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Abstract: 

Context: Software plays vital role in every day’s life. Historical data shows as evidence that even a 

minor error in the software can make huge loss in terms of lives and economy. Software quality and 

reliability has been uncompromising attribute in the software life cycle. The software defect can be 

defined as ‘small deviation in the process, improper requirement, or misrepresentation of the 

definition. The defect causes a lateral cost of budget as well as schedule over run. To avoid it, it’s 

required to forecast software defects in the different phases of the software life cycle. The common 

approach to denote software quality is ‘to reveal the number of defects present in it’, and it is 

measured in terms of software defect density. The defect density is measured as a mathematical 

division of ‘the total number of defects to its size’. 

 

Objective: This paper emphasizes on the prediction of software defect density using fuzzy logic 

based approach. 

Method: In the proposed model, defect density indicator is measured in the four phases of the SDLC 

(i.e. requirement, design, development, and testing). The defect density indicator of each phase is fed 

as one of the input metrics to the immediate next phase. Other metrics like, Requirement stability, 

Cyclomatic complexity, staff experience etc are fed to the corresponding phase. 

Results: It’s been found that the accuracy of the predicted defects is very close the actual defects. 

Validation results show this method is more accurate than the other fuzzy implementations. 

Conclusion : The fuzzy logic approach to predict the software defect density is been verified on 

different real time data sets ranging from very low project sizes to the very high project size. 

Keywords: 

Software defects, Fuzzy logic, DDI, Cyclomatic complexity, Software metrics, SDLC, MMRE, 

BMRE etc. 

 

Introduction: 

These days, all humans are using software either directly or indirectly in their day to day life. In the 

current era of information technology, software quality is crucial to keep customer satisfaction as well 

as business growth. Software quality management[1][2] to ensure reliable software is the million 

dollar question for the software developers and companies. Even the industry standards like ISO, 

CMM and Six Sigma are emphasizing the needs of reliable software. Development of reliable 

software product as per the market trends is not an easy task at a given scope, time and budget[3]. It’s 

prone to errors either knowingly or unknowingly at different phases of the software development life 
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cycle (SDLC). So, software defect prediction at each phase is a value-add to the businesses. Software 

defect density is closely tied to the size and complexity of the software[4]. In each phase of SDLC 

there are so many metrics which contribute to the software defects[5]. The number of defects is 

directly proportional to the size of the software. Software defect data is not available in the beginning 

of the SDLC[6] It drives the need of fuzzy logic based approach to determine the software defect 

density. In this paper we use fuzzy logic to predict the defect density indicator which in turn provides 

the no of defects for the given size of the project. In this paper Section 2 describes about the related 

work followed by section 3 explains about the software metrics requirement, Section 4 describes the 

proposed model and validation results covered in sec 5. 

 

2. Related work: 

Software reliability has become the main criteria for the most of the organizations. Varied researches 

went into refining the software development process and develop reliable and efficient software, and 

continuing the refining the process day by day. Huge number of models has been proposed for 

estimation and prediction software reliability[7][8]. 

 

Review based models: 

In the olden days, software reliability is closely associated with the continuous reviews in all phases 

of SDLC (i.e. requirement, design, coding and testing). These models conclusions related to software 

reliability are drawn based on reviews and re reviews [9]. 

Failure data based models: 

Gaffney and Davis proposed [10,11], failure based model for predicting software reliability. It 

emphasizes on the fault statistics found during the review of various software development phases. 

Later on, the evolution of UML based models and Bayesian frame work models based on reviews and 

analysis are become inefficient and research lead towards the models which can be validated through 

coding. 

 

Programmable models: 

After evolution of Object oriented models to identify software reliability, it’s been adopted bottoms 

up approach to find software defects. Defect prediction at early stages of process maturity and 

software metrics is proposed by Pandey and Goyal[12]. This model could not justify the usage of 

fuzzy profiles for different metrics. Yadav [13 et all enhanced and proposed a software defect 

prediction model using fuzzy basedapproach. It predicts the defect density in each phase and passes 

the DDI to the next phase to evaluate the total defect density. This paper leverages the fuzzy based 

approach. 

 

Related work in Fuzzy Logic: 

The software effort is estimated in terms of   man-hours and it is of fuzzy nature. Therefore, defect-

free software development is a challenging task. It is very crucial to ensure that the underlying 

software will perform its intended functions correctly. Therefore, there is a growing need to ensure 

reliability of software systems as early as possible. 

 

Based on different literature survey and review, it is found that the software reliability is a function 

of number of residual defect in the software. Reliability relevant software metrics play a vital role in 

defect prediction and these metrics are of fuzzy nature. Therefore, in this research paper, a fuzzy 
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logic based model for phase-wise software defects density prediction is developed using the 

reliability relevant software metrics. 

 

Related work in defining software metrics: 

There are different software metrics used in measuring software reliability. The important metric 

influencing the software defect density is software size. Majority of the model uses software size and 

complexity is the metrics. Zhang and Pham[23] suggested thirty-two factors which have impact on the 

software reliability in all stages of the software development process. Phase wise ranking for the 

software metrics which impacts the software reliability is provided by Li [14,15] et al.  

Based on the different literature survey Fuzzy logic based approach can be leveraged to identify the 

software defect density and estimate the original defects. Next section will introduce the different 

software metrics used in the proposed model. 

 

3. Software metrics: 

Software metrics are the backbone of any model to decide the software reliability. There are so 

numerous metrics with effects the software quality in each phase of SDLC. In the current model we 

take different software metrics as inputs and are listed below. Initially we define the weights of this 

metrics based on the expertise, as the learning of this model is evolved weights will be adjusted to 

make the predicted defects equals to the original defects. 

Following is the through discussion of the input software metrics. 

i. Software size: 

As the number of defects is directly proportional to the software size, the software size is most 

important metric in deciding the software reliability. This metric is measured in lines of code (LOC), 

and usually measured in KLOC. As the complexity of software increases there is a high chance that 

software size gets increases and proportionally the defects. 

A well defined development process and clean coding techniques can reduce the possibility of defect 

occurrence, even the complexity and software size increases. 

 

ii. Requirement phase software metrics: 

Requirement phase is the first and important phase in the Software Lifecycle. A well defined and 

frozen requirement definition can highly impact the software quality [16]. At the requirement phase, 

input layer is populated with Requirement stability, Fault density and Review Information. 

 

1. Requirement stability (RS): Frozen and Stable requirement is directly proportional to the software 

efficiency and reliability. Stable and frozen requirement gives a freehand to the designers and testers 

to concentrate on the reliability. If the change requests are more i.e. unfrozen requirements disrupt the 

process in SDLC which in turn cause the explosion of the software. Well defined requirements can 

avoid adverse effect on the cost, quality, reliability and schedule of thesoftware. 

2. Fault density (FD): Fault density is inversely proportional to the software reliability. In requirement 

analysis phase fault density can range from a low priority issue to the high priority issue which can 

impact the software in different ways along with increasing the probability of the defects. Continuous 

requirement analysis and early requirement description may reduce the faultdensity. 

3. Review Information (RI): Requirements review is directly proportional to the software reliability. 

Well reviewed requirement will eliminate any defects in the later phases. As found the issue in the 
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later stages of the SDLC will cost more in terms of cost and effort, it would be better to have a 

complete review of the requirements internally and externally with all the stakeholders. Reviews 

should happen based on the software requirement specifications outlined by the prima organisations. 

 

ii. Design phase software metrics: 

Design phase follows requirement phase. As requirement phase defects affect the design phase. The 

defect density of requirement phase is prime input to the design phase. Apart from it, software 

complexity and design review are considered as the software metrics. 

i. Software complexity (SC): software defects are directly proportional to the Software 

complexity. Software design with more number of components can make software more complex. It 

is good to have a metric in the design phase for well executed complex [18] software. It can provide 

good indication for remaining software defects. 

ii. Design Review (DR): Design review is done to identify the defects or faults occurred in the 

design phase. Design review should make sure the design document outlines each and every detail of 

requirement specifications and match with the intent of both. Whenever there is a requirement change 

it should be promptly conveyed to design phase and get it reviewed. After each review based on the 

modifications if necessary a re-review is suggested to make software quality assurance. Design 

review has a capability of eliminating defects from the laterphases. 

 

iii. Coding phase metrics: 

Coding phase follow the design phase. A matured design document will be a very good reference for 

the programmers. There is a practice in industry that most of the design reviews happens with the 

programmers. 

i. Programmer capabilities (PC): A technically skilled and experienced programmer can write 

reliable software irrespective of the software size and complexity. Keeping this mind in program 

management will consider programmers from the background of good education from reputed 

institutes; intelligence and domain knowledge are the programmer capabilities, which are directly 

proportional to the software ere liability. 

ii. Process maturity (PM): A well established process is very important in the software life cycle. A well 

defined process will reduce the gaps between the teams working globally to achieve reliable software. 

Process metrics can be utilized to gauge, screen and enhance the reliability and quality of software 

[19,20] . The process helps in the smooth development flow to achieve targets. 

 

iv. Testing phase software metrics: 

Verification or testing is the final and crucial phase in software life cycle. This phase is useful to find 

the defects/bugs before software goes to the end users. In most of the scenarios this phase contributes 

more towards the software reliability and quality. Staff experience and quality of tests are the prime 

metrics of this phase. 

iii. Staff experience (SE): As verification phase requires a lot of resources for the good execution, a 

technically sound and experienced staff contribution to the testing phase can directly impact the 

software quality. Globally organizations follow a pyramid pattern to balance the experience and 

knowledge domains 

4. Quality of testing (QT): A comprehensive test suite required for a well developed software product. 

As software testing is costly and time consuming effective tests cases will assure a quality software 

time to market. Well written tests will expose the software defects. Tests should cover all the 
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scenarios of the requirement. Good documentation of the issues or tests will ensure the software ere 

liability. 

5. Proposed Model: 

 The architecture design of the proposed modal is shown in figure 4.1. In the proposed design 

model, the defect density indicator measures in the initial for phases of SDLC. So the proposed model 

uses reliable and significantly best measurements of requirement analysis, design, coding and testing of 

SDLC. The metrics are shown using oval structures in the currently proposed mode. The stable 

requirement defect density review, inspection and walkthrough ahs been fed as input, in the requirement 

analysis phase, to find out the defects density index at the end of the analysis phase. In this requirement 

phase defect density indicator (RPDDI), Cyclomatic complexity, and design review and walkthrough 

metrics have been considered as input in design phase to predict the defect density index (DPDDI). The 

design phase defect density index or indicator (DPDDI), team capability and maturity of process have 

been considered as input to coding phase to forecast the defect density indicator towards the completion 

of coding phase. So, the coding phase defects density indicator (CPDDI), Team experience and skill, 

and the reliability of test cases have been considered as contribution to testing phase to forecast the 

defect density index towards the end of testing phase. The proposed model has been segregated into the 

following steps. 

 

 

Selection of software metrics. 

A. Define membership function of input and output metrics. 

B. Design fuzzy rules. 

C. Perform fuzzy interface and defuzzification. 

 

 

Figure 4.1: Architecture Design Model 

RS: Requirement Strength 

RFD: Requirement failing denseness 

RIW: Review, importance and walk through 

CC: Cyclomatic Complication 

DRE: Design Revise Efficiency 
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PC: Programmer Capability 

PM: Process Maturity 

SE: Staff experience 

QDT: Quality of documented test cases 

RPDD: Requirement assessment point desert denseness indicator 

DPDDI: Design point desert denseness indicator 

CPDDI: Coding point desert denseness indicator 

TPDDI: Test point desert denseness 

FIS: Fuzzy interpretation scheme 

 

In Fuzzy based approach each phase in the SDLC is taken as FIS instance and phase inputs are 

provided to the FIS. Along with the phase inputs previous phase defect density also provided to 

account the previous phase defects. With this approach if previous phase software metric directly 

influences on the current phase, then the defect density is compromised in the current phase. 

Normalization Process: 

A normalization process has been followed to have definite input and output range w.r.to the 

software size. The normalize inputs are defined with different levels based on the metric severity and 

impact on the software reliability. Following illustrations describe the normalization input software 

metrics. 

 

Figure2:RS 

Figure 3:FD 
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Figure4:RI 

 

  

 

 

 

Figure5:CC b 

 
 

Figure 5:CC 

 

 

 

 

 

 

 

 

Figure 6: DR 
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                   Figure 8:PM    Figure 9: SE 

 

 

 

 

 

 

 

Figure 10 : QD  

 

Training Module (TM): 

Training module is very important part of the current fuzzy logic approach. This module 

helps in defining input data sets as well as identifying severity levels from Very Low (VL) to Very 

High (VH). The system is trained with around 20 real time data sets taken from the promise database 

[21]. Training module assigns severity levels to achieve local and global minima of the error delta. 

Where error delta is been defined as the difference between the original defects and the predicted 

defects. Local minima are corresponding to hitting the minimum error delta w.r.to SDLC phases and 

Global minima is the consolidated error delta of the system [22,23] 

 

V.  Results: 

 

Table 1: Training inputs 
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Table 2: Actual defect vs predicted defects using fuzzy logic. 

 

As shown in figure normalized severity based system is predicting the no of defects very close to the 

actual defects compared to the most of the methods [24]. Above results are obtained using MatLab 

tool kit. Real time data sets have been taken from the promise database repository. 

 

The table shows that, most of the defects are predicted very accurately in the range of ± 2% of outputs 

after the normalization is rounded to the nearest integer as there cannot be decimal. The data clearly 

depicts the relation between the software size and the number of associated defects. Following results 

justify the importance of the one stage defects driving the other stage defects. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: RFD vs Requirement phase defects 

 

 

 

 

 

 

 

 

 

Figure 12: RPD vs Design phase Defects 
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Figure 13: DPD vs Coding phase defects 

 

Implementation of Fuzzy rules: 

 

As per the current proposed model Fuzzy inference evaluates and combines the result of each fuzzy 

rule. A fuzzy max–min operator is used for conversion of one fuzzy set into another fuzzy set for crisp 

value as an output.  

The following fuzzy rules have been implemented at each phase of the software development life 

cycle to get the precise results. 

 

 

Requirement analysis phase fuzzy rules:  There are 28 numbers of rules have been implemented at 

requirement phase. They are 

 

Rule no.  Fuzzy rule 

 

1        If RS is L and RFD is M and RIW is H then RPDDI is VL 

2        If RS is L and RFD is L and RIW is L then RPDDI is VL 

…      ………………………………………………………… 

27     If RS is H and RFD is M and RIW is L then RPDDI is L 

28     If RS is H and RFD is M and RIW is M then RPDDI is M 

 

 

 

Design phase fuzzy rules: There are 60 numbers of rules have been implemented at design 

phase. They are 

 

Rule no.  Fuzzy rule 

 

1   If CC is L and DRE is L and RPDDI is H then DPDDI is VL 

2   If CC is L and DRE is M and RPDDI is H then DPDDI is VL 

…      ………………………………………………………… 

59 If CC is M and DRE is H and RPDDI is H then DPDDI is VH 60 If CC is M and DRE is H and 

RPDDI is VH then DPDDI is VH 

 

 

 

Coding phase fuzzy rules: There are 45 numbers of rules have been implemented at coding 

phase. They are 

 

Rule no.  Fuzzy rule 
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1   If PC is L and PM is M and DPDDI is VL then CPDDI is VL 

2   If PC is L and PM is L and DPDDI is H then CPDDI is H 

…      ………………………………………………………… 

44 If PC is H and PM is M and DPDDI is L then CPDDI is L 

45 If PC is H and PM is H and DPDDI is M then CPDDI is M 

 

 

 

Testing phase fuzzy rules: There are 50 numbers of rules have been implemented at testing phase. 

They are 

 

Rule no.  Fuzzy rule 

 

1   If SE is L and QDT is L and CPDDI is M then TPDDI is M 

2   If SE is L and QDT is M and CPDDI is M then TPDDI is M 

…      ………………………………………………………… 

49 If SE is L and QDT is M and CPDDI is H then TPDDI is H 

50 If SE is L and QDT is M and CPDDI is VH then TPDDI is VH 

 

 

Model Validation: 

 

To validate the accuracy of the predicted results of the proposed fuzzy model, commonly suggested 

measures[23] have been taken which are as follows. 

i. Mean Magnitude of Relative Error (MMRE): 

MMRE is the mean of total errors calculation and a measure of the spread of the variable Z, 

where Z = evaluate / real 

MMRE= 
1

𝑚
∑

|𝑥𝑖−𝑥𝑖|

𝑥𝑖

𝑚
j=1  

Where xi is the actual value and ^x is the estimated value of a variable of interest. 

ii. Balanced Mean Magnitude of Relative Error (BMMRE): 

MMRE is unbalanced and assesses over rates in excess of underrates. Thus, a persistent or 

reliable mean magnitude of relative error measure is also considered which is as per the following: 

BMMRE=  

 

 

The minor value of MMRE and BMMRE specifies improved precision of prediction 

For any proposed model BMMRE and MMRE values shows the model prediction accuracy. The 

results show that the lower the values the higher the accuracy of the model. The proposed Fuzzy 

based software defect density registers the BMMRE and MMRE values as follows. 

 

Error rate Fuzzy Method 

MMRE 0.6761 

BMRE 0.5178 

Table 3: BMRE MMRE values 

1
m
∑
j= 1

m |xi− x́i|
xi
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Conclusion:  

In the current paper Fuzzy logic based approach is proposed to identify the software defects at 

each phase of the Software development life cycle. Input software metrics to this model is chosen 

based on the literature survey. Weights or severity levels assigned to each input value, which helps in 

tuning the system to get accurate no of software defects. Tuning of this model is based on the training 

module. Training module is fed with real time data from the promise database repository. Input and 

output normalization is done based on the software size (KLOC). It’s been observed that defects 

predicted using this model is closer to the original defects and more accurate than other fuzzy models 

as gone through the literature survey. The validation results of BMMRE and MMRE shows very less 

value, which indicate the prediction results accuracy. The results emphasize that the proposed fuzzy 

logic approach with more and refined input metric rules for the prediction of software defect density 

and ensuring software reliability 

 

Future work: 

 

This model can be further extended to the artificial neural networks, Weighted artificial neural 

networks, and probabilistic neural networks and define the weights in more accurate way to get the 

defect rate close to the zero. In the similar way we can extend the model using feedback neural 

network by feeding error rate to adjust the weights and make error rate ~zero.. 
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