
IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 10, October 2022

2212 | P a g e

Simulators for Wireless Networks: A Study
Rahul Vishnoi, Assistant Professor,

Department of Electrical and Communication Engineering, Teerthanker Mahaveer University, Moradabad, Uttar

Pradesh, India

Email Id- ra_v@yahoo.com

ABSTRACT: Unlike wired networks, wireless networks are one of the finest fields for study. Simulators are

extremely excellent concessions between cost and complexity, as well as accuracy of the findings, in ad hoc

wireless networks to test the performance and behavior of different routing methods and protocols. It may be

tough to select which simulator to use for ad hoc wireless networks since there are so many options. The

article includes a review of simulators that enable ad hoc wired networks. Its goal is to create a simulator that

will assist researchers in developing and analyzing different strategies and models in a more reliable and

efficient manner. Unlike previous simulator comparisons, we do not concentrate on the correlation of

individual simulation outcomes, but instead attempt to evaluate simulators based on features and usability.

Ad hoc wireless networks have grown in popularity during the past several years. Simulation is a widely used

technique for evaluating the performance of different routing methods and models in ad hoc wireless

networks.

KEYWORDS: Wireless Networks, Simulations, OPNET Modeler, NS-2, J-Sim.

1. INTRODUCTION

New routing methods and network designs are also developed via simulation. They are

typically built in network simulators to explore any features for routing methods in ad hoc

wireless networks. Setting simulation settings allows you to quickly study the behavior of

network architectures and routing topologies. The majority of network simulation toolkits are

based on the discrete event-based simulation paradigm[1]. The goal of this survey is to

identify a wireless network simulator that strikes a fair mix of functionality, efficiency,

extendibility, accuracy, and usability. Researchers will be able to complete the processes

outlined above with little effort, allowing them to focus on their study rather than the

simulator. As a result, this study collects data on the features, capabilities,

advantages/disadvantages, and topologies of various network simulators in order to determine

their suitability as a research tool. The survey is based on a collection of articles and surveys,

some of which evaluate various network simulators based on predetermined criteria, and

others of which examine simulators' compliance with a particular project or area[2].

To assess the simulator's performance and make comparisons, we use a variety of parameters.

Because wireless network modeling is more challenging than wired network simulation in

terms of deciding the underlying details of a specific routing strategy and parameters to

utilize in simulation. Significant abstractions have been possible in wired networks during the

past 30 to 40 years of study. Point-to-point connections, for example, are often represented by

bandwidth and a queue delay, as well as framing and transmission faults. On the other hand,

in the area of ad hoc wireless networking, there is little advice on what abstractions to use.

Low-level details in ad hoc wireless networks may have a big impact on routing strategy

performance. Simulation is the greatest tool for studying such features and characteristics in

ad hoc wireless networks. We provide a case study in which topology control routing

methods were evaluated using widely used wireless network simulators such as NS-2,

OPNET Modeler, J-Sim, and OMNET++. From a feature and usability standpoint, we also

identify the missing aspects of each simulator, as well as the amount of work required for

installs, familiarizations, implementations, and visualizations. It also includes descriptions of

a list of simulators (as listed above), as well as estimates of their popularity and some clues as

to which simulators are utilized for certain purposes. Finally, a table is given that compares

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 10, October 2022

2213 | P a g e

the chosen simulators based on their own languages, modules, and whether or not they

include GUI support [1].

2. DISCUSSION

There may be some major differences in how simulators work. It is impossible to say that

these variances can be represented accurately. No network simulator is technically accurate.

A simulator may be described as reliable and realistic at best. Researchers that need extreme

precision will want to use test beds to perform their research on actual equipment. If this is

not feasible, they will have to rely on simulation and therefore accept a certain degree of

uncertainty. For instance, the effect of granularity, node mobility, radio propagation models,

simulation sizes, and so on. Simulators are useful because they offer software frameworks for

creating a computerized model that includes all of the relevant information[3].

2.1. OPNET MODELER

The heart of the OPNET (Optimized Network Engineering Tools) Modeler is a finite state

machine. A balance between speed and accuracy is reached when the analytical model, which

is responsible for speeding up the simulation by utilizing mathematical models that come

with modeler, is used in conjunction with the analytical model. The goal of the modelers was

to do diagnostics on a company's network and then assist in its restructuring. It has a number

of preset functions, protocols, devices, and behaviors that make the Modeler a powerful

application right out of the box and with little effort. It was first suggested and built in 1987

at MIT for simulation purposes, using C++.

OPNET Modeler uses hierarchical modeling to describe a network as a collection of sub-

models representing sub-networks or nodes. A simulation's topology may be manually built,

imported, or chosen from a pool of preset topologies. As previously stated, OPNET

simulations are event-driven, with an event being a request for a certain action to occur at a

specific moment. It may be time-based, which implies that various techniques could be used

to sample at regular intervals but advance when an event happens. A single global event list

is maintained by an OPNET simulator, and all objects have access to a common simulation

time clock. The events are listed in chronological order, with the first item in the list being

regarded the head[4].

All of the events have data connected with them, and when one of them is finished, it is

deleted from the list. When an event reaches the top of the event list, it becomes an interrupt

and is sent to the simulator's assigned module by the simulation kernel. When an interrupt

occurs, the module may receive data connected with the event, and specific modules,

processes, and queues are also chosen to put initial interruptions on the event list. The

Simulation Kernel (SK) is in charge of managing the whole event list, delivering each event

in order to the relevant module, as well as receiving requests from modules and inserting new

events into existing event lists[5].

The OPNET Modeler wireless suit is used by the simulator to offer modeling, simulations,

and analysis of wireless networks. It also has complete protocol stack modeling capabilities,

allowing it to simulate all elements of wireless communications such as RF propagation,

interferences, sender/receiver characteristics, node mobility, handover, and so on. OPNET

may run several simulation situations at the same time. It also enables distributed simulations

through a feature called High level architecture, which allows connection with other

simulations as well as system in the loop simulations that communicate with real hardware

and software. For result analysis, OPNET modeler includes a source code editor, Network

model editor, Node model editor, Process model editor, Antenna pattern editor, Packet format

editor, Simulation tools, and an OPNET animation viewer. These are the simulator's major

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 10, October 2022

2214 | P a g e

features, but it does have some flaws. For example, with the OPNET modeler, the accuracy

of the findings is limited by the sampling resolution, and the simulation is wasteful if nothing

occurs for extended periods of time[6].

2.2. OMNET++

OMNET++ (Objective Modular Network Testbed in C++) is a C++ simulation toolkit and

framework that is mainly used to create network simulations. It is extensible, modular, and

component-based. OMNET++ is an environment for discrete event simulation. Its main

application field is the simulation of communication networks, but it has also been effectively

utilized in other areas such as the modeling of complex IT systems, queuing networks, and

hardware designs due to its generic and flexible architecture. For OMNET++, there are

currently two main network simulation model frameworks: the Mobility framework and the

INET framework. At TU Berlin, the mobility framework was created to offer strong

foundations for the creation of wireless and mobile networks. While the IP Suite was created

at the University of Karlsruhe, the INET framework emerged from it. It has a detailed

protocol model for a variety of protocols [7].

Model component architecture is provided by OMNET++. C++ is used to write components

and modules, which are subsequently combined into bigger components and models using a

high-level language. Model reusability is provided for free. The simulation kernel (and

models) may be simply integrated into your applications thanks to OMNET++'s strong GUI

support and modular design. OMNET++ is open-source software that may be used for non-

profit purposes under the Academic Public License. The goal of creating OMNET++ was to

provide a sophisticated open-source discrete event simulation tool that could be used to

simulate computer networks and distributed or parallel systems by academic, educational,

and research-oriented commercial organizations. OMNET++ aims to bridge the gap between

open-source simulation tools like NS-2 and more costly commercial equivalents like

OPNET[8].

2.3. NS – 1 NS – 2

The second edition of the famous network simulator Network Simulator (NS) is designed for

wired networks. NS - 2 is an open source event driven simulator that is used by wireless

network researchers, academics, and others. NS - 2 may be used to simulate wired and

wireless network operations and protocols, routing methods, TCP, UDP, and other protocols.

Since its inception in 1989, NS2 has maintained its prominence in the networking research

field due to its flexibility and modular nature. Since then, numerous revolutions and

modifications have characterized the tool's maturation, due to significant contributions from

the field's participants.

LBNL created the initial version of ns, known as ns – 1, which was adapted from an older

simulator called as REAL. The MIT group then published version 2 of the simulator in 1995.

Although ns-2 was intended to mimic wired networks, it can also simulate wireless networks

utilizing the Wireless and Mobility Extensions to NS for IEEE 802.11 and many additional

Bluetooth extensions developed by the CMU Monarch Project. The simulator contains an

energy model and enables users to create traffic and movement patterns with ease. It also

includes a set of randomized movement models, and many initiatives are underway to add

sophisticated mobility models to the simulator, resulting in more realistic simulations. Mobile

IP is also available for the wireless component [9].

Except for the presentation and session levels, NS - 2 offers OSI layers. It has a vast number

of features available, including a big number of external protocols that are already

implemented. Within the network community, the simulator's behavior is well regarded. NS -

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 10, October 2022

2215 | P a g e

2 allows for deterministic or probabilistic packet loss in network node queues, as well as

deterministic and stochastic traffic distribution models. By changing scenario scripts, it is

also possible to define disturbances and corruptions that may occur in a simulated network,

such as link disruptions, node halt, and recovery. The OTcl script interpreter's simulation

event scheduler is either a non-real-time scheduler or a real-time scheduler that is primarily

utilized for real-time synchronization of an emulated network. The user specifies when

network components should begin or stop sending packets in the event scheduler. NS-2 may

be linked to a real network and collect live packets exactly like a regular node thanks to its

emulation capability. It also has the ability to inject packets into a live network. By enabling

users to choose parameters to be tracked, the simulator may create customized trace files,

which saves CPU resource [10].

NS2 delivers either text-based or animation-based simulation results after simulation. Tools

like NAM (Network AniMator) and X-Graph are used to analyze these findings visually and

interactively. Users may take a relevant portion of text-based data and convert it into a more

plausible display to evaluate a certain network activity. One of NS – 2's main flaws is that it

requires recompilation every time a user code modification is made. As a result, the user must

create his or her own user code in a separate shared library connected to the NS – 2 kernel.

The second major point is that simulations with more than a hundred nodes are difficult to

run due to a lack of scalability. Although NS-2 has a "small suite," large-scale networks need

numerous changes and additional caution in memory allocation and CPU time management.

NS-2 outperformed OPNET Modeler in terms of bandwidth estimate accuracy for pure CBR-

type traffic. The NS -2 simulators operate correctly on GNU/LINUX, UNIX, Solaris, and

Mac OS platforms. We can either create NS from scratch or obtain a "all-in-one package."

The all-in-one programs provide additional capabilities for simulation, particularly in

wireless scenarios, but the major drawback is that they only operate on LINUX / UNIX

systems.

2.4. J-SIM

J-Sim (previously known as Java Sim) is a JAVA-based network simulator. It is designed

using the component-based software architecture. It offers a compositional simulation

environment created by a team at Ohio State University's Distributed Real Time Computing

Laboratory and Illuinois University. It is based on the autonomous component architecture

(ACA), which is a design and manufacturing paradigm for integrated circuits. In J-Sim,

everything is a component, such as a node, a connection, or a protocol. Ports are used to

connect the various components. The ports may be connected in three different ways: one-to-

one, one-to-many, and many-to-many. Because J-Sim isn't often utilized in research, some

may have doubts about its models' validity. The J-Sim component contracts, which defines

how a component reacts to data arriving at each of its ports. Components may handle data in

their own execution context, allowing them to be planned, built, and tested independently of

the rest of the system. Setting flags for components is a useful feature of J-Sim, since it gives

you more choices for enable, disable, and display.

3. CONCLUSION

Different network simulators for ad hoc wireless networks were detailed in this study, along

with their strengths, weaknesses, and features. The goal is to find a wireless network

simulator that will assist academics by providing an efficient and easy-to-use development

environment for their study. As can be observed from the survey, simulators provide a large

range of characteristics, but none of them can be supported by all of them. So the goal here

was to find a well-balanced simulator that would provide a good user experience. It may be

inferred from the preceding descriptions and findings made in different reference articles that

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 10, October 2022

2216 | P a g e

ns-2 is the best option for the study job. Although OMNET++ offers several useful

capabilities, ns-2 is the most often used simulator in academic research.

Although ns-2 has a complex structure that is difficult to grasp, the widespread usage of the

community makes it simpler to use since many people assist each other with their issues

through mailing lists and forums. OMNET++ gained a lot of traction in the corporate world

rather than in academic research. OMNET++, unlike ns-2, has a well-designed simulation

engine and enables hierarchical modeling, making it a superior choice for development.

Unlike ns-2, OMNET++ also has a powerful GUI. However, OMNET++ lacks the huge

number (loads) of external models and users that ns-2 can readily handle.

REFERENCES:

[1] M. M. Koksal, “A survey of network simulators supporting wireless networks,” Middle east Tech. Univ., 2008.

[2] A. S. Toor and A. K. Jain, “A survey on wireless network simulators,” Bull. Electr. Eng. Informatics, 2017, doi:
10.11591/eei.v6i1.568.

[3] A. Augustine, “A Comparison of Network Simulators for Wireless Networks,” Int. J. Adv. Res. Electr. Electron.
Instrum. Eng., 2017.

[4] R. Khan, S. M. Bilal, and M. Othman, “A Performance Comparison of Network Simulators for Wireless
Networks,” A Perform. Comp. Netw. Simulators Wirel. Networks, 2013.

[5] A. Kumar, S. K. Kaushik, R. Sharma, and P. Raj, “Simulators for wireless networks: A comparative study,” 2012.

doi: 10.1109/ICCS.2012.65.

[6] P. Owczarek and P. Zwierzykowski, “Review of simulators for wireless mesh networks,” Journal of
Telecommunications and Information Technology. 2014.

[7] A. Boulis, “Castalia A simulator for Wireless Sensor Networks and Body Area Networks - User’s Manual,” Version
3.0, 2010.

[8] M. Jaganath, R. Vasanth, and G. Malarselvi, “An exhaustive consideration of wired and wireless network
simulators,” Int. J. Recent Technol. Eng., 2019, doi: 10.35940/ijrte.B1017.0782S419.

[9] J. M. Yi, M. J. Kang, and D. K. Noh, “SolarCastalia: Solar energy harvesting wireless sensor network simulator,”

Int. J. Distrib. Sens. Networks, 2015, doi: 10.1155/2015/415174.

[10] S. Kang, M. Aldwairi, and K. Il Kim, “A survey on network simulators in three-dimensional wireless ad hoc and
sensor networks,” Int. J. Distrib. Sens. Networks, 2016, doi: 10.1177/1550147716664740.

