
e-ISSN 2320 –7876 www.ijfans.org  

Vol.11, Iss.12, 2022 

Research Paper                                      © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal 

 

 

2930 

 

SIGNAL NUMBER OF SOME GRAPHS 

R.KALAIVANI,  Research Scholar, Register number: 19223042092015Department of 

Mathematics, kalaivanikanson@gmail.comemail 

T.MUTHU NESA BEULA Women’s Christian College, Nagercoil – 629 001, Tamil Nadu, India, 

tmnbeula@gmail.com 

 

ABSTRACT— A set 𝑆 of vertices in a connected graph 𝐺 = (𝑉, 𝐸) is called signal set of 𝐺 if every 

vertex not in 𝑆 lies on a signal path between vertices from 𝑆. A signal number is the minimum 

cardinality of all signal sets in 𝐺. In this paper, signal number of certain classes of graphs are 

determined and some of its general properties are obtained.  
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I INTRODUCTION 

We consider here only the finite, simple, connected graph with vertex set 𝑉 and edge set 𝐸. For any 

graph 𝐺 the order is 𝑛 and size is 𝑚. The degree 𝑑(𝑣) of a vertex 𝑣 in 𝑉(𝐺) is the number of edges 

incident to 𝑣. For any vertex 𝑣 in 𝐺, the open neighbourhood 𝑁(𝑣) is the set of all vertices adjacent to 

that 𝑣 and 𝑁[𝑣] = 𝑁(𝑣) ∪ {𝑣} is the closed neighbourhood of 𝑣. Let ∆= ∆(𝐺) and 𝛿 = 𝛿(𝐺) denote 

for the maximum and minimum degree of 𝐺, respectively. If 𝐺 be any graph, then the complement of 

𝐺 is obtained by 𝐺. The girth of 𝐺 is denoted by 𝑐(𝐺), which is the length of the shortest cycle in 𝐺. A 

vertex 𝑣 is said to be extreme vertex of 𝐺 if its neighbourhood 𝑁(𝑣) induces a complete subgraph of 

𝐺. If 𝐺 is a connected graph, then the distance denoted by 𝑑(𝑥, 𝑦) is the length of a shortest 𝑥 − 𝑦 path 

in 𝐺. On the various study of distance in graphs, we refer to [1]. In continuation, Kathiresan et.al 

introduced a new distance parameter known as signal distance of graphs [4]. The signal distance 

𝑑𝑆𝐷(𝑢, 𝑣) between the pairs 𝑢 and 𝑣 is defined by 𝑑𝑆𝐷(𝑢, 𝑣) = min {𝑑(𝑢, 𝑣) + ∑
𝑤∈𝑉(𝐺)

(𝑑𝑒𝑔𝑤 − 2) +

(𝑑𝑒𝑔𝑢 − 1) + (𝑑𝑒𝑔𝑣 − 1)} where 𝑆 is the path connecting 𝑢 and 𝑣,  𝑑(𝑢, 𝑣) be the length of 

path 𝑆 and in the sum ∑
𝑤∈𝑉(𝐺)

 runs over all the internal vertices between 𝑢 and 𝑣 in the path 𝑆. The 𝑢 −

𝑣 signal path of length 𝑑𝑆𝐷(𝑢, 𝑣) is also called geosig. A vertex 𝑣 is known as  lie on a geosign 𝑃 if 𝑣 

is an internal vertex of 𝑃.  In [6], author introduce the notation that 𝐿[x, y] consists of 𝑥 and 𝑦 and all 

vertices lying on some 𝑥 − 𝑦 geosig of    𝐺 and for a non-empty set 𝑆 ⊆ 𝑉(𝐺),  𝐿[𝑆] = ⋃ 𝐿[𝑥, 𝑦].𝑥,𝑦∈𝑆  

 A set 𝑆 ⊆ 𝑉(𝐺) is said to be a signal set of 𝐺 if 𝐿[𝑆] = 𝑉(𝐺). The minimum cardinality of a signal set 

is known as signal number and is denoted by 𝑠𝑛(𝐺). [2] A set 𝑆 as a subset of 𝑉(𝐺) is known as 

geodetic set if 𝐼[𝑆] = 𝑉(𝐺). The minimum cardinality of a geodetic set of 𝐺 is known as geodetic 

number and is denoted by 𝑔(𝐺). The undefined notations and symbols we refer [2,5].  A star graph is 

a complete bipartite graph 𝐾1,𝑛−1 of order 𝑛. A bistar graph 𝐵(𝑚, 𝑛) is obtained from 𝐾2 by attaching 

𝑚 edges in one vertex and 𝑛-edges in the other vertex. The following theorems is very much useful for 

the following sections. 

Theorem 1.1. [6] For extreme vertex of 𝐺 belongs to every signal set of 𝐺. 
Theorem 1.2. [6] 𝑠𝑛(𝐺) = 2 if and only if there exist vertices 𝑢, 𝑣 such that 𝑣 is an 𝑢-signal vertex of 

𝐺. 
II MAIN RESULT  

Theorem: 2.1. Let 𝐺 be any connected graph of order 𝑛. Then  2 ≤ 𝑠𝑛(𝐺) ≤ 𝑛.  

Proof: Any signal set we need at least two vertices to find the signal distance so 𝑠𝑛(𝐺) ≥ 2. Also all 

the vertices of 𝐺 together form a signal set of 𝐺. Thus 𝑠𝑛(𝐺) ≤ 𝑛. Hence  2 ≤ 𝑠𝑛(𝐺) ≤ 𝑛.   
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Remark: 2.2. The bounds in Theorem 2.1 are sharp. The two end vertices or the vertices of degree 1 

in any path graph forms a signal set which is unique of minimum cardinality of 𝑃𝑛 and so 𝑠𝑛(𝑃𝑛) = 2. 
Also for the complete graph 𝐾𝑛 (𝑛 ≥  2), every vertices are extreme vertices. Therefore by Theorem 

1.1, 𝑠𝑛(𝐾𝑛) = 𝑛. Moreover, all of the inequalities in Theorem 2.1 can be strict. Consider the graph  𝐺 

given in Figure 2.1. Here we find out that 𝑛 = 7. Here 𝑆 = {𝑣1, 𝑣2, 𝑣5, 𝑣6} is a signal set of minimum 

cardinality. Hence 𝑠𝑛(𝐺) = 4. Thus 2 < 𝑠𝑛(𝐺) < 𝑛. 
 

Theorem 2.3. For the star graph 𝐺 = 𝐾1,𝑛−1 ( 𝑛 ≥ 3), 𝑠𝑛(𝐾1,𝑛−1)  =  𝑛 −  1. 

Proof. Let 𝑛 ≥ 3 and let 𝑉(𝐾1,𝑛−1) = {𝑣1, 𝑣2, … , 𝑣𝑛−1}, where 𝑣 is the only vertex of degree 𝑛 − 1 

and each pendant vertex 𝑣𝑖 (1 ≤ 𝑖 ≤ 𝑛 − 1) is adjacent to 𝑣. Let 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑛−1}. Then by 

Theorem 1.1, 𝑠𝑛(𝐾1,𝑛−1)  ≥ |𝑆| = 𝑛 −  1. Since 𝑣 lies on every 𝑣𝑖-𝑣𝑗 geosig path between vertices 

from 𝑆, that 𝑆 itself form a signal set of 𝐺 and hence  𝑠𝑛(𝐾1,𝑛−1)  =  𝑛 −  1          

Theorem 2.4. If 𝐺 is a bistar graph, then 𝑠𝑛(𝐺)  = 𝑛 −  2. 
Proof. Let 𝐺 = 𝐵𝑚,𝑛 be a bistar graph with 𝑚, 𝑛 ≥ 1. Take 𝑉(𝐺) = {𝑢, 𝑣, 𝑢𝑖 , 𝑣𝑗; 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤

𝑛} and 𝐸(𝐺) = {𝑢𝑣, 𝑢𝑢𝑖 , 𝑣𝑣𝑗; 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}. Let 𝑆 be a minimum signal set of 𝐺. Then by 

Theorem 1.1, {𝑢1, 𝑢2, … , 𝑢𝑚 , 𝑣1, 𝑣2, … , 𝑣𝑛} ⊆ 𝑆. Since 𝑆 itself from a signal set of 𝐺, we conclude 

that  𝑠𝑛(𝐺)  = 𝑛 −  2.    
 

Theorem 2.5. Let 𝐾𝑛 (𝑛 ≥ 2) by any complete graph and 𝑒 be any edge of 𝐺. Then 𝑠𝑛(𝐾𝑛
′ )  =  2 

where 𝐾𝑛
′ = 𝐾𝑛 − {𝑒} is the edge deleted graph. 

Proof. Consider an edge 𝑒 = 𝑢𝑣 in 𝐸(𝐾𝑛) and an edge deleted graph 𝐾𝑛
′ = 𝐾𝑛 − {𝑒}. Let 𝑆 =

{𝑢, 𝑣} ⊆ 𝑉(𝐾𝑛
′ ). Then it is clear that every vertices 𝑤 in   𝐾𝑛

′ − 𝑆, there exists a 𝑢 − 𝑣 geosig path of 

length 2 contains that 𝑤. Therefore, that 𝑆 itself from a signal set of 𝐾𝑛
′  and so 𝑠𝑛(𝐾𝑛

′ )  ≤ |𝑆| = 2.  By 

Theorem 2.1, we conclude that  𝑠𝑛(𝐾𝑛
′ )  = 2.                                                                  

Theorem 2.6. Let 𝐺 = 𝐾𝑛 − {𝑒𝑖 , 𝑒𝑗} is the graph obtained from 𝐾𝑛 ( 𝑛 ≥ 4), by removing edges 

{𝑒𝑖 , 𝑒𝑗} for  𝑖 ≠ 𝑗.  Then  

 𝑠𝑛(𝐺) = {
2                       𝑖𝑓 𝑒𝑖 𝑎𝑛𝑑 𝑒𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

𝑛 − 2              𝑖𝑓 𝑒𝑖  𝑎𝑛𝑑 𝑒𝑗 𝑎𝑟𝑒 𝑛𝑜𝑛 − 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡
 

Proof. Let 𝐺 = 𝐾𝑛 − {𝑒𝑖 , 𝑒𝑗}, where 𝑒𝑖 and 𝑒𝑗 are distinct edges of  𝐾𝑛.  

Case(i) 𝑒𝑖 and 𝑒𝑗 are adjacent.  Then the edge deleted graph 𝐺 contains one vertex 𝑣 is of degree 𝑛 − 3, 

two vertices (say 𝑢, 𝑤) of degree 𝑛 − 2 and the remaining vertices of degree 𝑛 − 1. Consider 𝑆 =
{𝑢, 𝑣}. Then 𝑑(𝑢, 𝑣) = 2 in 𝐺 and any 𝑢 − 𝑣 geosig path contain exactly one internal vertex. Also the 

signal distance of 𝑢 and 𝑣 with any disjoint 𝑢 − 𝑣 geosig path is same and so that 𝑆 is a signal set of 

𝐺. Hence  𝑠𝑛(𝐺) ≤ 2. By Theorem 2.1, we conclude 𝑠𝑛(𝐺) = 2.   
Case(ii) 𝑒𝑖 and 𝑒𝑗 are non-adjacent. 

Let  𝑒𝑖 = 𝑢𝑣 and 𝑒𝑗 = 𝑥𝑦 for some 𝑢, 𝑣, 𝑥, 𝑦 ∈ 𝑉(𝐺).  Consider 𝑆 = {𝑥, 𝑦} = {𝑢, 𝑣}.  Then the geosig 

path between vertices from 𝑆 contains only 𝑢, 𝑣, 𝑥, 𝑦. This geosig path does not contain the vertices of 

degree 𝑛 − 1 in 𝐺. Consider now 𝑆1 = 𝑆 ∪ 𝑇, where 𝑇 ⊆ 𝑉(𝐺) − 𝑆 having 𝑛 − 4  vertices and those 

vertices have degree 𝑛 − 1. By Theorem 1.1, 𝑇 contain in every signal set of 𝐺 because they are extreme 

vertices. Also 𝐿[𝑆1] = 𝑉(𝐺). Therefore that  𝑆1 forms a signal set of 𝐺 and so 𝑠𝑛(𝐺) ≤ |𝑆1| = 𝑛 − 2. 
Since any two vertices in 𝑇 are adjacent and two find a signal set we need at least two non-adjacent 

vertices and so  𝑆𝑛(𝐺) ≥ 𝑛 − 2.  Hence 𝑠𝑛(𝐺) = 𝑛 − 2. 
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Theorem 2.7. If 𝐺 is a connected graph with a cut-vertex 𝑣, then every signal set of 𝐺 contains at least 

one vertex from each component 𝐺 − 𝑣.   
Proof. Let 𝑣  be any cut vertex of 𝐺. Let 𝐺1, 𝐺2, … , 𝐺𝑘 (𝑘 ≥ 2)  be the components 𝐺 − 𝑣.  Let 𝑆 be any 

signal set of 𝐺. On the contrary, we assume that 𝑆 contain no vertex from a component say 

𝐺𝑖 (1 ≤ 𝑖 ≤ 𝑘).  Let 𝑢 be a vertex on 𝐺. Then by Theorem 1.1, 𝑢 is not an extreme vertex of 𝐺. Since 𝑆 

is a signal set of  𝐺, there exist vertices 𝑥, 𝑦 in 𝑆 such that 𝑢 lies on a 𝑥 − 𝑦 geosig path 𝑃: 𝑥 =
𝑢0, 𝑢1, 𝑢2, … , 𝑢, … , 𝑢𝑙 = 𝑦 such that 𝑢 ≠ 𝑥, 𝑦. Since 𝑣 is a cut vertex of 𝐺 that subpath 𝑥 − 𝑢 of 𝑃 and 

the subpath 𝑢 − 𝑦 of 𝑃 both contains the vertex 𝑣. It sharp that 𝑃 is not a path, which is a contradiction. 

Hence every signal set of    𝐺 contains at least one vertex from every component of 𝐺 − 𝑣.   

Corollary 2.8. Let 𝐺 be a connected graph with cut-vertices and let 𝑆 be a signal set of 𝐺.  Then every 

branch of 𝐺 contains an element of 𝑆.  

Theorem 2.9. No cut-vertex of  𝐺 belong to any minimum signal set of 𝐺.   

Proof. Let 𝑣 be any cut vertex of 𝐺 and let 𝑆 be any minimum signal set of 𝐺. Then by Theorem 2.7 

ever𝑦 component of 𝐺 − 𝑣 contain an element of 𝑆. Suppose𝑣 ∈ 𝑆. Let 𝑋 and 𝑌 be any two disjoint 

components of 𝐺 − 𝑣. Let 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌. Then 𝑣 is an internal vertex of  an 𝑥 − 𝑦 geosig path. 

Consider 𝑆′ = 𝑆 − {𝑣}. Then it is clear that every internal vertex lies on an  𝑥 − 𝑣  geosig path also lies 

on an 𝑥 − 𝑦 geosig path. It follows that 𝑆′ is a signal set of 𝐺 with cardinality less than  𝑆, which is a 

contradiction. Since 𝑆 is of minimum cardinality. Then 𝑣 ∉ 𝑆.   

Corollary 2.10. For any tree 𝑇 with 𝑘-end vertices, 𝑠𝑛(𝑇)  = 𝑘. 
Proof. 𝑇 contains 𝑘-end vertices and remaining all are cut vertices.  

 

3. REALISATION RESULTS 

Theorem 3.1. For any three positive integer  𝑟, 𝑑  and 𝑘 such that 𝑟 ≤ 𝑑 ≤ 2𝑟 and 𝑎 ≥ 2,  there exists a 

connected graph 𝐺 with 𝑟𝑎𝑑(𝐺) = 𝑟, 𝑑𝑖𝑎𝑚(𝐺) = 𝑑 and 𝑠𝑛(𝐺) = 𝑎. 

Proof: For 𝑟 = 1, we have either 𝑑 = 1 or 𝑑 = 2.  Suppose 𝑑 = 1, then consider 𝐺 = 𝐾𝑎 and 𝑆𝑛(𝐺) =
𝑎. Suppose 𝑑 = 2. Then consider that 𝐺 = 𝐾2 + (𝐾𝑎−1 ∪ 𝐾1). Then it is clear that 𝐺 satisfies the required 

conditions. If 𝑟 = 𝑑 = 2, then consider 𝐺 = 𝐾𝑎,𝑎+1. One can observe easily that 𝑠𝑛(𝐺) = 𝑎.       Now 

for 𝑟 ≥ 3, we divide into the following cases. Case (i). 𝑟 = 𝑑. Let 𝐺 be a graph obtained from disjoint 

union of cycle  .𝐶2𝑟: 𝑣1, 𝑣2, … , 𝑣2𝑟, 𝑣1 and a complete graph 𝐾𝑎−2 by joining 𝑣1 and 𝑣2𝑟 to all vertices of 

𝐾𝑎−2. Then we easily verified that 𝑟𝑎𝑑𝐺 = 𝑟 and 𝑑𝑖𝑎𝑚𝐺 = 𝑟. Also 𝑉(𝐾𝑎−2) ∪ {𝑣1, 𝑣𝑟+1} is a minimum 

signal set of 𝐺. Hence 𝑠𝑛(𝐺) = 𝑎.  Case (ii). 𝑟 < 𝑑. Let 𝑢𝑖. Consider a cycle 𝐶2𝑟: 𝑣1, 𝑣2, …, 𝑣2𝑟, 𝑣1 of 

order 2𝑟 and a path 𝑃𝑑−𝑟+1: 𝑢0, 𝑢1, … , 𝑢𝑑−𝑟 of order 𝑑 − 𝑟 + 1. Let 𝐻 be a graph obtained that from the 

graphs 𝐶2𝑟 and 𝑃𝑑−𝑟+1 by identifying 𝑣𝑖 and 𝑢0. Also 𝑤1, 𝑤2, … , 𝑤𝑎−2 of 𝑎 − 2 vertices to 𝐻 and join 

each 𝑤𝑖 (1 ≤ 𝑖 ≤ 𝑎 − 2) to 𝑢𝑑−𝑟+1. A new graph 𝐺 is obtained and it shown in Figure 2.3.  We observe 

that 𝑟𝑎𝑑𝐺 = 𝑟 and diam𝐺 = 𝑑. Also 𝑆 = {𝑤1, 𝑤2, … , 𝑤𝑎−2, 𝑢𝑑−𝑟} is the set of all extreme vertices of 𝐺 

and so by Theorem 1.1, 𝑠𝑛(𝐺) ≥ 𝑎 − 1. But there is no signal set exists with 𝑎 − 1 vertices. Therefore 

𝑠𝑛(𝐺) ≥ 𝑘. Now it is clear that 𝑆 ∪ {𝑣𝑟+1} is a signal set of 𝐺 and hence 𝑠𝑛(𝐺) = 𝑎.                                                                          
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