Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

Intuitionistic Pre * Open Maps in Intuitionistic Topological Spaces

L. JEYASUDHA¹, K. BALA DEEPA ARASI².

¹Research Scholar, Reg. No: 20122012092004, PG & Research Department of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi, TN, India. Affiliated to Manonmaniam Sundaranar University, Tirunelveli, TN, India. E. mail: jeyasudha555@gmail.com

²Assistant Professor of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi, Tamilnadu, India. E. mail: <u>baladeepa85@gmail.com</u>

Abstract

The major goal of this work is to introduce the concepts of Intuitionistic Pre * Open maps, Intuitionistic Pre * Closed maps and their contra versions in ITS using the concepts of Intuitionistic Pre * Open and Intuitionistic Pre * Closed sets. Further we give characterization for these maps and discuss the relationship with other known intuitionistic maps. Also we find the equivalent conditions for Intuitionistic Pre * Open maps. We continue to look into the connection to Intuitionistic Pre open maps and Intuitionistic Regular * open maps in ITS.

Keywords: Intuitionistic Pre * Open map, Intuitionistic Pre * Closed map, Contra Intuitionistic Pre * Open map, Contra Intuitionistic Pre * Closed map.

AMS subject classification (2010): 54C05.

1. Introduction

In 1996, D. Coker [1] introduced the concept of intuitionistic sets and also he has introduced the concept of intuitionistic topological spaces. In 2016 G. Sasikala and M. Navaneethakrishnan [4] defined intuitionistic Pre open sets in intuitionistic topological spaces. We [5] gives the definition of intuitionistic pre * open sets in intuitionistic topological spaces.

In this study, we define intuitionistic pre * Open maps, intuitionistic pre * Closed maps and their contra versions. We also demonstrate that the intuitionistic pre * open map is intermediate between intuitionistic open and intuitionistic pre open maps.

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

2. Preliminaries

Definition - 2.1. Let \hat{X} be a non-empty set, an *intuitionistic set* (IS in short) \hat{A} is an object having the form $\hat{A} = \langle \hat{X}, \hat{A}_1, \hat{A}_2 \rangle$, where \hat{A}_1 and \hat{A}_2 are subsets of \hat{X} satisfying $\hat{A}_1 \cap \hat{A}_2 = \phi$. The set \hat{A}_1 and \hat{A}_2 are called the set of members of \hat{A} and set of non-members of \hat{A} respectively.

Definition - 2.2. Let \hat{X} be a non-empty set, $\hat{A} = \langle \hat{X}, \hat{A}_1, \hat{A}_2 \rangle$ and $\hat{B} = \langle \hat{X}, \hat{B}_1, \hat{B}_2 \rangle$ be an IS's and let $\{\hat{A}_i : i \in J\}$ be arbitrary family of IS's, where $\hat{A} = \langle \hat{X}, \hat{A}_1, \hat{A}_2 \rangle$. Then the followings are hold.

- a) $\ddot{\mathsf{A}} \subseteq \ddot{B}$ iff $\ddot{\mathsf{A}}_1 \subseteq \ddot{B}_1$ and $\ddot{\mathsf{A}}_2 \supseteq \ddot{B}_2$.
- b) $\ddot{\mathsf{A}} = \ddot{B}$ iff $\ddot{\mathsf{A}} \subseteq \ddot{B}$ and $\ddot{\mathsf{A}} \supseteq \ddot{B}$.
- c) $\ddot{A}^c = \langle \dot{X}, \ddot{A}_2, \ddot{A}_1 \rangle$ is called the complement of \ddot{A} and \ddot{A}^c is also denoted by $\dot{X} \ddot{A}$.
- d) $\cup \ddot{\mathsf{A}}_i = < \dot{X}, \cup \ddot{\mathsf{A}}_{i1}, \cap \ddot{\mathsf{A}}_{i2} >.$
- e) $\cap \ddot{\mathsf{A}}_i = \langle \dot{X}, \cap \ddot{\mathsf{A}}_{i1}, \cup \ddot{\mathsf{A}}_{i2} \rangle$.
- f) $\ddot{\mathsf{A}} \ddot{B} = \ddot{\mathsf{A}} \cap \ddot{B}^{c}$.
- g) $\ddot{\Phi}_{I} = \langle \hat{X}, \mathbf{\Phi}, \hat{X} \rangle$ and $\ddot{X}_{I} = \langle \hat{X}, \hat{X}, \mathbf{\Phi} \rangle$.

Definition - 2.3. Let \hat{X} be a non-empty set and τ_{IT} be the family of intuitionistic sets of \hat{X} then τ_{IT} is called an *intuitionistic topology* (IT in short) on \hat{X} if it is satisfying the following axioms:

- 1) $\ddot{X}_{I}, \ddot{\Phi}_{I} \in \tau_{IT}.$
- 2) $\ddot{\mathsf{A}} \cap \ddot{B} \in \tau_{\mathrm{IT}}$ for every $\ddot{\mathsf{A}}, \ddot{B} \in \tau_{\mathrm{IT}}$.
- 3) $\cup \ddot{A}_i \in \tau_{IT}$ for any arbitrary family ${\ddot{A}_i : i \in J} \subseteq \tau_{IT}$.

The pair $(\dot{X}, \tau_{\text{IT}})$ is called *intuitionistic topological space* (ITS in short) and IS in τ_{IT} is known as the intuitionistic open set (IOS in short) in \dot{X} , the complement of the IOS is called the intuitionistic closed set (ICS in short) in \dot{X} .

Definition - 2.4. $(\hat{X}, \tau_{\text{IT}})$ be an ITS and \hat{A} be a IS in \hat{X} then \hat{A} is said to be *intuitionistic* generalized closed (Ig- closed in short) set if Icl(\hat{A}) $\subseteq \hat{U}$ whenever $\hat{A} \subseteq \hat{U}$ and \hat{U} is IOS in \hat{X} . The complement of the Ig – closed set is called the *Ig- open set* in \hat{X} .

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

Definition - 2.5. Let $(\hat{X}, \tau_{\text{IT}})$ be an ITS and \ddot{A} be a IS in \hat{X} then *intuitionistic generalized closure* of \ddot{A} is defined as the intersection of all Ig – closed sets in \hat{X} containing \ddot{A} and is denoted by Icl*(\ddot{A}). (i.e) Icl*(\ddot{A}) = \cap { \ddot{G} : \ddot{G} is an Ig- closed set in \hat{X} and $\ddot{A} \subseteq \ddot{G}$ }.

Definition - 2.6. Let $(\hat{X}, \tau_{\text{IT}})$ be an ITS and \ddot{A} be an intuitionistic set then

- a) \ddot{A} is intuitionistic pre open (IPO) set in \dot{X} if $A \subseteq \text{Iint}(\text{Icl}(A))$.
- b) \ddot{A} is intuitionistic pre * open (IP*O) set in \dot{X} if $A \subseteq \text{Iint}(\text{Icl}^*(A))$.
- c) \ddot{A} is intuitionistic regular * open (IR*O) set in \dot{X} if A = Iint(Icl*(A)).

The complement of the IPO, IP*O and IR*O sets are called the IPC, IP*C and IR*C sets in \hat{X} .

Definition - 2.7. Let $(\hat{X}, \tau_{\text{IT}})$ be an ITS and \ddot{A} be a IS in \hat{X} then the intuitionistic interior operator of \ddot{A} (Iint(\ddot{A}) in short) and intuitionistic closure operator of \ddot{A} (Icl(\ddot{A}) in short) are defined by:

 $Iint(\ddot{A}) = \bigcup \{ \ddot{G} : \ddot{G} \text{ is an IOS in } \dot{X} \text{ and } \ddot{A} \supseteq \ddot{G} \}.$ $Icl(\ddot{A}) = \bigcap \{ \ddot{G} : \ddot{G} \text{ is an ICS in } \dot{X} \text{ and } \ddot{A} \subseteq \ddot{G} \}.$

Theorem - 2.8. Let (\dot{X}, τ_{IT}) be an ITS then the followings are hold.

- a) Every IO set is IP*O set.
- b) Every IP*O set is IPO set.
- c) Every IR*O set is IP*O set.

Theorem - 2.9. Let (\dot{X}, τ_{IT}) be an ITS and \ddot{A} and \ddot{B} be a IS of \dot{X} then the followings are hold.

- a) $\operatorname{Iint}(\ddot{\Phi}_{I}) = \ddot{\Phi}_{I} \operatorname{and} \operatorname{Iint}(\ddot{X}_{I}) = \ddot{X}_{I}.$
- b) \ddot{A} is an IOS iff $\ddot{A} = \text{Iint}(\ddot{A})$.
- c) $\ddot{\mathsf{A}} \subseteq \ddot{B}$ then $\operatorname{Iint}(\ddot{\mathsf{A}}) \subseteq \operatorname{Iint}(\ddot{B})$.
- d) $\operatorname{Iint}(\ddot{\mathsf{A}} \cap \ddot{B}) = \operatorname{Iint}(\ddot{\mathsf{A}}) \cap \operatorname{Iint}(\ddot{B}).$
- e) $\operatorname{Iint}(\ddot{\mathsf{A}} \cup \ddot{B}) \supseteq \operatorname{Iint}(\ddot{\mathsf{A}}) \cup \operatorname{Iint}(\ddot{B}).$
- f) $\operatorname{Icl}(\dot{\varphi}_{I}) = \dot{\varphi}_{I} \text{ and } \operatorname{Icl}(\ddot{X}_{I}) = \ddot{X}_{I}.$
- g) \ddot{A} is an ICS iff $\ddot{A} = Icl(\ddot{A})$.
- h) $\ddot{\mathsf{A}} \subseteq \ddot{B}$ then $\operatorname{Icl}(\ddot{\mathsf{A}}) \subseteq \operatorname{Icl}(\ddot{B})$.
- i) $\operatorname{Icl}(\ddot{\mathsf{A}} \cap \ddot{B}) \subseteq \operatorname{Icl}(\ddot{\mathsf{A}}) \cap \operatorname{Icl}(\ddot{B}).$

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

j) $\operatorname{Icl}(\ddot{\mathsf{A}} \cup \ddot{B}) = \operatorname{Icl}(\ddot{\mathsf{A}}) \cup \operatorname{Icl}(\ddot{B}).$

Theorem - 2.10. Let $(\hat{X}, \tau_{\text{IT}})$ be an ITS and \ddot{A} and \ddot{B} be a IS of \hat{X} then the followings are hold.

- a) IP*int($\ddot{\Phi}_I$) = $\ddot{\Phi}_I$ and IP*int(\ddot{X}_I) = \ddot{X}_I .
- b) If \ddot{A} is IP*- open set then $\ddot{A} = IP*int(\ddot{A})$.
- c) $\ddot{A} \subseteq \ddot{B}$ then IP*int(\ddot{A}) \subseteq IP*int(\ddot{B}).
- d) IP*cl($\dot{\Phi}_{I}$) = $\dot{\Phi}_{I}$ and IP*cl(\ddot{X}_{I}) = \ddot{X}_{I} .
- e) If \ddot{A} is IP*- closed set then $\ddot{A} = IP*cl(\ddot{A})$.
- f) $\ddot{\mathsf{A}} \subseteq \ddot{B}$ then IP*cl($\ddot{\mathsf{A}}$) \subseteq IP*cl(\ddot{B}).

Theorem - 2.11. Let $(\hat{X}, \tau_{\text{IT}})$ be an ITS and \ddot{A} be a IS of \hat{X} then the followings are hold.

- a) $\operatorname{Iint}(\hat{X} \ddot{\mathsf{A}}) = \hat{X} \operatorname{Icl}(\ddot{\mathsf{A}})$ and $\operatorname{Icl}(\hat{X} \ddot{\mathsf{A}}) = \hat{X} \operatorname{Iint}(\ddot{\mathsf{A}})$.
- b) IP*int($\hat{X} \hat{A}$) = $\hat{X} IP$ *cl(\hat{A}) and IP*cl ($\hat{X} \hat{A}$) = $\hat{X} IP$ *int(\hat{A}).

Theorem - 2.12. Let $f: \hat{X} \to \hat{Y}$ is said to be

- a) I- continuous map if $f^{-1}(V)$ is IO set in \hat{X} for every IO set V in \hat{Y} .
- b) IP*- continuous map if $f^{-1}(V)$ is IP*O set in \hat{X} for every IO set V in \hat{Y} .
- c) IP*- irresolute map if $f^{-1}(V)$ is IP*O set in \hat{X} for every IP*O set V in \hat{Y} .
- d) I- open map if f(U) is IO set in \hat{Y} for every IO set U in \hat{X} .
- e) IP- open map if f(U) is IPO set in \hat{Y} for every IO set U in \hat{X} .
- f) IR*- open map if f(U) is IR*O set in \hat{Y} for every IO set U in \hat{X} .
- g) I- closed map if f(U) is IC set in \hat{Y} for every IC set U in \hat{X} .
- h) IP- closed map if f(U) is IPC set in \hat{Y} for every IC set U in \hat{X} .
- i) IR*- closed map if f(U) is IR*C set in \hat{Y} for every IC set U in \hat{X} .
- j) Contra I- open map if f(U) is IC set in \hat{Y} for every IO set U in \hat{X} .
- k) Contra IP- open map if f(U) is IPC set in \hat{Y} for every IO set U in \hat{X} .
- 1) Contra IR*- open map if f(U) is IR*C set in \hat{Y} for every IO set U in \hat{X} .
- m) Contra I- closed map if f(U) is IO set in \hat{Y} for every IC set U in \hat{X} .
- n) Contra IP- closed map if f(U) is IPO set in \hat{Y} for every IC set U in \hat{X} .
- o) Contra IR*- closed map if f(U) is IR*O set in \hat{Y} for every IC set U in \hat{X} .

3. Intuitionistic Pre * Open Maps

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11 , Iss 12, 2022

Definition – **3.1.** A map f from ITS (\hat{X}, τ_{IT}) into another ITS (\hat{Y}, σ_{IT}) is called *Intuitionistic Pre* * *Open (in short IP*- Open) Map* if f(M) is IP*O set in \hat{Y} for each IO set M in \hat{X} .

Definition – **3.2.** A map f from ITS (\hat{X}, τ_{IT}) into another ITS (\hat{Y}, σ_{IT}) is called *Contra Intuitionistic Pre* * *Open Map* if f(M) is IP*C set in \hat{Y} for each IO set M in \hat{X} .

Example – 3.3. Let $\hat{X} = \{a,b,c\}$ and $\hat{Y} = \{1,2,3\}$. Consider the IT's $\tau_{IT} = \{X_I, \varphi_I, <\hat{X}, \{a\}, \{b,c\}>, <\hat{X}, \{a,c\}, \{b\}>\}$ and $\sigma_{IT} = \{Y_I, \varphi_I, <\hat{Y}, \{1\}, \{3\}>, <\hat{Y}, \{3\}, \{1,2\}>, <\hat{Y}, \{1,3\}, \varphi>\}$ then IP*O(\hat{Y}) = $\{Y_I, \varphi_I, <\hat{Y}, \{1\}, \{3\}>, <\hat{Y}, \{1\}, \{2,3\}>, <\hat{Y}, \{3\}, \{1,2\}>, <\hat{Y}, \{1,3\}, \varphi>, <\hat{Y}, \{1,3\}, \{2\}>\}$. Let $f : (\hat{X}, \tau_{IT}) \rightarrow (\hat{Y}, \sigma_{IT})$ be a map defined by, f(a) = 1, f(b) = 2, f(c) = 3. Here, $f(X_I) = Y_I$, $f(\varphi_I) = \varphi_I$, $f(<\hat{X}, \{a\}, \{b,c\}>) = <\hat{Y}, \{1\}, \{2,3\}>$ and $f(<\hat{X}, \{a,c\}, \{b\}>) = <\hat{Y}, \{1,3\}, \{2\}>$ are IP*O sets in \hat{Y} . Therefore, f is IP*- open map.

Example – 3.4. Let $\hat{X} = \{a,b,c\}$ and $\hat{Y} = \{1,2,3\}$. Consider the IT's $\tau_{IT} = \{X_I, \varphi_I, \langle \hat{X}, \{a\}, \{b,c\} > \}$ and $\sigma_{IT} = \{Y_I, \varphi_I, \langle \hat{Y}, \{2\}, \{1,3\} >, \langle \hat{Y}, \{3\}, \{1,2\} >, \langle \hat{Y}, \{2,3\}, \{1\} > \}$ then IP*C(\hat{Y}) = $\{Y_I, \varphi_I, \langle \hat{Y}, \{1,3\}, \{2\} >, \langle \hat{Y}, \{1,2\}, \{3\} >, \langle \hat{Y}, \{1\}, \{2,3\} > \}$. Let $f : (\hat{X}, \tau_{IT}) \rightarrow (\hat{Y}, \sigma_{IT})$ be a map defined by, f(a) = 1, f(b) = 3, f(c) = 2. Here, $f(X_I) = Y_I$, $f(\varphi_I) = \varphi_I$ and $f(\langle \hat{X}, \{a\}, \{b,c\} >) = \langle \hat{Y}, \{1\}, \{2,3\} >$ are IP*C sets in \hat{Y} . Therefore, f is Contra IP*- open map.

Theorem – 3.5. Let $(\hat{X}, \tau_{\text{IT}})$ and $(\hat{Y}, \sigma_{\text{IT}})$ be an ITS then the followings are hold.

- a) Every I- Open map is IP*- Open map.
- b) Every IR*- Open map is IP*- Open map.
- c) Every IP*- Open map is IP- Open map.
- d) Every Contra I- open map is Contra IP*- open map.
- e) Every Contra IR*- open map is Contra IP*- open map.

Proof: (a) Suppose a map $f : (\hat{X}, \tau_{IT}) \to (\hat{Y}, \sigma_{IT})$ is I- open map. Let M be any IO set in \hat{X} then f(M) is IO set in \hat{Y} . Since, every IO set is IP*O set. Therefore, f(M) is IP*O in \hat{Y} . Hence, f is IP*-Open map.

(b) Suppose a map $f : (\hat{X}, \tau_{IT}) \to (\hat{Y}, \sigma_{IT})$ is IR*- open map. Let M be any IO set in \hat{X} then f(M) is IR*O set in \hat{Y} . Since, every IR*O set is IP*O set. Therefore, f(M) is IP*O in \hat{Y} . Hence, f is IP*- Open map.

(c) Suppose a map $f : (\hat{X}, \tau_{IT}) \to (\hat{Y}, \sigma_{IT})$ is IP*- open map. Let M be any IO set in \hat{X} then f(M) is IP*O set in \hat{Y} . Since, every IP*O set is IPO set. Therefore, f(M) is IPO in \hat{Y} . Hence, f is IP- Open map.

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

(d) Suppose a map $f : (\hat{X}, \tau_{IT}) \to (\hat{Y}, \sigma_{IT})$ is Contra I- open map. Let M be any IO set in \hat{X} then f(M) is IC set in \hat{Y} . Since, every IC set is IP*C set. Therefore, f(M) is IP*C in \hat{Y} . Hence, f is Contra IP*- open map.

(e) Suppose a map $f : (\hat{X}, \tau_{IT}) \to (\hat{Y}, \sigma_{IT})$ is Contra IP*- open map. Let M be any IO set in \hat{X} then f(M) is IP*C set in \hat{Y} . Since, every IP*C set is IPC set. Therefore, f(M) is IPC in \hat{Y} . Hence, f is Contra IP- open map.

The converse of the above theorem need not be true as shows in the following example.

Example – 3.6. In example – 3.3, f is IP*- open map. But $f(\langle \hat{X}, \{a\}, \{b,c\}\rangle) = \langle \hat{Y}, \{1\}, \{2,3\}\rangle$ and $f(\langle \hat{X}, \{a,c\}, \{b\}\rangle) = \langle \hat{Y}, \{1,3\}, \{2\}\rangle$ are does not belongs to σ_{IT} . Therefore, f is not a I- open map.

Example – 3.7. In example – 3.3, $IR*O(\mathring{Y}) = \{Y_I, \varphi_I, <\mathring{Y}, \{1\}, \{3\}, <\mathring{Y}, \{3\}, \{1,2\}\}$. f is IP*-open map. But $f(<\mathring{X}, \{a\}, \{b,c\}) = <\mathring{Y}, \{1\}, \{2,3\}$ and $f(<\mathring{X}, \{a,c\}, \{b\}) = <\mathring{Y}, \{1,3\}, \{2\}$ are does not belongs to $IR*O(\mathring{Y})$. Therefore, f is not an IR*- open map.

Example – 3.8. Let $\hat{X} = \{1,2,3\}$ and $\hat{Y} = \{a,b,c\}$. Consider the IT's $\tau_{IT} = \{X_{I},\varphi_{I},<\hat{X},\{1,3\},\varphi>,<\hat{X},\{1,3\},\{2\}>\}$ and $\sigma_{IT} = \{Y_{I},\varphi_{I},<\hat{Y},\{a\},\{b\}>,<\hat{Y},\{b\},\{c\}>,<\hat{Y},\{a,b\},\varphi>,<\hat{Y},\varphi,\{b,c\}>\}$ then IP*O(\hat{Y}) = $\{Y_{I},\varphi_{I},<\hat{Y},\varphi,\{b,c\}>,<\hat{Y},\{a,b\},\varphi>,<\hat{Y},\{a\},\{b\}>,<\hat{Y},\{b\},\{c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b\}>,<\hat{Y},\{b\},\{c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,<\hat{Y},\{a,c\},\{b,c\}>,$

Example – 3.9. Let $\hat{X} = \{1,2,3\}$ and $\hat{Y} = \{a,b,c\}$. Consider the IT's $\tau_{IT} = \{X_I, \varphi_I, \langle \hat{X}, \{3\}, \{1,2\} > \}$ and $\sigma_{IT} = \{Y_I, \varphi_I, \langle \hat{Y}, \{a\}, \{c\} >, \langle \hat{Y}, \{c\}, \{a,b\} >, \langle \hat{Y}, \{a,c\}, \varphi > \}$ then IC(\hat{Y}) = $\{Y_I, \varphi_I, \langle \hat{Y}, \{c\}, \{a\} >, \langle \hat{Y}, \{a,b\}, \{c\} >, \langle \hat{Y}, \varphi, \{a,c\} > \}$ and IP*C(\hat{Y}) = $\{Y_I, \varphi_I, \langle \hat{Y}, \varphi, \{a\} >, \langle \hat{Y}, \varphi, \{a,c\} >, \langle \hat{Y}, \{c\}, \{a\} >, \langle \hat{Y}, \{b,c\}, \{a\} >, \langle \hat{Y}, \{b\}, \{a,c\} >, \langle \hat{Y}, \{a,b\}, \{c\} > \}$. Let $f : (\hat{X}, \tau_{IT}) \rightarrow (\hat{Y}, \sigma_{IT})$ be a map defined by, f(1) = a, f(2) = c, f(3) = b. Here, $f(X_I) = Y_I, f(\varphi_I) = \varphi_I$ and $f(\langle \hat{X}, \{3\}, \{1,2\} >) = \langle \hat{Y}, \{b\}, \{a,c\} > a$ re IP*C sets in \hat{Y} but $f(\langle \hat{X}, \{3\}, \{1,2\} >)$ is not a IC set in \hat{Y} . Therefore, f is Contra IP*- open map but not a Contra I- open map.

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 ONLINE 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

Example – 3.10. In example – 3.9, $IR*C(\hat{Y}) = \{Y_I, \varphi_I, <\hat{Y}, \{c\}, \{a\}>, <\hat{Y}, \{a,b\}, \{c\}>\}$. Here, $f(X_I) = Y_I$, $f(\varphi_I) = \varphi_I$ and $f(<\hat{X}, \{3\}, \{1,2\}>) = <\hat{Y}, \{b\}, \{a,c\}>$ are IP*C sets in \hat{Y} but $f(<\hat{X}, \{3\}, \{1,2\}>)$ is not a IR*C set in \hat{Y} . Therefore, f is Contra IP*- open map but not a Contra IR*- open map.

Theorem – 3.11. A map $f : (\hat{X}, \tau_{IT}) \to (\hat{Y}, \sigma_{IT})$ is a IP*- open map iff $f(Iint(A)) \subseteq IP*int(f(A))$ for every IS A in \hat{X} .

Proof: Let f be IP*- open map and A be any IS of \hat{X} . Since, Iint(A) is IO set in \hat{X} then f(Iint(A)) is IP*O set in \hat{Y} . Therefore, f(Iint(A)) = IP*int(f(Iint(A))) \subseteq IP*int(f(A)). Conversely, Let A be any IO set in \hat{X} then A = Iint(A). By our assumption, f(A) = f(Iint(A)) \subseteq IP*int(f(A)). Also IP*int(f(A)) \subseteq f(A). Therefore, f(A) is IP*O set in \hat{Y} . Hence f is IP*- open map.

Theorem – 3.12. Let $(\hat{X}, \tau_{\text{IT}})$ and $(\hat{Y}, \sigma_{\text{IT}})$ be an ITS in which every IP*O set is IOS. Then f : $(\hat{X}, \tau_{\text{IT}}) \rightarrow (\hat{Y}, \sigma_{\text{IT}})$ is a IP*- open map iff $f(\text{IP*int}(A)) \subseteq \text{IP*int}(f(A))$ for every IS A in \hat{X} .

Proof: Let f be IP*- open map and A be any IS of \hat{X} . Since, IP*int(A) is IP*O set in \hat{X} . By hypothesis, IP*int(A) is IO set in \hat{X} then f(IP*int(A)) is IP*O set in \hat{Y} . Therefore, f(IP*int(A)) = IP*int(f(IP*int(A))) \subseteq IP*int(f(A)). Conversely, Let A be any IO set in \hat{X} then A is IP*O set in \hat{X} . Therefore, A = IP*int(A). By our assumption, f(A) = f(IP*int(A)) \subseteq IP*int(f(A)). Also IP*int(f(A)) \subseteq f(A). Therefore, f(A) is IP*O set in \hat{Y} . Hence f is IP*- open map.

Theorem – **3.13.** Let $(\dot{X}, \tau_{\text{IT}}), (\dot{Y}, \sigma_{\text{IT}})$ and $(\dot{Z}, \mu_{\text{IT}})$ be three ITS, $f : (\dot{X}, \tau_{\text{IT}}) \to (\dot{Y}, \sigma_{\text{IT}})$ be a surjection map and $g : (\dot{Y}, \sigma_{\text{IT}}) \to (\dot{Z}, \mu_{\text{IT}})$ be any map then the followings are hold,

- a) If gof is IP*- open map and f is I- continuous map then g is IP*- open map.
- b) If gof is I- continuous map and f is IP*- open map then g is IP*- continuous map.
- c) If gof is IP*- continuous map and g is I- open map then f is IP*- continuous map.

Proof: (a) Let M be any IO set in \hat{Y} . Since, f is I- continuous then $f^{-1}(M)$ is IO set in \hat{X} . Since $g \circ f$ is IP*- open map then $(g \circ f)(f^{-1}(M))$ is IP*O set in \hat{Z} . Therefore $g(f(f^{-1}(M))) = g(M)$ is IP*O set in \hat{Z} . Hence, g is IP*- open map.

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 ONLINE 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

(b) Let M be any IO set in \hat{Z} . Since, $g \circ f$ is I- continuous map then $(g \circ f)^{-1}(M)$ is IO set in \hat{X} . Since f is IP*- open map then $f((g \circ f)^{-1}(M)) = f(f^{-1}(g^{-1}(M))) = g^{-1}(M)$ is IP*O set in \hat{Y} . Hence, g is IP*- continuous map.

(c) Let M be any IO set in \hat{Y} . Since, g is I- open map then g(M) is IO set in \hat{Z} . Since gof is IP*continuous map then $(g \circ f)^{-1}(g(M)) = f^{-1}(g^{-1}(g(M))) = f^{-1}(M)$ is IP*O set in \hat{X} . Hence, f is IP*continuous map.

Theorem – 3.14. Let (\dot{X}, τ_{TT}) , (\dot{Y}, σ_{TT}) and (\dot{Z}, μ_{TT}) be three ITS, $f : (\dot{X}, \tau_{TT}) \rightarrow (\dot{Y}, \sigma_{TT})$ and $g : (\dot{Y}, \sigma_{TT}) \rightarrow (\dot{Z}, \mu_{TT})$ be any map then the followings are hold,

- a) If f is I- open map and g is IP^* open map then $g \circ f$ is IP^* open map.
- b) If f and g are I- open map then $g \circ f$ is IP*- open map.
- c) If gof is IP*- open map and g is injective IP*- irresolute map then f is IP*- open map.

Proof: (a) Let M be any IO set in \hat{X} . Since f is I- open map then f(M) is IO set in \hat{Y} . Since, g is IP*- open map. Therefore $g(f(M)) = g \circ f(M)$ is IP*O set in \hat{Z} . Hence, $g \circ f$ is IP*O map.

(b) We know that, the composition of two I- open maps is again I- open map. Therefore, $g \circ f$ is I- open map. By theorem – 3.5. (a), $g \circ f$ is IP*- open map.

(c) Let M be any IO set in \hat{X} . Since, $g \circ f$ is IP*- open map then $(g \circ f)(M)$ is IP*O set in \hat{Z} . Since, g is IP*- irresolute map then $g^{-1}(g(f(M))) = g(M)$ is IP*O set in \hat{Y} . Hence, f is IP*- open map.

4. Intuitionistic Pre * Closed Maps

Definition – **4.1.** A map f from ITS $(\hat{X}, \tau_{\text{IT}})$ into another ITS $(\hat{Y}, \sigma_{\text{IT}})$ is called *Intuitionistic Pre* * *Closed Map* if f(M) is IP*C set in \hat{Y} for each IC set M in \hat{X} .

Definition – **4.2.** A map f from ITS (\hat{X}, τ_{IT}) into another ITS (\hat{Y}, σ_{IT}) is called *Contra Intuitionistic Pre* * *Closed Map* if f(M) is IP*O set in \hat{Y} for each IC set M in \hat{X} .

Example – 4.3. Let $\hat{X} = \{a,b,c\}$ and $\hat{Y} = \{1,2,3\}$. Consider the IT's $\tau_{IT} = \{X_{I}, \varphi_{I}, \langle \hat{X}, \{a\}, \{b,c\} >, \langle \hat{X}, \{a,c\}, \{b\} >\}$ and $\sigma_{IT} = \{Y_{I}, \varphi_{I}, \langle \hat{Y}, \{1\}, \{3\} >, \langle \hat{Y}, \{3\}, \{1,2\} >, \langle \hat{Y}, \{1,3\}, \varphi >\}$ then IC(\hat{X}) = $\{X_{I}, \varphi_{I}, \langle \hat{X}, \{b\}, \{a,c\} >, \langle \hat{X}, \{b,c\}, \{a\} >\}$ and IP*C(\hat{Y}) = $\{Y_{I}, \varphi_{I}, \langle \hat{Y}, \{3\}, \{1\} >, \langle \hat{Y}, \varphi, \{1\} >, \langle \hat{Y}, \{1\}$

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

 $\langle \dot{Y}, \{2,3\}, \{1\} \rangle, \langle \dot{Y}, \{1,2\}, \{3\} \rangle, \langle \dot{Y}, \varphi, \{1,3\} \rangle, \langle \dot{Y}, \{2\}, \{1,3\} \rangle\}$. Let $f : (\dot{X}, \tau_{IT}) \rightarrow (\dot{Y}, \sigma_{IT})$ be a map defined by, f(a) = 1, f(b) = 2, f(c) = 3. Here, $f(X_I) = Y_I$, $f(\phi_I) = \phi_I$, $f(\langle \dot{X}, \{b,c\}, \{a\} \rangle) = \langle \dot{Y}, \{2,3\}, \{1\} \rangle$ and $f(\langle \dot{X}, \{b\}, \{a,c\} \rangle) = \langle \dot{Y}, \{2\}, \{1,3\} \rangle$ are IP*C sets in \dot{Y} . Therefore, f is IP*-closed map.

Example – 4.4. Let $\hat{X} = \{a,b,c\}$ and $\hat{Y} = \{1,2,3\}$. Consider the IT's $\tau_{IT} = \{X_I, \varphi_I, \langle \hat{X}, \{a\}, \{b,c\} > \}$ and $\sigma_{IT} = \{Y_I, \varphi_I, \langle \hat{Y}, \{2\}, \{1,3\} >, \langle \hat{Y}, \{3\}, \{1,2\} >, \langle \hat{Y}, \{2,3\}, \{1\} > \}$ then IC(\hat{X}) = $\{X_I, \varphi_I, \langle \hat{X}, \{b,c\}, \{a\} > \}$ and IP*O(\hat{Y}) = σ_{IT} Let $f : (\hat{X}, \tau_{IT}) \rightarrow (\hat{Y}, \sigma_{IT})$ be a map defined by, f(a) = 1, f(b) = 3, f(c) = 2. Here, $f(X_I) = Y_I$, $f(\varphi_I) = \varphi_I$ and $f(\langle \hat{X}, \{b,c\}, \{a\} >) = \langle \hat{Y}, \{2,3\}, \{1\} >$ are IP*O sets in \hat{Y} . Therefore, f is Contra IP*- closed map.

Theorem – 4.5. Let $(\hat{X}, \tau_{\text{IT}})$ and $(\hat{Y}, \sigma_{\text{IT}})$ be an ITS then the followings are hold.

- a) Every I- Closed map is IP*- Closed map.
- b) Every IR*- Closed map is IP*- Closed map.
- c) Every IP*- Closed map is IP- Closed map.
- d) Every Contra I- closed map is Contra IP*- closed map.
- e) Every Contra IR*- closed map is Contra IP*- closed map.

Proof: Proof is similar to Theorem – 3.5.

The converse of the above theorem need not be true as shows in the following example.

Example – 4.6. In example – 4.3, $IC(\hat{Y}) = \{Y_I, \varphi_I, < \hat{Y}, \{3\}, \{1\} >, < \hat{Y}, \{1,2\}, \{3\} >, < \hat{Y}, \varphi, \{1,3\} >\}$. Clearly, f is IP*- closed map. But $f(<\hat{X}, \{b,c\}, \{a\} >) = <\hat{Y}, \{2,3\}, \{1\} >$ and $f(<\hat{X}, \{b\}, \{a,c\} >) = <\hat{Y}, \{2\}, \{1,3\} >$ are does not belongs to $IC(\hat{Y})$. Therefore, f is not a I- closed map.

Example – 4.7. In example – 4.3, $IR*C(\hat{Y}) = \{Y_I, \varphi_I, <\hat{Y}, \{3\}, \{1\}>, <\hat{Y}, \{1,2\}, \{3\}>\}$. Clearly, f is IP*- closed map. But $f(<\hat{X}, \{b,c\}, \{a\}>) = <\hat{Y}, \{2,3\}, \{1\}>$ and $f(<\hat{X}, \{b\}, \{a,c\}>) = <\hat{Y}, \{2\}, \{1,3\}>$ are does not belongs to $IR*C(\hat{Y})$. Therefore, f is not an IR*- closed map.

Example – 4.8. Let $\hat{X} = \{1,2,3\}$ and $\hat{Y} = \{a,b,c\}$. Consider the IT's $\tau_{IT} = \{X_{I}, \varphi_{I}, \hat{X}, \{1,3\}, \varphi >, \langle \hat{X}, \{1,3\}, \{2\} >\}$ and $\sigma_{IT} = \{Y_{I}, \varphi_{I}, \langle \hat{Y}, \{a\}, \{b\} >, \langle \hat{Y}, \{b\}, \{c\} >, \langle \hat{Y}, \{a,b\}, \varphi >, \langle \hat{Y}, \varphi, \{b,c\} >\}$ then IC(\hat{X}) = $\{X_{I}, \varphi_{I}, \langle \hat{X}, \varphi, \{1,3\} >, \langle \hat{X}, \{2\}, \{1,3\} >\}$, IP*C(\hat{Y}) = $\{Y_{I}, \varphi_{I}, \langle \hat{Y}, \{b,c\}, \varphi >, \langle \hat{Y}, \varphi, \{a,b\} >, \langle \hat{Y}, \{b\}, \{a\} >, \langle$

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

>,< \check{Y} ,{c}, φ >,< \check{Y} , φ ,{a}>,< \check{Y} , φ ,{a,c}>} . Let f : (\check{X} , τ_{TT}) \rightarrow (\check{Y} , σ_{TT}) be a map defined by, f(1) = c, f(2) = b, f(3) = a. Here, f(X_I) = Y_I, f(\varphi_I) = \varphi_I, f(<\check{X},\varphi,\{1,3\}>) = <\check{Y},\varphi,\{a,c\}> and f(< $\check{X},\{2\},\{1,3\}>$) = < $\check{Y},\{b\},\{a,c\}>$ are IPC sets in \check{Y} but f(< $\check{X},\varphi,\{1,3\}>$) and f(< $\check{X},\{2\},\{1,3\}>$) are not a IP*C set in \check{Y} . Therefore, f is IP- closed map but not IP*- closed map.

Example – 4.9. Let $\hat{X} = \{1,2,3\}$ and $\hat{Y} = \{a,b,c\}$. Consider the IT's $\tau_{IT} = \{X_{I},\varphi_{I},<\hat{X},\{3\},\{1,2\}>\}$ and $\sigma_{IT} = \{Y_{I},\varphi_{I},<\hat{Y},\{a\},\{c\}>,<\hat{Y},\{c\},\{a,b\}>,<\hat{Y},\{a,c\},\varphi>\}$ then IP*O(\hat{Y}) = $\{Y_{I},\varphi_{I},<\hat{Y},\{a\},\varphi>,<\hat{Y},\{a,c\},\varphi>,<\hat{Y},\{a\},\{c\}>,<\hat{Y},\{a\},\{b,c\}>,<\hat{Y},\{a,c\},\{b\}>,<\hat{Y},\{c\},\{a,b\}>\}$. Let $f : (\hat{X},\tau_{IT}) \rightarrow (\hat{Y},\sigma_{IT})$ be a map defined by, f(1) = a, f(2) = c, f(3) = b. Here, $f(X_{I}) = Y_{I}$, $f(\varphi_{I}) = \varphi_{I}$ and $f(<\hat{X},\{1,2\},\{3\}>) = <\hat{Y},\{a,c\},\{b\}>$ are IP*O sets in \hat{Y} but $f(<\hat{X},\{1,2\},\{3\}>)$ is not a IO set in \hat{Y} . Therefore, f is Contra IP*- closed map but not a Contra I- closed map.

Example – 4.10. In example – 4.9, $IR*C(\hat{Y}) = \{Y_I, \varphi_I, <\hat{Y}, \{a\}, \{c\}>, <\hat{Y}, \{c\}, \{a,b\}>\}$. Here, $f(X_I) = Y_I$, $f(\varphi_I) = \varphi_I$ and $f(<\hat{X}, \{1,2\}, \{3\}>) = <\hat{Y}, \{a,c\}, \{b\}>$ are IP*O sets in \hat{Y} but $f(<\hat{X}, \{1,2\}, \{3\}>)$ is not a IR*O set in \hat{Y} . Therefore, f is Contra IP*- closed map but not a Contra IR*- closed map.

Theorem – **4.11.** A map $f : (\hat{X}, \tau_{IT}) \to (\hat{Y}, \sigma_{IT})$ is a IP*- closed map iff IP*cl(f(A)) \subseteq f(Icl(A)) for every IS A in \hat{X} .

Proof: Let f be IP*- closed map and A be any IS of \hat{X} . Since, Icl(A) is IC set in \hat{X} then f(Icl(A)) is IP*C set in \hat{Y} . Therefore, IP*(f(Icl(A))) = f(Icl(A)). i.e), IP*cl(f(A)) \subseteq f(Icl(A)). Conversely, Let A be any IC set in \hat{X} then A = Icl(A). By our assumption, IP*(cl(f(A))) \subseteq f(Icl(A)) = f(A). Also, f(A) \subseteq IP*cl(f(A)). Therefore, f(A) = IP*cl(A). i.e), f(A) is IP*C set in \hat{Y} . Hence f is IP*-closed map.

Theorem – 4.12. Let $(\hat{X}, \tau_{\text{IT}})$ and $(\hat{Y}, \sigma_{\text{IT}})$ be an ITS in which every IP*C set is IC set. Then f : $(\hat{X}, \tau_{\text{IT}}) \rightarrow (\hat{Y}, \sigma_{\text{IT}})$ is a IP*- closed map iff IP*cl(f(A)) \subseteq f(IP*cl(A)) for every IS A in \hat{X} .

Proof: Let f be IP*- closed map and A be any IS of \hat{X} . Since, IP*cl(A) is IP*C set in \hat{X} . By hypothesis, IP*cl(A) is IC set in \hat{X} then f(IP*cl(A)) is IP*C set in \hat{Y} . Therefore, IP*cl(f(IP*cl(A))) = f(IP*cl(A)). Hence, IP*cl(f(A)) \subseteq f(IP*cl(A)). Conversely, Let A be any IC set in \hat{X} then A is IP*C set in \hat{X} . Therefore, A = IP*cl(A). By our assumption, IP*cl(f(A)) \subseteq

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

f(IP*cl(A)) = f(A). Also $IP*cl(f(A)) \supseteq f(A)$. Therefore, f(A) is IP*C set in \mathring{Y} . Hence f is IP*-closed map.

Theorem – **4.13.** Let $(\hat{X}, \tau_{\text{IT}})$ and $(\hat{Y}, \sigma_{\text{IT}})$ be an ITS and $f : (\hat{X}, \tau_{\text{IT}}) \rightarrow (\hat{Y}, \sigma_{\text{IT}})$ be a bi ection map then the following statements are equivalent.

- a) f is IP*- continuous map.
- b) f^{-1} is IP*- open map.
- c) f^1 is IP* closed map.

Proof: (1) \Rightarrow (2), Let M be any IO set in \hat{Y} . Since, f is IP*- continuous. Therefore, $f^{-1}(M)$ is IP*O set in \hat{X} . Hence, f^{-1} is IP*- open map.

(2) \Rightarrow (3), Let M be any IC set in \hat{Y} then M^c is IO set in \hat{Y} . Since f¹ is IP*- open map then f¹(M^c) = [f⁻¹(M)]^c is IP*O set in \hat{X} . Therefore, f⁻¹(M) is IP*C set in \hat{X} . Hence, f⁻¹ is IP*- closed map.

(3) \Rightarrow (1), Let M be any IC set in \hat{Y} . Since f^1 is IP*- closed map then $f^1(M)$ is IP*C set in \hat{X} . Hence f is IP*- continuous map.

5. Conclusions

We discussed the IP*- Open maps, IP*- Closed maps and their contra versions in this paper. We intend to conduct research in the future on Per IP*- Open maps, Pre IP*- Closed maps, Super IP*- Open maps and so on.

References

- [1] D. Coker, An Introduction to Intuitionistic Topological Spaces, Busefal81, 2000, 51 -56.
- [2] Rathinakani, G. Esther, and M. Navaneethakrishnan, "A New Closure Operator in Intuitionistic Topological Spaces."
- [3] Rathinakani, G. Esther and M. Navaneethakrishnan, "A Study on Intuitionistic Semi * Open Set." Design Engineering (2021): 5043-5049.
- [4] G. Sasikala and M. Navaneetha Krishnan "On Intuitionistic pre Open Sets", International Journal of Pure and Applied Mathematics, Volume 119, No. 15, 2018.
- [5] L. Jeyasudha and K. Bala deepa arasi "IP*- Open sets in Intuitionistic Topological Spaces", (communicated).
- [6] L. Jeyasudha and K. Bala deepa arasi "IP*- Continuity in Intuitionistic Topological Spaces", (communicated).

