engineering is broad and includes designing, building, and maintaining the 

infrastructure that is necessary for contemporary society [1]. In order to meet the demands of 

communities all over the world, civil engineers are essential in forming the built environment, 

which includes everything from buildings and bridges to highways and water systems [2]. The 

application of artificial intelligence (AI) to civil engineering practice is gaining attention and 

excitement as technology continues to improve quickly [3].  

 

The application of AI in civil engineering practice signifies a fundamental change in the way 

engineers approach problem-solving and decision-making, not just the adoption of new tools 

and technologies [4]. Civil engineers may more efficiently manage infrastructure assets, 

expedite construction operations, and optimize design processes by utilizing AI algorithms and 

machine learning approaches [5].  
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Artificial intelligence and machine learning techniques have been applied recently in a wide 

range of modern societal domains, such as banking, insurance, the Internet, and medical 

applications [6]. Aside from the latest developments in machine learning, the Internet of Things 

and smart device introductions made it possible to connect physical assets and broadcast real-

time data at a low cost [7]. The field of operation and maintenance management is changing as 

a result [8]. Machine learning (ML) and artificial intelligence (AI) are enabling predictive 

maintenance, which replaces traditional human-controlled quality management and 

maintenance procedures [9]. The development of machine learning and the Internet of Things 

can help the facilities management sector manage its resources more effectively and cut down 

on waste [10].  

 

1.1. AI-Based Predictive Maintenance 

The six main components of AI-based PdM are as follows: decision-making modules, AI 

algorithms, data preprocessing, communication and integration, user interface, and reporting 

[11]. Important elements of a PdM system powered by AI: 

 

• Sensors: In a PdM system, sensors are the primary data collectors. These specialised 

instruments are positioned carefully on machinery and equipment to continuously measure 

a variety of characteristics, including vibration, temperature, pressure, and more. 

• Data Preprocessing: Sensor raw data frequently contains noise and irregularities. The first 

stage in getting the data ready for analysis is data preparation. 

• AI Algorithms: The PdM systems' brains are AI algorithms, which include machine 

learning and deep learning methods. 

• Decision-Making Modules: Decision-making modules process the insights and forecasts 

produced by the AI algorithms. These modules are in charge of figuring out when repairs 

are necessary. 

• Communication and Integration: Effective translation of the system's findings into action 

is ensured through communication and integration. 

1.2. Key Features of Machine Learning in Construction Predictive Maintenance 

• Real-time data collection: In order to detect any problems before they result in a 

breakdown, machine learning algorithms gather and evaluate data from a variety of sensors 

mounted on construction equipment. 

• Pattern recognition: Machine learning systems can reliably predict possible equipment 

breakdowns by analysing previous data to find trends and anomalies. 

• Automated maintenance alerts: Maintenance staff receives real-time notifications from 

machine learning algorithms, which enable preventative maintenance by alerting them to 

approaching equipment faults. 
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• Predictive analytics: These algorithms help construction businesses optimise their 

maintenance schedules by utilising the data acquired to anticipate the remaining useful life 

of equipment components. 

• Continuous improvement: Machine learning algorithms continuously improve their 

forecasting powers and accuracy over time by learning from every maintenance activity 

performed. 

2. LITERATURE REVIEW 

Dimitris Mourtzis et al, (2021) [12] the article presents a framework for wireless sensor 

networks and cloud technology-based remote monitoring of industrial refrigeration systems 

with the goal of implementing predictive maintenance by retrofitting conventional systems 

with DAQs. Highlighting its potential to improve industrial competitiveness and sustainability, 

it looks at system monitoring, makes architectural and communication protocol proposals, 

sensor node designs, graphical user interface designs, and lists achievable implementation 

steps. 

Andrei Garyaev et al. (2023) [13] In order to improve site productivity, safety, and predictive 

maintenance, the article explores the integration of AI and video surveillance in construction 

equipment management. By showing examples of implementation and emphasising AI's role 

in sophisticated data analysis for well-informed building decision-making, it informs 

stakeholders about the advantages. 

Dariusz Mikołajewski et al. (2023) [14] the article explores AI's application to Industry 4.0 and 

how digital twins can be used for predictive maintenance. In order to optimise Industry 4.0 

production processes through failure prediction and proactive maintenance activities, it 

describes AI-driven data processes, predictive scheduling, and repair categorization 

techniques. 

Smrutirekha Panda et al. (2023) [15] AI has the ability to revolutionise engineering and 

construction by increasing accuracy, automating activities, and recommending the best designs 

based on historical project data. Drones and AI-generated 3D models help in surveying, quality 

control, and maintenance. issues with AI and enhance upkeep. Cost savings, effectiveness, 

security, and data choices are all included in the benefits. However, while applying AI in this 

industry, ethical factors like employment displacement and proper training must be taken into 

account. 

3. PROPOSED METHODOLOGY 

3.1. Machine Learning Process Workflow and Techniques 

Choosing the appropriate workflow is one of the most challenging aspects of applying a 

machine learning process to maintenance data. Depending on the goals of the analysis and the 

source of the data, there are numerous approaches to this problem in the literature [10–13]. 

Given the difficulty of comparing the various applications, it was chosen to use a publicly 

available data set and investigate a straightforward yet comprehensive framework in this work.  
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It is crucial to remember that machine learning techniques and algorithms are simply a small 

portion of a bigger process for resolving a particular issue. Sometimes, after spending a great 

deal of time developing intricate machine learning solutions, we find that the issue we were 

waiting for is not resolved. It is simple to lose sight of the end objectives while delving deeper 

into the technical parts of machine learning. It is crucial to bear in mind every assumption made 

when developing machine learning models, whether they be explicit or implicit.  

 

3.2. Data Implementation 

The data set is first shown, and the decision is supported. Next, the goals of this machine 

learning application are outlined in detail and with great rigor. The data collection is then 

subjected to feature engineering, which generates new features to optimize the models' 

performance. The data set utilized is essential for resolving issues in machine learning. Making 

informed decisions about what data to utilize and how to handle it is essential to enhancing the 

algorithms' effectiveness.  

 

Following the division of the data set into subsets for training, validation, and testing, the first 

machine learning model application was completed, involving the training and evaluation of a 

wide range of algorithms. The training subset is where the algorithms are trained, and the 

validation subset is where the models and their hyper parameters are simultaneously fine-tuned 

to achieve optimal performance and an unbiased evaluation of how well the models fit the 

training data. Lastly, the model's performance is estimated using the test set, which replicates 

its behavior for upcoming data.  

3.3. Data Sources 

Due to corporate competition, even if this field is expanding, sharing sensitive information of 

this kind is uncommon. As a result, there are very few publicly available datasets that are 

pertinent to this application. Microsoft has provided a very comprehensive data collection 

relevant to the current project that is set in an industrial context.  

 

With the exception of the maintenance history, which also includes information for the year 

2022, the data were collected over the course of a year (2023) for one hundred computers.  

The data collection includes 978,100 hourly telemetry records for a total of 100 machines, 

divided into four different models; that is, 8863 records per machine. There are 4021 entries in 

the failure records, and 3388 in the maintenance histories. There are 761 failure records in the 

failure history for the year 2023, or roughly 10 failure records per system on average.  

Every machine contains four sensors that monitor tension, pressure, vibration, and rotation in 

addition to four components of importance for study. A controller keeps an eye on the system 

and can notify you when any of five different kinds of faults arise.  

 

As a result, measurements from four separate sensors per machine, along with the 

corresponding date and time, make up real-time telemetry data. Real-time measurements are 

taken of the voltage ("volt"), rotation ("rotate"), pressure ("pressure"), and vibration 

("vibration"); Table 1 shows the average of these readings over an hour.  
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Table 1: A typical instance of telemetry recording in real-time 

 Date time Machine ID Volt Rotate Pressure Vibration 

0 2023-01-01 06:00:00 1 178.238055 420.524280 115.098137 47.107888 

1 2023-01-01 07:00:00 1 164.899425 404.767692 97.480727 404.767692 

2 2023-01-01 08:00:00 1 173.010104 529.370027 77.258107 36.199049 

3 2023-01-01 09:00:00 1 164.483035 348.169537 111.268763 43.142346 

4 2023-01-01 10:00:00 1 159.630223 437.397075 113.906850 28.010713 

 

This data collection includes details on four different component types for each machine: 

comp1, comp2, comp3, and comp4. The time and date have been rounded to the closest hour. 

Each record includes the machine, the type of component that was changed, and the date and 

time.—Table 2. 

Table 2: An illustration of a maintenance record typically 

 Date time Machine ID component 

0 2022-06-01 06:00:00 1 Comp 2 

1 2022-07-16 06:00:00 1 Comp 4 

2 2022-07-31 06:00:00 1 Comp 3 

3 2022-12-13 06:00:00 1 Comp 1 

 

4. RESULTS AND DISCUSSION 

In Table 3, a basic statistical analysis is carried out to gain a better understanding of each 

sensor's behaviour. The parameters voltage ("volt"), rotation ("rotate"), pressure 

("pressure"), and vibration ("vibration") are calculated for the year 2023, along with the 

mean, standard deviation, and minimum and maximum values. 

 

Table 3: Real-time statistical analysis of telemetry data 

 
Volt Rotate Pressure Vibration 

count 978,100 978,100 978,100 978,100 

mean 172.797938 448.625321 102.878870 40.405209 

std 17.529316 54.694088 13.068881 5.390563 

min 99.353806 140.452277 53.257308 14.897256 

25% 162.325129 414.325916 95.518383 36.797501 

50% 172.627540 449.578352 102.445761 40.257449 

75% 183.024695 484.196802 109.575433 43.805140 

max 257.144919 697.0411863 187.972200 76.811274 
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A statistical study of real-time telemetry data, with an emphasis on four variables—voltage 

(volt), rotation (rotate), pressure, and vibration—is shown in table 3. There are 978,100 

observations of each variable in the dataset. About 172.80, 448.63, 102.88, and 40.41 are the 

mean values for voltage, rotation, pressure, and vibration, respectively. The associated 

variables' standard deviations, which have values of 17.53, 54.69, 13.07, and 5.39, show the 

degree of variability around the mean. Potential outliers can be identified by looking at the 

lowest and maximum values, which show the range within which the data change. The 

percentiles (25%, 50%, and 75%) offer valuable information about the data distribution and 

aid in identifying any central tendencies. All things considered, the table provides a thorough 

summary of the descriptive statistics of the telemetry data, making it easier to comprehend the 

observed parameters in real-time monitoring. 

4.1. Class Imbalance in Maintenance Problem Applications  

The fact that, in comparison to normal operation, malfunctions are uncommon during a 

machine's life cycle should be considered while performing predictive maintenance. This 

results in an imbalance between the classes (Table 4), which typically causes the algorithms to 

perform illusorily, classifying the most common case more frequently than the less common 

because there are fewer wrong classifications overall. As a result, even though the accuracy 

value is high, the recall and precision values may be low. 

 

Table 4: An illustration of the disparity between the classes for the overall data set's "failure" 

feature 

 
Failure Percentage 

none 305886 99.08% 

comp2 2187 0.70% 

comp1 1666 0.52% 

comp4 1442 0.45% 

comp3 970 0.35% 

 

4.2. Test Set Behaviour 

To date, the validation set has been utilised to optimise the models and corresponding 

hyperparameters in an effort to achieve higher performance. Verifying the models' behaviour 

in the test set is now crucial. This section presents the results of the evaluation of the two best 

models (in the validation set), in this case Random Forest and Artificial Neural Networks, with 

min-max scaling normalisation. In real-world scenarios, it is best to evaluate only the model 

that is intended to be implemented.  The results for Precision, Recall, and F1 Score for the 

Random Forest and Artificial Neural Network models in the validation and test sets are 

displayed in Tables 5 and 6, respectively.  

 

Table 5: Random Forest model performance in the test and validation sets with 'n' estimators 

= 80. 
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Precision 

(Develop) 

Conj. Develop. 

Recall 

F1 Score 

(Develop) 

Precision 

(Test) 

Conj. Test 

Recall 

F1 Score 

(Test) 

None 1.0199 1.0201 1.0200 1.0190 1.0200 1.0195 

comp1 0.9446 0.9780 0.9610 0.9920 0.8352 0.9067 

comp2 1.0118 1.0063 1.0091 0.9913 1.0084 0.9998 

comp3 1.0202 0.9716 0.9953 1.0057 0.9391 0.9712 

comp4 1.0014 0.9745 0.9878 1.0032 0.9813 0.9921 

 

The performance metrics for the Random Forest model with 80 estimators in the validation and 

test sets are shown in Table 5. With values of 1.0199, 1.0201, and 1.0200, respectively, the 

model exhibits high precision, recall, and F1 Score for the baseline case ('None') in the 

development set. With precision, recall, and F1 Score values of 1.0190, 1.0200, and 1.0195 in 

the test set, there is a modest decline in performance. With values of 0.9920, 0.8352, and 0.9067 

for component comp1, the model shows worse precision, recall, and F1 Score in the test set 

compared to the development set. While Comp2 shows good precision in both sets, its 

Conjunction Test Recall (0.9913) is little worse than its Conjunction Development Recall 

(1.0091). While comp4 demonstrates slight variations between precision (1.0032) and F1 Score 

(0.9921) in the test set, comp3 exhibits balanced performance overall. These findings 

demonstrate how different components can be predicted by the model with differing efficacy, 

highlighting the necessity of fine-tuning for optimal performance across all metrics and 

components. 

Table 6: Performance of the 100 hidden layer Artificial Neural Network model with min-

max scaling normalisation in the validation and test sets 

  

 
Precision 

(Develop) 

Conj. Develop. 

Recall 

F1 Score 

(Develop) 

Precision 

(Test) 

Conj. Test 

Recall 

F1 Score 

(Test) 

None 1.0199 1.0200 1.0199 1.0192 1.0197 1.0195 

comp1 0.9653 0.9539 0.9596 0.9232 0.8627 0.8919 

comp2 1.0119 1.0174 1.0147 1.0143 1.0055 1.0099 

comp3 1.0202 0.9369 0.9767 1.0060 0.9594 0.9821 

comp4 0.9722 1.0156 0.9934 0.9927 1.0035 0.9981 

 

Table 6 presents a summary of the performance metrics for the 100 hidden layer Artificial 

Neural Network (ANN) model with min-max scaling normalisation in the validation and test 

sets. The model exhibits strong precision, recall, and F1 Score (1.0199, 1.0200, and 1.0199, 

respectively) for the baseline case ('None') in the development set. The precision, recall, and 

F1 Score values in the test set show a small decline to 1.0192, 1.0197, and 1.0195. Upon 

dissecting individual components, comp1 shows values of 0.9232, 0.8627, and 0.8919 for 

precision, recall, and F1 Score, respectively, lower in the test set than in the development set. 

Comp2 performs well and consistently across the board in both sets of measures. Comp3 shows 

a decline in Conj. Test Recall (0.9594) relative to Conj. Development Recall (0.9767); Comp4 
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shows some minor differences in the test set between precision (0.9927) and F1 Score (0.9981). 

These results indicate that the ANN model can generalise well across many components, and 

there may be opportunities to optimise in particular areas for improved overall performance.  

The performance of the assessment metrics in the test set is declining broadly, as would be 

predicted. Nevertheless, the outcomes are still acceptable. As was previously indicated, the 

amount of the model's Recall parameter—or the number of actual failures that the model can 

predict—is generally the most significant factor in predictive maintenance. As the 

repercussions of false negatives—true failures that the model was unable to predict—become 

greater than those of false positives—a mistaken forecast of a failure—this parameter becomes 

even more crucial.  

Recall values (and, thus, F1Scores) for component 1 in the test set decrease for both models to 

values below 90%. The four elements were deemed to be equally significant in the current 

application.  

The study may involve attempting to optimise specific metrics that are thought to be of more 

relevance in a practical application where it may be feasible to know more information about 

each of them (such as cost, importance in the process, location in the equipment, and ease of 

replacement).  

5. CONCLUSION 

The suggested predictive maintenance approach for civil engineering structures makes use of 

machine learning (ML) and artificial intelligence (AI), utilising a thorough workflow and 

methods for ML. Recognising that class imbalance presents a barrier in maintenance problem 

applications, especially when it comes to uncommon failure prediction, the study highlights 

the importance of selecting data carefully. The results and discussion section clarifies 

descriptive statistics and sensor behaviour while offering insights into the statistical analysis 

of telemetry data. While there is a noticeable decline in recall for component 1 in the test set, 

overall performance evaluation of the Random Forest and Artificial Neural Network models in 

the validation and test sets yields reasonable results. In practical applications, the study 

emphasises how important it is to take into account actual failure predictions and optimise 

metrics based on component relevance. Apart from attaining particular results, the research 

presents an approach that can manage various forms of data and sources, illustrating how 

artificial intelligence (AI) instruments, particularly machine learning, may be utilised 

efficiently for assessing maintenance data in civil engineering constructions. As it demonstrates 

the flexibility and effectiveness of the suggested technique, the provided approach holds 

promise for the wider application of AI and ML in predictive maintenance for civil engineering 

applications. 
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