The Total Edge-to-Vertex Steiner Number of a Graph

S.ANCY MARY, Assistant Professor, Department of Mathematics, St. John's College of Arts and Science, Ammandivilai, ancymary369@gmail.com

ABSTRACT—An edge-to-vertex Steiner set W of a connected graph G is called a *total edge-to-vertex Steiner* set if $\langle W \rangle$ has no isolated edges. The minimum cardinality of a total edge-to-vertex Steiner set of G is a *total edge-to-vertex Steinernumber* and is denoted by $s_{tev}(G)$. Some general properties satisfied by this concept are studied. Some of the standard graphs are determined. If p, a and b are positive integers such that $4 \leq a \leq b$ then there exists a connected graph G such that $s_{ev}(G) = a$ and $s_{tev}(G) = b$, where $s_{ev}(G)$ is a edge-to-vertex Steiner number of a graph.

Keywords-total edge-to-vertex Steiner number, edge-to-vertex Steiner number, edge Steiner number.

AMS Subject Classification: 05C12.

I. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u - v path in G. An u - v path of length d(u, v) is called an u - v geodesic. For basic graph theoretic terminology, we refer to Buckley F and Harary F [2].

For a non-empty set W of vertices in a connected graph G, the Steiner distance d(W) of W is the minimum size of a connected subgraph of G containing W. Necessarily, each such subgraph is a tree and is called a Steiner tree with respect to W or a Steiner W-tree. It is to be noted that d(W) = d(u, v), when $W = \{u, v\}$. The set of all vertices of G that lie on some Steiner W-tree is denoted by S(W). If S(W) = V, then W is called a Steiner set for G. A Steiner set of minimum cardinality is a minimum Steiner set or simply a s-set of G and this cardinality is the Steiner number s(G) of G. The Steinernumber of a graph was introduced and studied in [4]. Let G be a connected graph with at least 2 vertices. An *edge Steiner set* of G is a set $W \subseteq V(G)$ such that every edge of G is contained in a Steiner W-tree. The *edge Steiner number* $s_e(G)$ is the minimum cardinality of its edge Steiner sets and any edge Steiner set of cardinality $s_e(G)$ is a *minimum edge Steiner* set of G. This concept is introduced in [4].

Let G = (V, E) be a connected graph with at least 3 vertices. For a non-empty set W of edges in a connected graph in G, the edge-to-vertex Steiner distance $d_{ev}(W)$ of W is the minimum size of a tree containing V(W) and is called an edge-to-vertex Steiner tree with respect to W or a Steiner W_{ev} -tree of G. For a given set $W \subseteq E(G)$, there may be more than one Steiner W_{ev} - tree of G. A set $W \subseteq E$ is called an edge-to-vertex Steiner set if every vertex of G lies on a Steiner W_{ev} -tree of G. The edge-to-vertex Steiner number $s_{ev}(G)$ of G is the minimum cardinality of its edge-to-vertex Steiner sets and any edge-to-vertex Steiner sets of cardinality $s_{ev}(G)$ is a minimum edge-to-vertex Steiner set of G.

The following theorems are used in the sequel.

Theorem 1.1. Each extreme vertex of a graph *G* belongs to every edge Steiner set of *G*.

II THE TOTAL EDGE-TO-VERTEX STEINER NUMBER OF A GRAPH

Definition 2.1. An edge-to-vertex Steiner set *W* of a connected graph *G* is called a *total edge-to-vertex*

Research Paper

Steiner set if $\langle W \rangle$ has no isolated edges. The minimum cardinality of a total edge-to-vertex Steiner set of *G* is a *total edge-to-vertex Steinernumber* and is denoted by $s_{tev}(G)$.

Example 2.2. For the graph G in Figure 2.1, Let $W = \{v_1v_2, v_1v_3, v_4v_5, v_5v_6\}$ is an edge-to-vertex Steiner set of G. Since $\langle W \rangle$ has no isolated edges, W is a total edge-to-vertex Steiner set of G and so $s_{tev}(G) \leq 4$. It is easily verified that no two element or three element subsets of G is a total edge-to-vertex Steiner set of G. Therefore $s_{tev}(G) = 4$.

Theorem 2.4. For a connected graph $G, 2 \le s_{ev}(G) \le s_{tev}(G) \le q$.

Proof. Since any edge-to-vertex Steiner set at least two edges $s_{ev}(G) \ge 2$. Let W be

a total edge-to-vertex Steiner set of G so that $s_{ev}(G) = |W|$. Since W is also an edge-to-vertex Steiner set of G, it is clear that $s_{ev}(G) \le s_{tev}(G) = |W|$. Hence $s_{ev}(G) \le s_{tev}(G)$. Since the edge E(G) is a total edge-to-vertex Steiner set of G, $s_{tev}(G) \le q$. Thus $2 \le s_{ev}(G) \le s_{tev}(G) \le q$.

Theorem 2.5. If v is an extreme vertex of a connected graph *G*, then every total edge-to-vertex Steiner set contains at least one extreme edge that is incident with v.

Proof. This followsfrom Theorem 2.4.

Theorem 2.6. Eachend edge of a connected graph G lies in every total edge-to-vertex Steiner set of G.

Proof. This followsfrom Theorem 2.5.

Theorem 2.7. Let G be a connected graph and e be an end edge of G. Then every total edge-to-vertex Steiner set contains at least one adjacent edge e of G.

Proof. Let *e* be an end edge of *G* and $e_1, e_2, ..., e_k$ ($k \ge 1$) be the adjacent edges of *G*. Let *W* be a total edge-to-vertex Steiner set of *G*. By Theorem 4.6, $e \in W$. We

prove that *W* contains at least one $e_i(1 \le i \le k)$. If at least one $e_i(1 \le i \le k)$ is an end edge, then by Theorem 2.6, $e_i \in W$ for $(1 \le i \le k)$ so let us assume that no $e_i(1 \le i \le k)$ is an end edge of *G*. We have to prove *W* contains at least one $e_i(1 \le i \le k)$. If not suppose *W* contains no $e_i(1 \le i \le k)$, then < W > has an isolated edge, which is a contradiction. Therefore every total edge-to-vertex Steiner set contains at least one adjacent edge *e* of *G*.

Theorem 2.8. For the complete graph $G = K_p \ (p \ge 5), \ s_{tev} (K_p) = p - 1.$

Proof. Let v be a vertex of G and $v_1, v_2, ..., v_{p-1}$ be the adjacent vertices of v. Then $S = \{vv_1, vv_2, ..., vv_{p-1}\}$ is a total edge-to-vertex Steiner set of K_p so that $s_{tev}(K_p) \le p-1$. We prove that $s_{tev}(G) = p - 1$. Suppose that $s_{tev}(G) \le p - 2$. Then there exists a total edge-to-vertex Steiner set W such that $|W| \le p - 2$. Let e = uv be an edge in K_p such that $e \notin W$. Then either u or v lies on any Steiner W_{ev} -tree of K_p and so W is not a total edge-to-vertex Steiner set of G so that $s_{tev}(K_p) = p - 1$.

Theorem 2.9. For a cycle C_p $(p \ge 6)$,

 $s_{tev}(C_p) = \begin{cases} 4 & if \ p \ is \ even \\ 5 & if \ p \ is \ odd \end{cases}$

Research Paper

Proof. Let p be even. Let u and v be two antipodal vertices of C_p . Let u_1 and u_2 be the adjacent vertices of u and let v_1 and v_2 be the two adjacent vertices of v. Then $S = \{uu_1, uu_2, vv_1, vv_2\}$ is a total edge-to-vertex Steiner set of G and so $s_{tev}(C_p) \le 4$. It is easily verified that no two elements or three elements subset of C_p is a total edge-to-vertex Steiner set of G. Hence $s_{tev}(C_p) = 4$.

Suppose that p is odd. Let v and w be two antipodal vertices of u. Let u_1 and u_2 be the adjacent vertices of u and v_1 is the adjacent vertices of v and w_1 is adjacent to w such that $v_1 \neq w$ and $w_1 \neq v$. Then S = $\{uu_1, uu_2, vv_1, ww_1\}$ is a total edge-to-vertex Steiner set of G and so $s_{tev}(C_p) \leq 5$. It is easily verified that no two element or three element subset of C_p is a total edge-to-vertex Steiner set of G. Hence $s_{tev}(C_p) = 5$.

Theorem 2.10. For a complete bipartite graph $G = K_{m,n}$ $(2 \le m \le n)$, $s_{tev}(G) = m + n - 2$.

Proof. Let $X = \{x_1, x_2, ..., x_m\}$, and $Y = \{y_1, y_2, ..., y_n\}$ be the bipartite sets of *G*. Let $W = \{x_1y_1, x_2y_2, ..., x_my_m, y_1x_2, y_1x_3, ..., y_1x_m, x_my_{m+1}, x_my_{m+2}, ..., x_my_n\}$. Then *W* is a total edge-to-vertex Steiner set of *G* so that $s_{tev}(G) \le m + n - 2$. We prove that $s_{tev}(G) = m + n - 2$. Suppose that $s_{tev}(G) \le m + n - 3$. Then there exist a total edge-to-vertex Steiner set of *W*' such that $|W'| \le m + n - 3$. Let e = xy be an edge in $K_{m,n}$ such that $e \notin W'$. Then either *x* or *y* does lies on any Steiner W_{ev} -tree of $K_{m,n}$ and so *W*' is not a total edge-to-vertex Steiner set of *G* so that $s_{tev}(G) = m + n - 2$.

Theorem 2.11. For any connected graph *G*, $s_{tev}(G) = 2$ if and only if *G* is either $G = P_3$ or K_3 .

Proof. Let *G* is either P_3 or K_3 , then it is easily verified that $s_{tev}(G) = 2$. Conversely, let $s_{tev}(G) = 2$. Let $W = \{uv, wz\}$ be a total edge-to-vertex Steiner set of *G*. Since $\langle W \rangle$ has no isolated edges, there must be a vertex common to uv and wz. Let us assume that v = w. If u and w are not adjacent, then $= P_3$. So we have done. If u and w are adjacent, then $= K_3$. So we have done.

III. CONCLUSIONS

With the contribution of the edge-to-vertexSteiner number of a graph, we can introduce the total edge-to-vertexSteiner number $s_{tev}(G)$.the total edge-to-vertex Steiner number of certain graphs can be studied with some parameters.

REFERENCES

 [1] S. AncyMary and S. Joseph Robin, The Forcing Total Edge-to-Vertex Steiner Number of a Graph, International Journal of Research and Analytical Reviews, Volume 6, Issue 1, 2019, pp 1427-1433.

[2] Buckley, F. Harary F, Distance in Graphs, Addition- wesley, Redwood City, CA, 1990.

[3] G. Chartrand and P. Zhang, The Steiner number of a graph, Discrete Mathematics 242, (2002

[4] A.P. Santhakumaran and J. John, The edge Steiner number of a graph, Journal of Discrete Mathematical Science and Cryptography Vol.10 (2007), No.5, pp 677-696.

[5] A. P. Santhakumaran and J. John, The forcing Steiner number of a graph. DiscussionesMathematicae Graph Theory 31 (1) (2011) 171-181.

[6]A. P. Santhakumaran, J. John, On the edge-to- vertex geodeticnumber of a graph, *Miskolc Mathematical Notes*, 13(1), (2012),107–119.