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Abstract 

In this paper our main focus is to study various lattice identities satisfied by the lattice of 

subgroups of the upper triangular matrices of the group of 2 x 2 matrices over Z p under matrix 

multiplication modulo ‘p’ where p is prime and p= 2,3,5 and 7 

The properties verified are modularity, super solvability, 0- Distributivity, Consistency, Pseudo 

0-distributivity, super 0- distributivity, GD condition, distributivity and simple.  

Keywords – Modularity, distributivity, simple, congruence. 

Introduction – The main aim in this paper is to check the properties of Lattices of subgroups 

of the upper triangular matrices of the group of 2x2 matrices over Z p under matrix 

multiplication modulo p, where p is prime and p= 2,3,5 and 7. 

              In 2015, D. Jebaraj Thiraviam has given the structure and checked some properties of 

subgroup lattices of the groups of 2x2 matrices over Z p having determinant value 1 under 

matrix multiplication modulo p , where p is one of the prime numbers 2,3 5 and 7. This has 

motivated us to investigate the lattice of subgroups of the group of 2x2 upper triangular 

matrices over Z p  for which we have given the lattice structures in the paper [14]“On the lattice 

of subgroups of the upper triangular matrices of a matrix group over finite fields.” 

Preliminaries 

The following definitions are used in the paper. 

Definition 1.1- In the Poset (P, ≤), a covers b or b is covered by a (in notation, a ≻b or b ≻a) if 

and only if b<a and, for no x, b<x<a. 

Definition 1.2– An element ‘a’ is an atom, if a ≻0 and a dual atom, if a ≺1.  

Definition 1.3 – A lattice is said to be modular if whenever a ≤ c 

   aᴠ (b ᴧ c) = (a ᴠ b) ᴧ c, for all a, b, c ϵ L  

Definition 1.4 – A lattice is said to be super solvable, if it contains a maximal chain called an 

M-chain in which every element is modular. By a modular element m in a lattice L, we mean 

x ᴠ (m ᴧy) = (x ᴠ m) ᴧ y whenever x ≤ y in L. 

Definition 1.5- A lattice L is said to be 0- distributive if for all x, y, z ϵL, whenever x ᴧ y=0 

and x ᴧ z =0 then xᴧ (y ᴠ z) = 0. 
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Definition 1.6- An element a of a lattice is called join-irreducible if x ᴠ y=a implies x=a or y=a. 

Definition 1.7 – A lattice L is said to be consistent if whenever j is a join-irreducible element 

in L, then for every x ϵ L, x ᴠ j is join-irreducible in the upper interval [x,1]. 

Definition 1.8 – A lattice L is said to be pseudo-0 distributive if for all x, y, z ϵ L, x ᴧ y = 0, x 

ᴧ z =0 imply that (x ᴠ y) ᴧ z = y ᴧ z. 

Definition 1.9 – A lattice L is said to be super 0- distributive if for all x, y, z ϵ L, x ᴧ y = 0 

implies (x ᴠ y) ᴧ z= (x ᴧ z) ᴠ (y ᴧ z) 

Definition 1.10 – The lattice L with 0 satisfies the general dis-jointness property (GD) if x ᴧ y 

= 0 and (x ᴠ y) ᴧ z = 0 imply x ᴧ (y ᴠ z) = 0. 

Definition 1.11 – A lattice L is said to be distributive if (x ᴠ y) ᴧ z = [(x ᴧz) ᴠ (y ᴧ z) and (x ᴧ 

y) ᴠ z = [(x ᴠ z) ᴧ (y ᴠ z)] for all x, y, z ϵ L. 

Definition 1.12 – An equivalence relation Ө on a lattice L is called a congruence relation on L 

if and only if (a0, b0) ϵ Ө and (a1, b1) ϵ Ө imply that (a0 ᴧa1, b0ᴧb) ϵ Ө and (a0 ᴠ a, b0 ᴠb) ϵ Ө. 

Definition 1.13 – The collection of all congruence relations on L, is denoted by Con L,and it 

is an algebraic lattice with respect to set inclusion relation. 

Definition 1.14- If a lattice L has only two trivial congruence relations namely ω, the diagonal 

and τ = L x L, then L is said to be simple (eg.,M3 is simple) 

Definition 1.15 – If Con L contains a unique atom, then we say that L is sub-directly irreducible 

(eg., N5 is sub-directly irreducible). 

Results –  

• Any modular lattice is consistent. 

• Every modular lattice is super solvable. 

Lattice structures of the lattices of subgroups of the upper triangular matrices of the group of 2 

x 2 matrices over Zp under matrix multiplication modulo p, where p is a prime and p=2,3,5 and 

7 are displayed below. 

Throughout the paper we denote the lattice of all subgroups of the group of upper triangular 

2x2 matrices over Zp by Lu(G). 
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Fig 1 

                                                                       Lu(G), G=Z2                                

 

                                                                   

Fig 2 

Lu(G), G=Z3 

 

                                                                         

Fig.3 

Lu(G), G=Z5 
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Fig 4 

Lu(G), G = Z7 

 

Lemma 1.1 – When p≤3 Lu(G) is modular. 

Proof – From the figure 1 and 2 we observe that whenever x ≤ z in Lu(G)  

      xᴠ (yᴧ z) = (x ᴠ y) ᴧ z for every y ϵ Lu(G). 

Therefore, we conclude that Lu(G) is modular when p≤ 3. 

 

Lemma 1.2- When p≤3, Lu(G) is consistent. 

Proof – Since any modular lattice is consistent, by the previous lemma, we see that Lu(G) is 

consistent when p≤ 3. 

Lemma 1.3 – When p≤3, Lu(G) is super solvable. 

Proof- Since every modular lattice is super solvable, we conclude that, when p≤ 3, Lu(G) is 

super solvable. 

Lemma 1.4 – When p=3 the lattice Lu(G) is not pseudo- distributive. 

Proof- From fig 2 H1, H3, H4 ϵ Lu(G), 

         H3ᴧ H4= {e}, H1ᴧ H3= {e} 

         (H3ᴠ H4) ᴧ H1= GᴧH1               

                               = H1 

                    H4ᴧ H1= {e} 

Therefore, (H3ᴠ H4) ᴧ H1≠ H4ᴧ H1. 

Therefore, the lattice Lu(G) is not super 0- distributive. 

Lemma 1.5 – When p=3, the lattice Lu(G) is not super 0- distributive. 
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Proof – From fig 2, H3, H6, H7ϵ Lu(G) 

                                 H6ᴧH7= {e} 

                               (H6ᴠH7) ᴧH3= GᴧH3 

                                                    = H3 

                                               (H6 ᴧH3) ᴠ (H7 ᴧ H3) = {e} ᴠ {e} 

                                                          = {e} 

Therefore (H6ᴠH7) ᴧH3≠ (H6 ᴧH3) ᴠ (H7 ᴧ H3). 

Therefore, the lattice Lu(G) is not super 0-distributive. 

 

Lemma 1.6- When p=3, general dis -jointness condition is not satisfied. 

Proof – From fig 2, H5, H6, H7ϵ Lu(G) 

                                  H5ᴧH6 = {e} and (H5ᴠ H6) ᴧH7= L3ᴧH7 

                                                                                                                             ={e} 

                                                            H5ᴧ(H6ᴧH7) = H5ᴧG 

                                                                                = H5 

                                                                                ≠{e}. 

Therefore, general dis-jointness condition is not satisfied in Lu(G) when p=3. 

 

Lemma 1.7 – When p=3, Lu(G) is simple. 

Proof- We observe that L(G) is atomistic, so if Ө ϵ [Con L(G)], then if (x, y) ϵ Ө and  

x ≤ y, there exists an atom aϵ Lu(G) such that a≤ y and a is not less than or equal to x. 

 Therefore ({e}, a) ϵ Ө. 

To prove that Lu(G) is simple, it is enough to verify whether there is any proper principal 

congruence generated by an element of the form ({e}, a) where a is an atom in Lu(G). 

Now, Ө ({e}, H1) = ω∪ {{e}, H1), (H1, {e}), ({e}, L1), (L1, {e}), (H4, L2), (L2, H4), ({e}, L3), 

({e}, G)} 

                            = Lu(G) x Lu(G) 

Ө ({e}, H2) = ω∪ {{e}, H2), (H2, {e}), (H1, L1), (L1, H1), ({e}, L1), (H4, G), (H5, G), ({e}, G)} 

                            = Lu(G) x Lu(G) 

Ө ({e}, H4) = ω∪ {{e}, H4), (H1, {e}), ({e}, L2), ({e}, G)} 

                            = Lu(G) x Lu(G) 

Similarly, Ө ({e}, H5) = Lu(G) x Lu(G) 
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Ө ({e}, K1) = ω∪ {{e}, K1), (K1, {e}), (H7, G), (H6, G), ({e}, G)} 

                            = Lu(G) x Lu(G) 

Therefore, Lu(G) has no proper congruence relation. 

Therefore, Lu(G) is simple. 

 

 

We tabulate the subgroups of G, when p=5 in the order in which they lie in different 

maximal subgroups(co-atoms). 

Intervals [{e}, Pi] in Lu(G), i = 1,2,3,4,5 

order Subgroups 

16 P1 

8 M1, M2, M3 

4 K1, K2, K3, K4, K5, K6, 

K27 

2 H1, H2, H5 

1 {e} 

                                       

order Subgroups 

16 P2 

8 M4, M10, M15 

4 K3, K7, K18, K20, K26, 

K27,K31 

2 H5, H9, H10 

1 {e} 

         

order Subgroups 

16 P3 

8 M5, M10, M13 

4 K3, K10, K11, K12, K15, K24, 

K28 

2 H3, H5 ,H7 

1 {e} 

 

order Subgroups 

16 P4 

8 M6, M7, M12 

4 K3, K8, K9, K13, K14, K23, 

K29 

2 H4, H5, H6 

1 {e} 
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order Subgroups 

16 P5 

8 M9, M11, M14 

4 K3, K16, K17, K19, K22, K25, 

K30 

2 H5, H8, H11 

1 {e} 

Each Pi is of order 16. 

We observe that the number of subgroups of orders 2, 4, and 8 below each Pi is 3, 7 and 3 

respectively and the lattice structure of the intervals [{e}, Pi] are isomorphic. 

Typically, we display it for P1 as given below. 

Fig 5 

                                                                   

                                                                                      𝑃1      

 

                                                      𝑀1                                𝑀2                            𝑀3          

 

 

 𝐾1 𝐾6              𝐾2                 𝐾27              𝐾3               𝐾4      𝐾5  

 

 

                                                 𝐻1                                𝐻5                                 𝐻2 

                                                                                            

            

            

            

            {𝑒}                                                            

Lemma 1.7- Each interval [{e}, Pi] satisfies the general dis-jointness condition, i= 1,2,3,4,5. 

Proof- Since there is no such pair exist to satisfy the hypothesis of the general dis-jointness 

condition, obviously the GD condition is true in each interval [{e}, Pi] , i= 1,2,3,4,5 

Lemma 1.8 – Each interval [{e}, Pi] is super modular, i=1,2,3,4,5. 

Proof – From fig 5, we observe that each interval [{e}, Pi] satisfies the identity 

(a ᴠ b) ᴧ (a ᴠ c) ᴧ (a ᴠ d) = a ᴠ [b ᴧ c ᴧ (a ᴠ d)] ᴠ [c ᴧ d ᴧ (a ᴠ b)] ᴠ [b ᴧ d ᴧ (a ᴠ c)] for all a, b, 

c, d ϵ L 

Therefore, the interval [{e}, Pi] is super modular i =1,2,3,4,5. 
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Lemma 1.9 – Each interval [{e}, Pi] is modular. 

Proof – From fig 5, we observe that whenever a ≤ c in [{e}, Pi] a ᴠ (b ᴧ c) = (a ᴠ b) ᴧ c for all 

bϵ[{e}, P1] 

Therefore [{e}, Pi] is modular. 

In the same manner, [{e}, Pi] is modular for every i= 1,2 ,3 4,5. 

 Lemma 1.10 – Each interval [{e}, Pi] is consistent, i= 1,2,3,4,5. 

Proof- Since any modular lattice is consistent, by previous lemma we see that [{e}, P1] is 

consistent. In the same manner [{e}, Pi] is consistent for every i= 1, 2, 3, 4, 5. 

Lemma1.11 – Each interval [{e}, Pi] is not distributive for every i = 1, 2, 3,4 ,5. 

Proof – From fig 5, we observe that H1, H2, H5 ϵ [{e}, Pi] 

                                                   H1ᴠ(H2ᴧH5) = H1ᴠ{e} 

                                                                        = H1 

                                                  (H1ᴠH2 ᴧ (H1 ᴠ H5) = M1ᴧ P1 

                                                                                  = M1 

Therefore, H1ᴠ(H2ᴧH5) ≠ (H1 ᴠ H2) ᴧ (H1 ᴠ H5). 

Therefore, we conclude that the interval [{e}, Pi] is not distributive. 

Lemma 1.12 – Each interval [{e}, Pi] is not 0- distributive for every i= 1, 2, 3, 4, 5 

Proof – From figure 5, we observe that  

               H1, H2, H5 ϵ [{e}, Pi] 

               H1ᴧH2={e} and H1ᴧH5={e} 

H1ᴧ(H2ᴠH5) = H1ᴧH27 

                    = H1 

                              ≠ {e} 

Therefore, we conclude that the interval [{e}, Pi] is not 0- distributive for every i= 1, 2,3, 4, 5. 

Lemma 1.13- Each interval [{e}, Pi] is not Pseudo 0- distributive for every i= 1, 2, 3, 4,5. 

Proof – From Fig 5, we observe that 

                          H1, H2, H5 ϵ [{e}, Pi] 

                          H1ᴧH2={e} and   H1ᴧH5={e}    

                           (H1ᴠ H2) ᴧ H5= K27ᴧ H5 

                                                = H5 

                          (H2 ᴧ H5) = {e} 
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                                         ≠ H5 

Therefore, (H1 ᴠ H2) ᴧ H5≠ (H2 ᴧ H5). 

Therefore, we conclude that the interval [{e}, Pi] is not pseudo 0-distributive for every i= 

1,2,3,4,5. 

Lemma 1.14 - Each interval [{e}, Pi] is not super 0- distributive for every i= 1, 2, 3, 4,5 

Proof - From Fig 5, we observe that 

                          H1, H2, H5 ϵ [{e}, Pi] 

                          H1ᴧH2={e}       

                 (H1 ᴠ H2) ᴧ H5= K27ᴧ H5 

                                      = H5 

 (H1ᴧ H5) ᴠ (H2 ᴧ H5) = {e}ᴠ {e} 

                                    = {e} 

                                    ≠ H5 

Therefore, (H1 ᴠ H2) ᴧ H5≠ (H1 ᴧ H5) ᴠ (H2 ᴧ H5). 

Therefore, we conclude that the interval [{e}, Pi] is not super 0-distributive for every i= 

1,2,3,4,5. 

Lemma 1.15 – When p=7 the lattice Lu(G) is not 0- distributive. 

Proof - From fig 4, we observe that  

              H1, H2, H3 ϵ L(G), 

           H1ᴧH2={e} and H2ᴧH3={e} 

           H1ᴧ(H2ᴠH3) = H1 

                               ≠{e}    

Therefore, we conclude that when p=7 the lattice is not 0-distributive. 

 

Lemma 1.16 – When p=7 the lattice Lu(G) is not Pseudo-0-distributive. 

Proof - From fig 4, we observe that K19, K20, N1ϵ L(G)   

                                   K19ᴧK20= {e} and K19ᴧN1={e}    

                                   (K19ᴠK20) ᴧN1= T4ᴧN1 

                                                          = N1 

                                                          ≠{e}     

Therefore, the lattice Lu(G) is not Pseudo 0- distributive. 

Lemma 1.17 – When p=7 Lu(G) is not modular. 
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Proof – From fig 4, we observe that S1, U, W1ϵ Lu(G) 

                  S1ᴠ(UᴧW1) ᴧ (UᴠW1) = (S1ᴠR2) ᴧ Y1 

                                                                                 = GᴧY1 

                                                    = Y1 

                 S1ᴧ(UᴠW1) ᴠ (UᴧW1) = (S1ᴠY1) ᴠ R2 

                                                                                 = H 1ᴠR2 

                                                    = R2 

                                                    ≠ Y1 

Therefore, the lattice Lu(G) is not modular. 
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