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Abstract 

One important parametric family among the life distributions is the exponential fam- 

ily distributions, which play a central role within the class of all life distributions. 

Because of their remarkable properties, exponential distributions arise naturally in 

theoretical settings. It is not surprising, then, that exponential distributions have been 

overused in applications; but that does not diminish their importance. The im- 

portance of exponential distribution is partly due to the fact that several of the most 

commonly used families of life distributions are parametric extensions of this distribu- 

tion. Such a parametric extension of a particular family of distributions will helps to 

capture the skewness and peakedness inherent in the data sets, which enables a more 

realistic modeling of data arising many different real life situations. Also, exponential 

distribution, with their constant hazard rates, form a baseline for evaluating other 

parametric families of distributions. One can see much more about this distribution in 

Balakrishnan and Basu (1995), Johnson et al. (1994), Mann  et  al.  (1974)  and 

Nelson and Wayne (2004). For characterizations of the exponential distribution, see 
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σ 

Galambos and Kotz (1978) and Azlarov and Volodin (1986). 

The double exponential distribution (Laplace distribution), which is  actually, 

sym- metric extension of exponential distribution to real line is a competitive model 

with the normal distribution. The heavy tail and the over peakedness of Laplace 

distri- bution than normal found applications in modeling data from various contexts 

such as finance, engineering, astrophysics, geographical information systems, grain 

size distribution, stock returns and exchange rate changes, business firm growth, 

humanheredity, information theory, pattern recognition, image and signal processing etc , 

see Howard and Vitter (1992), Lau and Post (1992), Nakayama et al. (1993), Rachev 

and Sengupta (1993), Alliney and Ruzinsky (1994), Wu and Fitzgerald (1995), 

Theodos- siou (1998), Walker and Jackson (2000), Kozubowski and Podgorski 

(2001), Linden (2001), Nelson (2002), Bottazzi and Secchi (2003a, b, c), Etzel et al. 

(2003), Gross and Levine (2003), Binia (2005), Linden (2005), Xi et al. (2005) and 

Sharma et al. 

Introduction 

In this chapter, we discuss some of the recent extensions exponential distribution on 

real line ( generalizations of Laplace distribution) and related time series models.The 

Laplace distribution is considered as the one among the important statistical distributions 

due to its appropriateness in modeling data arising from the variety of real life 

situations, see Kotz et. al (2001). The density and the characteristic functions 

of a Laplace random variable X are respectively, 

 
 

f (x) =
  1 

e
−|x| 

, σ > 0, −∞ < x < ∞, (6.1.1) 

2σ 

1 

ΨX(t) = 
1 + t2σ2 . (6.1.2) 

 
The Laplace distribution is a symmetric distribution.  Recently,   it can be seen that 

the researchers are more interested in the skewed forms of symmetric distributions 

may be due to the fact that most of the real datasets are not symmetric. Different 

forms of skewed Laplace distributions can be seen in the literature. Some important 
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skewed forms of Laplace distributions are 

• Asymmetric Laplace distributions obtained by the method of inverse scale fac- 

tors (Skew Laplace type-1 distributions denoted as SL1). 

 

• Asymmetric Laplace distribution obtained by the method of hidden truncation 

(Skew Laplace type-2 distribution denoted as SL2.) 

 

• Asymmetric Laplace distribution obtained as the convolution of exponential and 

Laplace random variable (Skew Laplace type -3 distribution denoted as SL3.) 

 

Kozubowski and Podgorski(2000) introduced an asymmetric Laplace distribution 

by the method of inverse scale factors. The characteristic function of asymmetric 

Laplace distribution with skewness parameter κ is, 

Note that when µ = 0 that is κ = 1, corresponds to the characteristic function of 

symmetric Laplace distribution. Such an extension increase the fields of applications 

of Laplace distribution, see, Kozubowski and Podgorski (2000) and Julia and Vives- 

Rego (2005). 

Many authors introduced non Gaussian stationary autoregressive processes and 

continous time Levy processes connected with the Laplace distribution, and pointed 

out general schemes leading to such models, which show promise in stochastic model- 

ing. Time series models with marginal as Laplace, and α− Laplace distributions can 

be seen in Jayakumar et al. (1995) and Seetha Lakshmi et al. (2003). Jayakumar 

and Kuttikrishnan (2007) introduced a time series model with asymmetric Laplace 

distribution (that is, skew Laplace type-1 distribution), having characteristic function 

(6.1.3), as marginal distribution. 

Although the theory and applications of skew Laplace distributions is well devel- 

oped and there is considerable literature in recent years, their application in time 

series modeling is not well developed. In this chapter autoregressive processes SL2 

and SL3 distribution as marginals are developed. In Section 2, we give an overview on 

SL2 distribution.  First order autoregressive model with SL2  distribution as marginals 

is introduced in Section 3. Skew Laplace type-3 distribution is discussed in Section 4 

and related time series models are discussed in Section 5. The estimation of the pa- 
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σ 

rameters involved in the process is also discussed. Section 6 is about generalizations 

of the SL3 distribution and the corresponding AR(1) processes. 

Skew Laplace type 2 (SL2) distribution 

Another asymmetric Laplace distribution is obtained by using Azzalini (1985)’s 

methodof introducing skewness into a symmetric distribution, known as method of 

hidden truncation, see Arnold and Beaver (2000a). A skewed Laplace probability 

density, by 

the method of Azzallini (1985), takes the form 

 

1 e−| x | 
σ− 1 e−(1+λ)| x | for x ≥ 0 

f (x) = σ 1 
2 

−(1+λ)| x | (6.2.1) 
e σ for x < 0. 

2 

where σ > 0 is the scale parameter and λ ≥ 0 known as skewness parameter sinceit 

controls skewness. Let us denote the distribution with density function (6.2.1) as SL2 

(Skew Laplace type 2) distribution. Note that λ = 0 corresponds to the parent 

symmetric Laplace distribution. The characteristic function of this distribution is 

given by 

t + (1 + λ
2
)i 

Ψ(t) = 
(t + i)(t2 + (1 + λ)2) 

(6.2.2)
 

Kozubowski and Nolan (2008) has shown that this distribution with characteristic 

 
function (6.2.2) is self decomposable whenever λ satisfies the condition 0 

. 

 

 
Other important basic measures of this distribution are given below 

√ 

≤ λ 3−   5 

 
5−1 

 

 

E(X
k
) = σ

k
Γ(k + 1) 

1 if k is even 

1 

 
(6.2.3) 

1 − (1+λ)k+1 if k is odd 



e-ISSN 2320 –7876 www.ijfans.org 

Vol.11, Iss.9, Dec 2022 

© 2012 IJFANS. All Rights Reserved 
Research Paper 

2594 

 

 

 

In particular, 
 

 
 

E(X) = σ  1 
  1 − 

(6.2.4)(1 + λ)2 

 
 

σ
2
(λ

4
 + 3λ

3
 + 8λ

2
 + 8λ + 

 

 

 

 
(6.2.5) 

V (X) = 
 

 

2)(1 + λ)4 
 

 

 
 

 

Skewness(X) 

= 

 

 

 
Kurtosis(X) 

= 

2λ(λ
5
 + 6λ

4
 + 15λ

3
 + 20λ

2
 + 15λ + 

6)(λ4 + 4λ3 + 8λ2 + 8λ2+ 2) 
3 (6.2.6) 

(6.2.7) 

3(3λ
8
 + 24λ

7
 + 88λ

6
 + 192λ

5
 + 272λ

4
 + 176λ

3
 + 64λ

2
 + 8) 

(λ4 + 4λ3 + 8λ2 + 8λ + 2)2 
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E 

1 1 2 3 

First order autoregressive process with SL2 as marginal 

distribution. 

 

Consider the first order autoregressive process as defined in (5.2.1) where the sequence 
 

{Xn} is SL2 distributed with characteristic function (6.2.2) and {ϵn} is 

independentand identically distributed observations. 

Using (5.2.1), and in terms of characteristic function we can write the characteristic 

function of the innovation sequence as 

t + (1 + λ
2
)i 

Ψє(t) = 
(t + i)(t2 + (1 + 

λ)2) 

(ρt + i)(ρ
2
t
2
 + (1 + λ)

2
) 

ρt + (1 + λ2)i 
(6.3.1)

 

= ρ
2
 + (1 − ρ

2
)Ψ (t) (6.3.2) 

mix 

 

 

where ΨEmix (t) is the characteristic function of mixture of exponential random vari-

ables and is given by 

1 

ΨEmix (t) = h1 
1 +

 

t/η 
 

ρ+√p 

1 1 1 

+ g1 
1 − t/λ 

+ g2 
1 − t/λ 

+ g3 
1 − t/λ 

 
  1   

√ 

(6.3.3) 

where h1 =  1 
 

 

√p  and g1 1−ρ
2
p , g  

 ρ−  p 
√

 
 

 

, g = 

−ρ
2
(1−p)

2
 
2(1+ρ√p) , 

p = 

1+ = 

λ2 

, η1 = 

= 

(1+ρ)(1−ρp) 

2 

2(1−ρ  p) 3 

 
 

(1+ρ)(1−ρp)(1−ρ2ρ) 

Therefore innovation sequence ϵn is given by 
 
 

 

ϵn = 

0 with probability ρ
2
 

 

 
Emix with probability 1 − ρ

2
 

 
(6.3.4) 



e-ISSN 2320 –7876 www.ijfans.org 

Vol.11, Iss.9, Dec 2022 

© 2012 IJFANS. All Rights Reserved 
Research Paper 

2596 

 

 

| σ | 

As shown in Kozubowski and Podgorski (2008) the density function corresponding to 

the characteristic function (6.3.3) is given by 

Σ3 

g(x) = h1η1e
η1xI(−∞,0)(x) + giλie

−λixI[0,∞)(x) (6.3.5) 

n=1 

 

 

Skew Laplace type 3 (SL3) distribution 

Another form of skew Laplace distribution can be obtained by the convolution of 

symmetric Laplace and exponential distributions. This distribution is known as Skew 

Laplace type 3 (SL3) distribution, see Kozubowski and Podgorski (2008). The prob-

ability density function of the SL3 distribution is given by 

 
    √  1 − √ 1 

2    σ|x | 
 

 

   c c  −σ  
1 |x | 

 
 

2(    1−c2−c) 
e      — 1−2c2 e for x ≥ 0 

f (x) = (6.4.1) 

    √  1  − √ 1 x 
e 1−c2 for x < 0 

2(  1−c2+c) 

 
 

A random variable X following Skew Laplace type 3 distribution has 

characteristicfunction is given by, 

 

1 

ΨX (t) = 
[1 + (1 − c2)σ2t2][1 − icσt] 

, (6.4.2)
 

 
σ > 0, c ∈ [−1, 1].  It is denoted by X  ∼d   

SL3(c, σ). Whenever the parameter c=0, we 

obtain the standard symmetric Laplace distribution. This distribution arise as the 

distribution of the random variable Xλ, where, 

 

1 λ 

Xλ = √
1 + λ2 X + √

1 + λ2 |Y |, 

1−c 
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1+λ2 
and by denoting c = 

λ
 

∈ [−1, 1] where X and Y are independent and identi- 
 

cally distributed standard Laplace random variables, see Kozubowski and Podgorski 

(2008). The above characteristic function is actually is the characteristic function of 

the convolution of a Laplace random variable and an independent exponential ran- 

dom variable, see Jose et al (2010). That is, it is the characteristic function of the 

 
2 

 
 

random variable Z= L+E, where L ∼d 

L((1 −c
2
)
1

 σ). and E ∼dExp(cσ). From (6.4.2), 
 

it is clear that the SL3 distribution is infinitely divisible. Next we introduce an 

AR(1)time series model with skew Laplace distribution as marginals. 

 

First order autoregressive process with SL3 as marginal 

distribution 

 

 
Consider the AR(1) process, 

 

 

 
Xn  = ρXn−1 + ϵn, 0 < ρ < 1. (6.5.1) 

 
 

In terms of characteristic function, we obtain, 

 

 
ΨX(t) 

Ψє (t) = (6.5.2) 

ΨX(ρt) 

 

 
The first order SL3 autoregressive process is given by (6.5.1) and ϵn is a sequence of 

independent and identically distributed random variables such that Xn is stationary 

Markovian with SL3 marginal distribution. Suppose that Xn ∼ SL3(c, σ). Then 



e-ISSN 2320 –7876 www.ijfans.org 

Vol.11, Iss.9, Dec 2022 

© 2012 IJFANS. All Rights Reserved 
Research Paper 

2598 

 

 

2 

2 

√ 

 

 

Ψє(t) 

[1 + (1 − c
2
)σ

2
ρ

2
t
2
] [1 − icρσt] 

 
 

[1 + (1 − 

 
 

(6.5.3) 

= 
c2)σ2t2] [1 − icσt] 

3 2 1 (1 − ρ
2
)ρ 1 

= ρ   + ρ (1 − ρ) + √ 
1 − icσt 2 1 + i (1 − c )σt 

(1 − ρ
2
)ρ 1 2 1 

+ 
2 1 − i 

√

(1 − c2)σt 
+ (1 − ρ) (1 + ρ)

[1 + (1 − c2)σ2t2][1 − icσt] 

(6.5.4) 

 
 

Therefore we can represent the innovation sequence as 
 

0  with probability ρ
3
 

 

 

ϵn = √
1 − c2σE 2n 

with probability (1−ρ
2)ρ (6.5.5) 

 
 

cσE1n with probability ρ
2
(1 − ρ) 

 

 
 

− 1 − c2σE3n with probability 
(1−ρ

 
)ρ

 
 

2 
 

2 
 

SL3 with probability (1 − ρ)
2
(1 + ρ) 
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where Ein, i=1, 2, 3 are independent and identically distributed exponential random 

variables. 

 
Using (6.5.3) we can also be written as, 

 

 

2 (1 − ρ
2
) (1 − ρ)  

Ψє(t) =  ρ   + 
(1 + (1 − 

 

c2)σ2t2) 

ρ + 

(1 − icσt) 

. (6.5.6) 

 

 

This implies that the innovation sequence is a convolution of a Laplace tailed ran- 

dom variable and an independently distributed tailed exponential random variable of 

Littlejohn (1994). That is, ϵn can be written as 

 

ϵ n=
d  Y1  + Y2 (6.5.7) 

 

 
where Y1 is a tailed Laplace random variable and Y2  is a tailed exponential random 

 

 
variable, ie, 

Y1 

 

2 12 

 

∼ LT(ρ , (1 − c )2 σ) and 

Y2 

 
 

∼ ET(ρ, cσ). 

 

 

Theorem 6.5.1. The AR(1) process as defined in (6.5.1) is strictly stationary 

Marko-vian with SL3 marginal distribution if and only if {ϵn}’s are independent 

and identi- d 

cally distributed as defined in (6.5.5) (or (6.5.7)), provided X0 

∼ 

 
SL3(c, σ). 
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Proof: The equation (6.5.1), when it expressed in terms of characteristic function 

becomes, 

 
ΨXn (t) = ΨXn−1 (ρt)Ψєn (t) (6.5.8) 

on assuming stationarity and if X   ∼dSL3(c, σ), we obtain, Ψє(t) 
n 

same as (6.5.3) and 

so {ϵn}’s are independent and identically distributed as defined in (6.5.7). 
 

The converse can be proved by the method of mathematical induction. From (6.5.8) 

d d 
 

and assuming X0  ∼
d
 

SL3(c, σ), we obtain X1  ∼ 

SL3(c, σ). Now assuming Xn−1  ∼ 
 
 
SL3(c, σ), we obtain the required result. 

 
Another representation of the innovation random variable is obtained using the result 

that, 

 

[1 + (1 − c
2
)σ

2
ρ

2
t
2
] [1 − icρσt]   p1    p2  

 

 
 
 

 

 

[1 + (1 − 

c2)σ2t2] 

[1 − icσt] 
=

 
√       

(1 − i 1 − c2 

 

σt) 
+ √ 

(1 + i 1 − c2 

 

σt) 
(6.5.9) 

 

 
where 0 < pi 

Σ 

 

 
< 1, i=1,2,3 and 

 
 

 

 
 

i=1 

 

pi = 1 is given 

√ 2 

  p3  

+ 

2 (1 − icσt) 

(6.5.10) 

3 by(1 − ρ ) 1 − c 
 

 

p1 = √ 

(  1 — 2 

c2 c) + 
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E1 

− 

2 

p =    22 

√ 

 

(
√

1−c2+c)(ρc+(
√

1−c2+c))
 (6.5.11)  

( 1−c −c) 

 

— √ 

√ 
ρc + (  1 − c + c)p1 

√ (6.5.12) 
( 1 − c − c) 

 

p3 = 1 − p1 − p2 (6.5.13) 

 
 

Therefore we can represent the error variable ϵn as 
 

 

 

 
 

 
ϵn = 

with probability p1 

E2 with probability p2 

 
(6.5.14) 

 

E3 with probability p3    

 

 

where Ei
Js, i=1, 2 are exponentially distributed with parameter ( 1 − c2)σ and E3 

follows exponential distribution with parameter cσ. 

 
The joint characteristic function of (Xn, Xn−1), can be written as 

 
 

ΨXn,Xn−1 (t1, t2) = E[exp(it1Xn + it2Xn−1)] (6.5.15) 

 
= Ψє(t2)ΨX(t1 + ρt2) (6.5.16) 
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2 2 2 

 
 

 
 

 

 
 

Figure 6.1: sample path of the process (6.5.1) for the parameters c=.25, σ = 1 and c=.5, 

σ=1. 

 
 

In the case where Xn ∼ SL3(c, σ), the above becomes 
 

 

 

 
 

 
ΨXn,Xn−1 (t1, 

t2) = 

[1 + (1 − c
2
)σ

2
ρ

2
t 

2
] [1 − icρσt ][1 − icσt ] 

[1 + (1 − c2)σ2t 
2
] [1 + (1 − c2)σ2ρ2t   + ρt 

2
][1 − icσ(t . 

+ ρt )] 

2 1 1 2 

2 (6.5.17) 
 

 

The joint distribution is obtain by inverting the joint characteristic function. Note that 

the characteristic function (6.5.17) is not symmetric in the arguments t1 and t2. So the 

process is not time reversible. 

Using the AR(1) structure Xn = ρXn−1 + ϵn, we can write, 
 

 

n−1 

Y 

ΨXn (t) = ΨX (ρ t) 

 

 
Ψє(ρ t) (6.5.18) 

 

0 

n k 
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n 

 

Suppose X   ∼dk=0 

 

SL3(c, σ). It can be seen that,12  2 n  2 n 

Y
Ψ (ρkt) = 

[1 + (1 − c )σ ρ t ] [1 − icρ σt] 

(6.5.19) 

 

When n −→ ∞,є 

k=0 1 + (1 − c2)σ2t2] 

[1 − icρσt] 

ΨXn (t) −→ 
[1 + (1 − c2)σ2t2][1 − icσt] 

.
 

 

 

Hence Xn is asymptotically distributed as SL3(c, σ). 
 

We have, 
 

 

ΨJ
Xn (t) 

= 

([1 + (1 c
2
)σ

2
t
2
] ([1 icσt]icσ) + [1 icσt]2σ

2
t(1 c

2
)]) 

  —  − − −  
(6.5.20) 

([1 + (1 − c2)σ2t2][1 − icσt])
2
 

 

 

When t=0, we obtain E(X)=cσ, E(ϵn) = (1 − ρ)(cσ). 

Therefore, E(Xn |Xn−1  = x) = ρx + (1 − ρ)(cσ). 

 
 

Now let us look at the sample path behavior of the process discussed above. Using 

(6.5.14) we obtain, 

 
P (Xn > Xn−1) = p1P (E1  > (1 − ρ)Xn−1) + p2P (−E2  > (1 − ρ)Xn−1) 

 

+ p3P (E3  > (1 − ρ)Xn−1). (6.5.21) 

 
 

where pi’s and Ei’s are as given above. Using simple algebraic calculations, it can 

beshown that 
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2 

2 2 1 − 2c2 

 

P (E1 > (1 − ρ)Xn−1) = 
 

 

√   

1 − c2(1 − ρ) 

 

 
and 

  1  c
2
 

√  −  √   
(6.5.22) 

2(2 − ρ)[ 1 − c2 − c]  (1 − 2c2)[  1 − c2(1 − ρ) + c] 

 
√

1 − c2 
 

 

 
 

P (−E2  > (1 − ρ)Xn−1) =  √  , (6.5.23) 
2(2 − ρ)[  1 − c + c] 

 

 
√

1 − c2   c  c
2
 

(6.5.24) 

 

 

 
 

 

 

 

P (E3  > (1 − ρ)Xn−1) = √ 1 − √ − . 
2[ 1 − c − c] (1 − ρ) 1 − c + c 

(6.5.25) 

 
 

On substituting (6.5.22), (6.5.23) and (6.5.25) in (6.5.21) we obtain the required 

probability. 
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Estimation of parameters can be done as follows. The parameter JρJ can be esti- 

mated from the sample auto correlation, ie. we obtain â =
√ Corr(Xn, Xn−1). 

The other parameters are obtained by equating the the sample cumulants and correspond- 

ing population cumulants. The estimators are 

 

 

 
σ̂ = 

 

  κ1  

 
 

(1 − ρ̂)ĉ 

ĉ2  =  
   2κ1  

κ1 + κ2 

 
 

Consider another process of the structure 
 

 

Xn−1 with probability p 
Xn = 

ρXn−1  + ϵn with probability 1 − p 

 

(6.5.26) 

 

 

Using characteristic function we obtain the characteristic function of the innovation 

as (6.5.3), therefore the innovation sequence ϵn is distributed as in (6.5.5). 

 
Next we discuss the higher order AR process with SL3 as marginal 

distribution.The k
th

 order autoregressive process with SL3 as marginal distribution 

is given by 

 
ρ1Xn−1  + ϵn with probability p1 
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ρ2Xn−2  + ϵn with probability p2 

                                 . 

n X = 

. 
 

. 
 

ρkXn−k  + ϵn with probability pk 

(6.5.27) 
 

 

 

where 0 < pi 
< 1, i=1,2,..,k. and 

Σk
p 

i=1 

 

= 1 and {Xn, n ≥ 1} are SL3 

 

distributed. 

If all the ρi
J s are equal, say ρi = ρ for i=1,2,...,k, then by using characteristic function 

 
of SL3 distribution, from (6.5.27), we obtain 

 

 
ΨXn (t) = p1ΨXn (ρt)Ψєn (t) + p2ΨXn−1 (ρt)Ψєn (t) + ... + pkΨXn−k (ρt)Ψєn (t) (6.5.28) 

 

 

 

 

Assuming stationarity we get  

 
 

Ψє (t) = 

 

ΨX(t) 

 
 

ΨX(ρt) 

 

 
(6.5.29) 

 

 

Therefore the innovation distribution corresponding to the k
th

 order process (6.5.27)is 

distributed as (6.5.14). 

First order autoregressive process with Generalized SkewLaplace 

type 3 as marginal distribution 

 

Mathai (1993) introduced the class of generalized Laplace distribution (GL), with 

characteristic function 

i 
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, σ ≥ 0, τ ≥ 06.6.1) 

Ψ(t) = 1 
τ
 

1 + σ2t2 

 

The applications of generalized Laplace distributions in different contexts such as the 

production of a chemical called meltatonin in human body, solar nutrino fluxes in 

cosmos, growth decay mechanism like formation of sand dunes in nature etc. were 

discussed in Mathai ( 2000). The applications of generalized Laplace distribution in 

the field of time series modeling is discussed in Seetha Lekshmi et al. (2003) and they 

developed first order auto regressive process with generalized Laplace distribution as 

the marginal distribution. In this section, we introduce the generalized skew Laplace 

type 3 distribution. 

A random variable X is said to follow generalized skew Laplace type 3 distribution 

 

 
if its characteristic function is given by, 

 

 

 
 

Ψ(t) = 

 

 

 
and it is denoted by X∼d 

τ 

  1  

[1 + (1 − c2)σ2t2][1 − icσt] 

GSL3(τ, c, σ). 

 

, σ ≥ 0, τ ≥ 0 (6.6.2) 

 

 

From the form of the characteristic function (6.6.2) we can see that GSL3(τ, c, σ) 

is the τ − fold convolutions of independent and identically distributed as SL3 random 

variables. Another representation is obtained by noting that characteristic function 

(6.6.2) is the convolution of a generalized Laplace and a independently distributed 

gamma random variable. ie, a GSL3(τ, c, σ) distributed random variable Z has the 

representation  Z  =  X  + G,  where  X  is  a  GL(τ, (1 − c22)
1 

σ)  and  G  is  Gamma(τ , 

cσ) 

distributed random variable. When τ =n, a positive integer, then the GSL3(τ, c, σ) is 
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self-decomposable being n-fold convolution of skew Laplace type 3 distribution. 

An AR(1) process of the form (6.5.1), with generalized skew Laplace marginal 

distribution of type 3 can be construct in the same method discussed in the Section 

1. The distribution of the innovation random variable ϵn can be represent as the 

distribution of the τ − fold convolution of the ζn where 

 

 
 

ζn  =   (6.6.3) 
 

 

E1 with probability p1 

−E2 with probability p2 

E3 with probability p3 
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√                                                                                                     
where Ei

Js, i=1, 2 are exponentially distributed with parameter ( 1 − c2)σ and  E3 
 

follows exponential distribution with parameter cσ and pi, i=1,2,3 is as defined in the 

section 2. 

Conclusion 

So formed distributions have important applications in the theory of time series 

analysis. The outline of theses is as follows 

 
In the focus on exponentiated exponential distribution. The importance of this 

distribution in various real life situations and in distribution theory is discussed in 

Gupta and Kundu (1999). But our focus is  mainly  on  constructing time series 

models for data distributed according to exponentiated exponential distri- bution. We 

introduce Marshal-Olkin Generalized Exponential Distribution (MOGE) and discuss 

many of its important properties. As an illustration, we successfully fitted the MOGE 

distribution for two datasets. As a generalization to the exponentiated exponential 

distribution we study expo- nentiated Weibull distribution in Chapter 3. Many lifetime 

data are of bathtub shape or upside-down bathtub shape failure rates and so the 

exponentiated Weibull distri- bution as a failure model is more realistic than that of 

distributions with monotone failure rates and plays an important role to represent such 

data. But, much studieshave not done in the case of exponentiated Weibull distribution. 

In Chapter 3 we introduce an exponentiated Weibull process and studied many 

important properties of this process. A discriminate study is done in between gamma 

distribution and exponentiated Weibull distribution and illustrated it by using two 

datasets. a general time series model is introduced. A strictly monotone function υ(x), 

υ(0) = 0 and υ(∞) = ∞ is used for constructing the stationary auto regressive time 

series models. Many of the existing time series models can be derivedas the particular 

case. Also we can use time series models introduced in Chapter 4 forconstructing auto 

regressive process for distributions having a closed form expressionfor its distribution 

function. 
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