ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 Jan 20

Lattice Identities On The Lattice Of Subgroups Of The Group Of 2x2 Upper Triangular Matrices Of A Matrix Group Over Finite Fields

Dr. A. Vethamanickam¹, R. Rosie Gracia²

¹Former Associate Professor, Rani Anna Government College for Women, Tirunelveli.

²Research Scholar (Regno. 19221172092016), Rani Anna Government College for women, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Assistant Professor, Christopher Arts & Science College(women), Soorangudi, Tirunelveli.

Email ID: rgracia20@gmail.com

Abstract

In this paper our main focus is to study various lattice identities satisfied by the lattice of subgroups of the upper triangular matrices of the group of 2 x 2 matrices over Z_p under matrix multiplication modulo 'p' where p is prime and p=2,3,5 and 7

The properties verified are modularity, super solvability, 0- Distributivity, Consistency, Pseudo 0-distributivity, super 0- distributivity, GD condition, distributivity and simple.

Keywords – Modularity, distributivity, simple, congruence.

Introduction – The main aim in this paper is to check the properties of Lattices of subgroups of the upper triangular matrices of the group of $2x^2$ matrices over Z_p under matrix multiplication modulo p, where p is prime and p= 2,3,5 and 7.

In 2015, D. Jebaraj Thiraviam has given the structure and checked some properties of subgroup lattices of the groups of 2x2 matrices over Z_p having determinant value 1 under matrix multiplication modulo p, where p is one of the prime numbers 2,3 5 and 7. This has motivated us to investigate the lattice of subgroups of the group of 2x2 upper triangular matrices over Z_p for which we have given the lattice structures in the paper [14]"On the lattice of subgroups of the upper triangular matrices of a matrix group over finite fields."

Preliminaries

The following definitions are used in the paper.

Definition 1.1- In the Poset (P, \leq) , a covers b or b is covered by a (in notation, a > b or b > a) if and only if b < a and, for no x, b < x < a.

Definition 1.2– An element 'a' is an atom, if a > 0 and a dual atom, if a < 1.

Definition 1.3 – A lattice is said to be modular if whenever $a \le c$

av $(b \land c) = (a \lor b) \land c$, for all $a, b, c \in L$

Definition 1.4 – A lattice is said to be super solvable, if it contains a maximal chain called an M-chain in which every element is modular. By a modular element m in a lattice L, we mean $x \ v \ (m \ \Lambda y) = (x \ v \ m) \ \Lambda y$ whenever $x \le y$ in L.

Definition 1.5- A lattice L is said to be 0- distributive if for all x, y, z ϵ L, whenever x Λ y=0 and x Λ z =0 then x Λ (y v z) = 0.

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 Jan 202

Definition 1.6- An element a of a lattice is called join-irreducible if x v y=a implies x=a or y=a.

Definition 1.7 – A lattice L is said to be consistent if whenever j is a join-irreducible element in L, then for every $x \in L$, $x \lor j$ is join-irreducible in the upper interval [x,1].

Definition 1.8 – A lattice L is said to be pseudo-0 distributive if for all x, y, z \in L, x \wedge y = 0, x \wedge z = 0 imply that (x v y) \wedge z = y \wedge z.

Definition 1.9 – A lattice L is said to be super 0- distributive if for all x, y, $z \in L$, x $\wedge y = 0$ implies $(x \vee y) \wedge z = (x \wedge z) \vee (y \wedge z)$

Definition 1.10 – The lattice L with 0 satisfies the general dis-jointness property (GD) if x \wedge y = 0 and (x v y) \wedge z = 0 imply x \wedge (y v z) = 0.

Definition 1.11 – A lattice L is said to be distributive if $(x \ v \ y) \ \Lambda \ z = [(x \ \Lambda z) \ v \ (y \ \Lambda \ z) \ and (x \ \Lambda \ y) \ v \ z = [(x \ V \ z) \ \Lambda \ (y \ V \ z)]$ for all x, y, z \in L.

Definition 1.12 – An equivalence relation Θ on a lattice L is called a congruence relation on L if and only if $(a_0, b_0) \in \Theta$ and $(a_1, b_1) \in \Theta$ imply that $(a_0 \land a_1, b_0 \land b) \in \Theta$ and $(a_0 \lor a, b_0 \lor b) \in \Theta$.

Definition 1.13 – The collection of all congruence relations on L, is denoted by Con L, and it is an algebraic lattice with respect to set inclusion relation.

Definition 1.14- If a lattice L has only two trivial congruence relations namely ω , the diagonal and $\tau = L \times L$, then L is said to be simple (eg., M₃ is simple)

Definition 1.15 – If Con L contains a unique atom, then we say that L is sub-directly irreducible (eg., N_5 is sub-directly irreducible).

Results -

- Any modular lattice is consistent.
- Every modular lattice is super solvable.

Lattice structures of the lattices of subgroups of the upper triangular matrices of the group of 2 x 2 matrices over Z_p under matrix multiplication modulo p, where p is a prime and p=2,3,5 and 7 are displayed below.

Throughout the paper we denote the lattice of all subgroups of the group of upper triangular 2x2 matrices over Z_p by $L_u(G)$.

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, **Journal UGC CARE Listed (Group-1) Volumes**

**Polymer of the Company of th

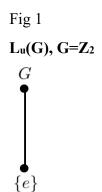


Fig 2 $L_u(G)$, $G=Z_3$

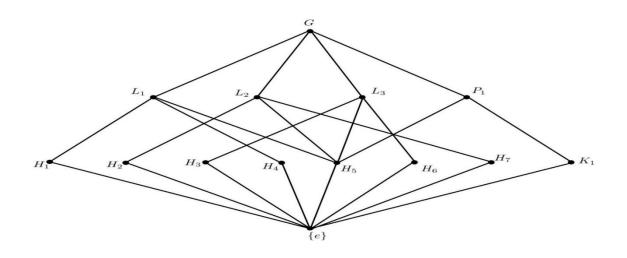
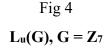
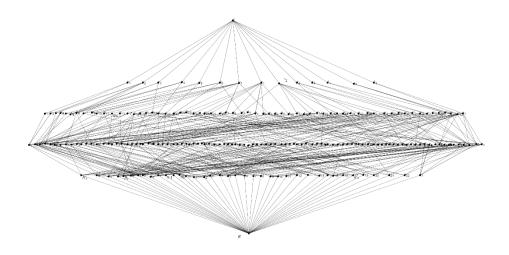


Fig.3 $L_u(G)$, $G=Z_5$

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS, All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 Jan 202





<u>Lemma 1.1</u> – When $p \le 3$ L_u(G) is modular.

Proof – From the figure 1 and 2 we observe that whenever $x \le z$ in $L_u(G)$

$$xv(y \land z) = (x \lor y) \land z \text{ for every } y \in L_u(G).$$

Therefore, we conclude that $L_u(G)$ is modular when $p \le 3$.

Lemma 1.2- When $p \le 3$, $L_u(G)$ is consistent.

Proof – Since any modular lattice is consistent, by the previous lemma, we see that $L_u(G)$ is consistent when $p \le 3$.

Lemma 1.3 – When $p \le 3$, $L_u(G)$ is super solvable.

Proof- Since every modular lattice is super solvable, we conclude that, when $p \le 3$, $L_u(G)$ is super solvable.

<u>Lemma 1.4</u> – When p=3 the lattice $L_u(G)$ is not pseudo- distributive.

Proof- From fig 2 H_1 , H_3 , $H_4 \in L_u(G)$,

$$H_{3}\Lambda H_{4}=\{e\}, H_{1}\Lambda H_{3}=\{e\}$$

$$(H_3v H_4) \wedge H_1 = G \wedge H_1$$

 $= H_1$

$$H_{4\Lambda} H_1 = \{e\}$$

Therefore, $(H_3v H_4) \wedge H_1 \neq H_4 \wedge H_1$.

Therefore, the lattice L_u(G) is not super 0- distributive.

<u>Lemma 1.5</u> – When p=3, the lattice $L_u(G)$ is not super 0- distributive.

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 Jan 202

Proof – From fig 2, H_3 , H_6 , $H_7 \in L_u(G)$

$$H_6 \Lambda H_7 = \{e\}$$
 $(H_6 v H_7) \Lambda H_3 = G \Lambda H_3$
 $= H_3$
 $(H_6 \Lambda H_3) v (H_7 \Lambda H_3) = \{e\} v \{e\}$

 $= \{e\}$

Therefore $(H_6vH_7) \wedge H_3 \neq (H_6 \wedge H_3) \vee (H_7 \wedge H_3)$.

Therefore, the lattice $L_u(G)$ is not super 0-distributive.

Lemma 1.6- When p=3, general dis -jointness condition is not satisfied.

Proof – From fig 2, H_5 , H_6 , $H_7 \in L_u(G)$

$$H_{5}\Lambda H_{6} = \{e\}$$
 and $(H_{5}V H_{6}) \Lambda H_{7} = L_{3}\Lambda H_{7}$
 $= \{e\}$
 $H_{5}\Lambda (H_{6}\Lambda H_{7}) = H_{5}\Lambda G$
 $= H_{5}$
 $\neq \{e\}$.

Therefore, general dis-jointness condition is not satisfied in L_u(G) when p=3.

Lemma 1.7 – When p=3, $L_u(G)$ is simple.

Proof- We observe that L(G) is atomistic, so if $\Theta \in [Con L(G)]$, then if $(x, y) \in \Theta$ and $x \le y$, there exists an atom $a \in L_u(G)$ such that $a \le y$ and a is not less than or equal to x. Therefore $(\{e\}, a) \in \Theta$.

To prove that $L_u(G)$ is simple, it is enough to verify whether there is any proper principal congruence generated by an element of the form ($\{e\}$, a) where a is an atom in $L_u(G)$.

Now,
$$\Theta$$
 ({e}, H₁) = $\omega \cup$ {{e}, H₁), (H₁, {e}), ({e}, L₁), (L₁, {e}), (H₄, L₂), (L₂, H₄), ({e}, L₃), ({e}, G)}

$$= L_u(G) \times L_u(G)$$

$$\Theta(\{e\}, H_2) = \omega \cup \{\{e\}, H_2\}, (H_2, \{e\}), (H_1, L_1), (L_1, H_1), (\{e\}, L_1), (H_4, G), (H_5, G), (\{e\}, G)\}$$

$$= L_u(G) \times L_u(G)$$

$$\Theta (\{e\}, H_4) = \omega \cup \{\{e\}, H_4\}, (H_1, \{e\}), (\{e\}, L_2), (\{e\}, G)\}$$

= $L_u(G) \times L_u(G)$

Similarly, Θ ({e}, H₅) = L_u(G) x L_u(G)

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 Jan 202

$$\begin{split} \varTheta\left(\{e\},\,K_{1}\right) &= \omega \cup \, \{\{e\},\,K_{1}),\,(K_{1},\,\{e\}),\,(H_{7},\,G),\,(H_{6},\,G),\,(\{e\},\,G)\} \\ &= L_{u}(G) \;x\;L_{u}(G) \end{split}$$

Therefore, L_u(G) has no proper congruence relation.

Therefore, L_u(G) is simple.

We tabulate the subgroups of G, when p=5 in the order in which they lie in different maximal subgroups(co-atoms).

Intervals [$\{e\}$, P_i] in $L_u(G)$, i = 1,2,3,4,5

order	Subgroups
16	P_1
8	M_1, M_2, M_3
4	K ₁ , K ₂ , K ₃ , K ₄ , K ₅ , K ₆ ,
	K_{27}
2	H_1, H_2, H_5
1	{e}

order	Subgroups
16	P_2
8	M_4, M_{10}, M_{15}
4	K_3 , K_7 , K_{18} , K_{20} , K_{26} ,
	K ₂₇ ,K ₃₁
2	H_5, H_9, H_{10}
1	{e}

order	Subgroups
16	P_3
8	M_5, M_{10}, M_{13}
4	K_3 , K_{10} , K_{11} , K_{12} , K_{15} , K_{24} ,
	K_{28}
2	H_3, H_5, H_7
1	{e}

order	Subgroups
16	P ₄
8	M_6, M_7, M_{12}
4	K ₃ , K ₈ , K ₉ , K ₁₃ , K ₁₄ , K ₂₃ ,
	K ₂₉
2	H_4, H_5, H_6
1	{e}

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 Jan 202

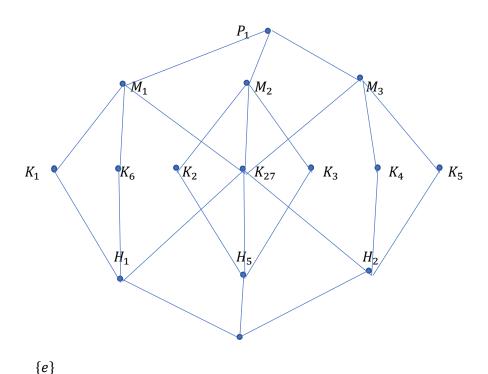
order	Subgroups
16	P ₅
8	M_9, M_{11}, M_{14}
4	K_3 , K_{16} , K_{17} , K_{19} , K_{22} , K_{25} ,
	K ₃₀
2	H_5, H_8, H_{11}
1	{e}

Each P_i is of order 16.

We observe that the number of subgroups of orders 2, 4, and 8 below each P_i is 3, 7 and 3 respectively and the lattice structure of the intervals [$\{e\}$, P_i] are isomorphic.

Typically, we display it for P_1 as given below.

Fig 5



Lemma 1.7- Each interval $[\{e\}, P_i]$ satisfies the general dis-jointness condition, i = 1, 2, 3, 4, 5.

Proof- Since there is no such pair exist to satisfy the hypothesis of the general dis-jointness condition, obviously the GD condition is true in each interval [$\{e\}$, P_i], i=1,2,3,4,5

<u>Lemma 1.8</u> – Each interval [$\{e\}$, P_i] is super modular, i=1,2,3,4,5.

Proof – From fig 5, we observe that each interval [{e}, P_i] satisfies the identity (a v b) Λ (a v c) Λ (a v d) = a v [b Λ c Λ (a v d)] v [c Λ d Λ (a v b)] v [b Λ d Λ (a v c)] for all a, b, c, d \in L

Therefore, the interval $[\{e\}, P_i]$ is super modular i = 1, 2, 3, 4, 5.

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 Jan 202

Lemma 1.9 – Each interval $[\{e\}, P_i]$ is modular.

Proof – From fig 5, we observe that whenever $a \le c$ in $[\{e\}, P_i]$ a v ($b \land c$) = $(a \lor b) \land c$ for all $b \in [\{e\}, P_1]$

Therefore $[\{e\}, P_i]$ is modular.

In the same manner, $\{e\}$, P_i is modular for every i=1,2,3,4,5.

<u>Lemma 1.10</u> – Each interval $[\{e\}, P_i]$ is consistent, i = 1,2,3,4,5.

Proof- Since any modular lattice is consistent, by previous lemma we see that $[\{e\}, P_1]$ is consistent. In the same manner $[\{e\}, P_i]$ is consistent for every i = 1, 2, 3, 4, 5.

Lemma 1.11 – Each interval [$\{e\}$, P_i] is not distributive for every i = 1, 2, 3, 4, 5.

Proof – From fig 5, we observe that H_1 , H_2 , $H_5 \in [\{e\}, P_i]$

$$H_1v(H_2AH_5) = H_1v\{e\}$$

= H_1
 $(H_1vH_2 \land (H_1 \lor H_5) = M_1 \land P_1$
= M_1

Therefore, $H_1v(H_2\Lambda H_5) \neq (H_1 v H_2) \Lambda (H_1 v H_5)$.

Therefore, we conclude that the interval $[\{e\}, P_i]$ is not distributive.

Lemma 1.12 – Each interval [$\{e\}$, P_i] is not 0- distributive for every i=1, 2, 3, 4, 5

Proof – From figure 5, we observe that

$$H_1, H_2, H_5 \in [\{e\}, P_i]$$
 $H_1 \land H_2 = \{e\} \text{ and } H_1 \land H_5 = \{e\}$
 $H_1 \land (H_2 \lor H_5) = H_1 \land H_{27}$
 $= H_1$
 $\neq \{e\}$

Therefore, we conclude that the interval [$\{e\}$, P_i] is not 0- distributive for every i=1, 2, 3, 4, 5.

Lemma 1.13- Each interval [$\{e\}$, P_i] is not Pseudo 0- distributive for every i=1, 2, 3, 4, 5.

Proof – From Fig 5, we observe that

$$H_1, H_2, H_5 \in [\{e\}, P_i]$$
 $H_1 \land H_2 = \{e\} \text{ and } H_1 \land H_5 = \{e\}$
 $(H_1 \lor H_2) \land H_5 = K_{27} \land H_5$
 $= H_5$
 $(H_2 \land H_5) = \{e\}$

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS, All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 Jan 202

$$\neq$$
 H₅

Therefore, $(H_1 \vee H_2) \wedge H_5 \neq (H_2 \wedge H_5)$.

Therefore, we conclude that the interval [$\{e\}$, P_i] is not pseudo 0-distributive for every i= 1,2,3,4,5.

Lemma 1.14 - Each interval $[\{e\}, P_i]$ is not super 0- distributive for every i = 1, 2, 3, 4, 5

Proof - From Fig 5, we observe that

$$H_1, H_2, H_5 \in [\{e\}, P_i]$$
 $H_1 \wedge H_2 = \{e\}$
 $(H_1 \vee H_2) \wedge H_5 = K_{27} \wedge H_5$
 $= H_5$
 $(H_1 \wedge H_5) \vee (H_2 \wedge H_5) = \{e\} \vee \{e\}$
 $= \{e\}$

Therefore, $(H_1 \vee H_2) \wedge H_5 \neq (H_1 \wedge H_5) \vee (H_2 \wedge H_5)$.

 $\neq H_5$

Therefore, we conclude that the interval $[\{e\}, P_i]$ is not super 0-distributive for every i=1,2,3,4,5.

<u>Lemma 1.15</u> – When p=7 the lattice $L_u(G)$ is not 0- distributive.

Proof - From fig 4, we observe that

$$H_1, H_2, H_3 \in L(G),$$
 $H_1 \land H_2 = \{e\} \text{ and } H_2 \land H_3 = \{e\}$
 $H_1 \land (H_2 \lor H_3) = H_1$
 $\neq \{e\}$

Therefore, we conclude that when p=7 the lattice is not 0-distributive.

<u>Lemma 1.16</u> – When p=7 the lattice $L_u(G)$ is not Pseudo-0-distributive.

Proof - From fig 4, we observe that K_{19} , K_{20} , $N_{1} \in L(G)$

$$K_{19}\Lambda K_{20} = \{e\} \text{ and } K_{19}\Lambda N_1 = \{e\}$$

$$(K_{19}VK_{20}) \Lambda N_1 = T_4\Lambda N_1$$

$$= N_1$$

$$\neq \{e\}$$

Therefore, the lattice L_u(G) is not Pseudo 0- distributive.

Lemma 1.17 – When p=7 $L_u(G)$ is not modular.

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 Jan 202

Proof – From fig 4, we observe that S_1 , U, $W_1 \in L_u(G)$

$$S_1v(U_\Lambda W_1) \wedge (U_V W_1) = (S_1vR_2) \wedge Y_1$$

= $G_\Lambda Y_1$
= Y_1
 $S_1A(U_V W_1) \vee (U_\Lambda W_1) = (S_1vY_1) \vee R_2$
= Y_1
= Y_1
= Y_1

Therefore, the lattice L_u(G) is not modular.

REFERENCES:

- 1. N. Bourbaki, Elements of Mathematics, Algebra I, Chapters 1-3, Springer Verlag Berlin, Heidelberg, NewYork, London, Paris, Tokyo.
- 2. R. Dedekind Über die Anzahl der Ideal-Classen in den verschiedenen Ordnungen eines endlichen Körpers: Festschrift zur Saecularfeier des Geburtstages von C. F. Gauss, Vieweg, Braunschweig, 1877, 1-15; see Ges. Werke, Band I, Vieweg Braunschweig, 1930, 105-157.
- 3. Gardiner, C. F. A first course in group theory. Springer Verlag, Berlin, 1997.
- 4. Gratzer, G. "Lattice theory: foundation." Biskhawer Veslag, Baset, 1998.
- 5. N. Herstein, Israel Nathan. Topics in algebra, Second Edition, John Wiley & Sons, New York 1975.
- 6. D. Jebaraj Thiraviam, "A Study on some special types of lattices."
- 7. R. Sulaiman. "Subgroups lattice of symmetric group S_4 ." International Journal of Algebra 6, no. 1 (2012): 29-35.
- 8. B. Humera, Z. Raza, On subgroups lattice of quasidihedral group, International Journal of Algebra, Vol. 6, 2012, no. 25-28, 1221-1225.
- 9. Michio, Suzuki. "On the lattice of subgroups of finite groups." Tokyo University, Tokyo, Japan, pp: 345-371.
- 10. Stanley R.P., super solvable lattice, Algebra universalis,4(1974), 361-371.
- 11. Veeramani.A., A study on characterizations of some lattices, Bharatidasan university, 2012.
- 12. Vethamanickam.A, Topics in universal Algebra, Ph.D thesis, Madurai Kamaraj University, 1994.
- 13. Vethamanickam.A., and Arivukkarasu.J., On 0- super modular lattices, Math.Sci.,Int.Res.Journal 3(2) (2014), 748-752.
- 14. R.Rosie Gracia, On the lattice of subgroup of the group of upper triangular matrices of matrix group.
- 15. Rosenfeld.A., Fuzzy groups, J. math Anal. And App. 35(1971),512-51

