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Abstract 

In this paper, we introduce a corresponding between bipartite graphs with a perfect 

matching and digraphs, which implicates an equivalent relation between the extendibility of 

bipartite graphs and the strongly connectivity of digraphs. Such an equivalent relation explains 

the similar results on k-extendable bipartite graphs and k-strong digraphs. We also study the 

relation among k-extendable bipartite graphs, k-strong digraphs and combinatorial matrices. For 

bipartite graphs that are not 1-extendable and digraphs that are not strong, we prove that the 

elementary components and strong components are counterparts. 

Key words: k-extendable, strongly k-connected, indecomposable, irreducible, strong 

component, elementary component 

Introduction 

One of the amazing features of Graph theory is its recognition in all fields of science 

and engineering. Graph theory is a fertile area of mathematical research. Domination is one of 

the most important concepts attracting researchers. There are many variations of domination in 
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the literature such as independent domination, total domination, connected domination, paired 

domination just to name a few. In this series, a vertex-dominating cycle is defined as a cycle in 

which every vertex of the graph is adjacent to at least one vertex on the cycle. Dominating 

cycles find immense applications in networks.  

The objective of this thesis is to introduce a new kind of dominating cycle called perfect 

matching dominating cycle, characterize, study the nature of these cycles and analyze some 

parameters associated with it in undirected, simple, connected graphs with a perfect matching. 

Some of the exciting new applications that are directly associated with perfect matching 

dominating cycles have also been explored. Perfect matching sequences, perfect matching 

dominating cycles and perfect matching minor for simple connected graphs 𝐺 are defined. A 

perfect matching 𝑀 in a graph 𝐺 of even order, say 2𝑛, is a set of mutually non-adjacent edges, 

which covers all vertices of 𝐺. A non-repeated finite alternating sequence of edges of 𝐺 from 

𝑀 and 𝐸 −  𝑀 such that each edge is adjacent with the edge preceding and following it, starting 

and ending at the same edge of 𝑀 is called perfect matching sequence (𝑃𝑀-sequence). The 

subgraph with the edges of such a 𝑃𝑀 sequence of length 2𝑛, denoted as 𝐺𝑀,  contains a cycle 

called the perfect matching dominating cycle (𝑝𝑚𝑑𝑐). The graph obtained by contracting all 

the edges of 𝑀 is called a 𝑃𝑀 minor, denoted as 𝐺𝑀 .  

The existence of such 𝑝𝑚𝑑𝑐 is characterized using Hamilton cycles. The necessary and 

sufficient condition for the existence of a 𝑝𝑚𝑑𝑐 is that the 𝑃𝑀- minor is Hamiltonian. Apart 

from finding such cycles in general graphs, enumeration of 𝑝𝑚𝑑𝑐𝑠 is also carried out for some 

classes of graphs. It is always convenient to represent graphs using matrices for further 

processing. Hence the matrix of perfect matching and the reduced matrix of the perfect 

matching are defined. Some graph parameters related to 𝑝𝑚𝑑𝑐 are also discussed.  
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Spanning trees play a very important role in any network since it is a basic structure of 

the network with minimal number of edges but ensuring connectivity. Spanning trees 

associated with 𝑝𝑚𝑑𝑐𝑠 are also defined. One very desirable feature expected out of a graph in 

the study of combinatorial design theory is edge decomposition with certain structural property. 

This is taken into account and a new kind of decomposition, called 𝑛-sun decomposition is 

offered. The cycle in the 𝑛-sun is a 𝑝𝑚𝑑𝑐 and hence an n-sun decomposition can be regarded 

as a type of 𝑝𝑚𝑑𝑐 decomposition. The study of 𝑝𝑚𝑑𝑐 in graph products like cartesian, strong 

and tensor products is done. Since strong product is the union of cartesian and tensor, cartesian 

and tensor products are given more attention. It is interesting to observe that not all product 

graphs have 𝑝𝑚𝑑𝑐 for a given choice of perfect matching. Some classes of product graphs 

which are non-Hamiltonian are identified to have 𝑝𝑚𝑑𝑐.  

Two applications of perfect matching dominating cycles and its allied spanning trees 

are discussed. The first application finds the number of spanning trees containing a given 

Keknle structure in fullerene molecules. The second application is on Bluetooth devices, in 

which a procedure is given to find spanning tree structure with maximum simultaneous active 

piconets in the statement.  

This thesis concludes that 𝑃𝑀-sequences and 𝑝𝑚𝑑𝑐 spanning trees will play a vital role 

in network. Also, 𝑝𝑚𝑑𝑐 spanning trees will help in message passing from a vertex to all other 

vertices, with a maximum congestion of 3 links at a node and hence better than using 

conventional spanning trees where we cannot always expect the congestion to be less. Also 

there is a lot of scope for future work based on the concepts introduced and analyzed in this 

thesis. 

There is a well-known equivalent property between the 1-extendibility of G and the 

strong connectivity of D. 
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Theorem 1.1. ([8], Exercise 4.1.5) Let G be a bipartite graph and M a perfect matching of G. 

Then D = D(G,M) is strong if and only if G is 1-extendable. 

The following is another interesting relation between G and D. 

Theorem 1.2. ([8], Exercise 4.3.3) Let G be a bipartite graph with a unique perfect matching 

M. Then D = D(G,M) is acyclic. 

In this paper we further discuss the relation between G and D, as well as their 

relations with combinatorial matrices. 

Extendibility versus Connectivity 

Below is a generalization of Theorem 1.1, which has been stated in [12] without a proof. 

Theorem 2.1. Let G be a bipartite graph and M a perfect matching of G. Then D = D(G,M) is 

k-strong if and only if G is k-extendable. 

We prove Theorem 2.1 in this section and show some interesting applications of it. We 

need Menger’s Theorem in our proof. 

Theorem 2.2. (Menger [10]) Let D be a digraph. Then D is k-strong if and only if |V (D)| ≥ k 

+1 and D contains k internally vertex disjoint (s,t)-paths for every choice of distinct vertices 

s,t ∈ V . 

Actually we use an equivalent form of Menger’s Theorem. Further more, we only need 

the following weaken form, which appears as an exercise in [2]. 

Lemma 2.3. ([2], Exercise 7.17) Let D be a k-strong digraph. Let x1, x2, ..., xk−1, y1, y2, ..., yk−1 

be distinct vertices of D, then there are k independent paths in D, starting at xi, 0 ≤ i ≤ k − 1 

and ending at yj, 0 ≤ j ≤ k − 1. 

Now comes the proof of Theorem 2.1. 

Proof. Let D be k-strong. We use induction on k to prove that G is k-extendable. 

When k = 1, the conclusion follows from Theorem 1.1. Suppose that the conclusion holds for 
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all integers 1 ≤ m < k. Now we prove that an arbitrary matching M0 of size k in G is contained 

in a perfect matching of G. 

Firstly we assume that |M0 ∩ M| ≥ 1. Let e ∈ M0 ∩ M and the vertex in D 

corresponding to e be ve. Let G′ = G − V (e), D′ = D − ve, and M′ = M\e. Then D′ is (k − 1)-

strong and D′ = D(G′,M′). By the induction hypothesis, G′ is (k − 1)-extendable. Hence 

M0\{e}, which is a matching of size k − 1 in G′, is contained in a perfect matching M′ of G′. 

Then M′ ∪ {e} is a perfect matching of G containing M0. 

Now we handle the case that M0 ∩ M = ∅. In this case, M0 corresponds to an arc set A0 

of order k of D. The arcs in A0 form some independent cycles and paths in D. Let the set of 

cycles formed be C0 = {C0, C1,..., Cs−1} and the set of paths formed be P0 = {P0, P1,..., Pt−1}. 

Let the starting and ending vertices of Pi be ui and vi, 0 ≤ i ≤ t − 1. Let V0 be the union of the 

set of vertices of cycles in C0 and the set of internal vertices of paths in P0. Then |V0| = k − t. 

By definition, D − V0 is t-strong. By Lemma 2.3, there are t independent paths in D starting at 

vi, 0 ≤ i ≤ t − 1, and ending at uj, 0 ≤ j ≤ t − 1. Such paths, together with the paths in P0, form 

some independent cycles in D. Denote the set of such cycles by C1. Then C0 ∪C1 is a set of 

independent cycles in D which covers all arcs in A0. C0 ∪C1 corresponds to a set C of 

independent M-alternating cycles in G. Let the set of edges of cycles in C be E(C), then E(C) 

△ M is a perfect matching of G containing M0. Hence G is k-extendable. 

Conversely, suppose that G is k-extendable. To see that D is k-strong, let 

{v1,v2,...,vk−1} be a set of k−1 vertices in D. Denote by ei the edge in G corresponds to vi, 1 ≤ i 

≤ k−1. Let ), D′ = D − {vi : 1 ≤ i ≤ k − 1} and M′ = M\{ei : 1 ≤ i ≤ k − 1}. Then 

D′ = G(G′,M′). Since G is k-extendable, G′ is 1-extendable. Hence D′ is strong by Theorem 1.1 

and D is k-strong.  
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Theorem 2.4. Let G be a bipartite graph and M a perfect matching of G. If G is 

minimal k-extendable then D = D(G,M) is minimal k-strong. 

Proof. Suppose that G is minimal k-extendable. By Theorem 2.1, D is k-strong. Let a 

be an arc of D and e be the edge corresponding to a in G. Then D − a = D(G − e,M). By the 

minimality of G, G – e is not k-extendable, hence D − a is not k-strong by Theorem 2.1. By 

the arbitrary of a, D is minimal k-strong.  

The converse of Theorem 2.4 does not generally hold, that is, G does not need to be 

minimal k extendable if D = D(G,M) is minimal k-strong. For example, we show a minimal 

strong digraph D0 in Figure 1 and G0 = B(D0), which is not minimal 1-extendable, in Figure 2. 

 

 Figure 1: A minimal strong digraph D0 Figure 2: G0 = B(D0) 

There are many parallel results on k-extendable bipartite graphs and k-strong 

digraphs. Theorem 2.1 and Theorem 2.4 help to explain such a similarity between these two 

classes of graphs. In the rest of this section, we will illustrate some such results. 

Our first demonstrations are the well-known ear decompositions of strong digraphs 

and 1-extendable bipartite graphs. 

An ear decomposition of a digraph D is a sequence E = {P0,P1,...,Pt}, where P0 is a 

cycle and each Pi is a path, or a cycle with the following properties: 

(a) Pi and Pj are arc disjoint when i 6= j. 

(b) For each i = 1,...,t, if Pi is a cycle, then it has precisely one vertex in common with V 

(Di−1). Otherwise the end-vertices of Pi are distinct vertices of V (Di−1) and no other vertex of 

Pi belongs to V (Di−1). Here Di denotes the digraph with vertices ) and arcs  

) and  
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Conclusion: 

Conversely, let D1 be a strong component of D. Then G1 = B(D1) is 1-extendable. To 

prove that G1 is an elementary component or consist of a fixed double edge, we need only to 

prove that an edge e = u1u2 ∈ E(G)\E(G1) associated with a vertex u1 ∈ V (G1) is a fixed single 

edge. Suppose that e is not a fixed single edge and contained in a perfect matching M′ of G. Let 

u1w1, u2w2 ∈ M, which correspond to vertices v1 and v2 in D respectively, then v1 ∈ V (D1) and 

v2 ∈/ V (D1). M △ M′ consists of nonadjacent edges and alternating cycles. The edges e, u1w1 

and u2w2 must be contained in an alternating cycle C. However C corresponds to a directed 

cycle in D, which contains v1 and v2. This contradicts the fact that D1 is a strong component of 

D. 
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