SUM OF POWER n DIVISOR CORDIAL LABELING OF CONNECTED GRAPHS

P. Preetha Lal, Reg No: 20213282092005, Research Scholar, Department of Mathematics, Women'sChristian College, Nagercoil, Tamil Nadu, India Affiliated to Manonmaniam Sundaranar University, Abishekapatti,Tirunelveli - 627012
M. Jaslin Melbha, Assistant Professor, Department of Mathematics, Women'sChristian College, Nagercoil, Tamil Nadu, India Affiliated to Manonmaniam Sundaranar University, Abishekapatti,Tirunelveli - 627012

Abstract

: A Sum of Power n Divisor Cordial labeling of a graph G with a collection of vertex V is a bijection f from V to $\{1,2,3, \ldots,|V(G)|\}$, where an edge $u v$ is assigned the value 1 if 2 divides $(f(u)+f(v))^{n}$ and the edge $u v$ is assigned the value 0 if 2 does not divides $(f(u)+f(v))^{n}$. The number of edges labeled with 0 and the number of edges labeled with 1 differ by no more than 1. A graph with a sum of power n divisor cordial labeling is called a Sum of Power n Divisor Cordial Graph.

A graph G is said to be connected if every pair of vertices are joined by a path. Otherwise, it is disconnected. In this paper, we investigate sum of power n divisor cordial labeling of corona related connected graphs such as $C_{n} \hat{o} K_{1,5}, \mathrm{C}_{\mathrm{n}} \tilde{o} \mathrm{~K}_{1, \mathrm{~m}},\left(P_{n} \odot K_{1}\right) \odot K_{1,3}$, $P_{n} \odot K_{1,2}$ respectively.

Keywords: Divisor cordial labeling, Sum divisor cordial labeling, Sum of Power n Divisor Cordial Labeling, Ladder graphs.

1. Introduction

Here simple, finite, connected and undirected graphs are all that are being taken inti consideration. Harary is used for all other accepted terms and notations [1]. We refer to Gallian [2] for a comprehensive analysis of graph labeling. A labeling of a graph is a map that carries the graph elements to the set of numbers, usually to the set of non-negative or positive integers. If the domain is the set of vertices, the labeling is called vertex labeling. If the domain is the set of edges, the labeling is called edge labeling. If the labels are assigned to both vertices and edges then the labeling is called total labeling. A. Lourdswamy and F. Patrik introduced the concept of sum divisor cordial labeling in [3]. Preetha lal and M. Jaslin Melbha [4,5] introduced the concept of sum of power n divisor cordial labeling. Corona product of graphs was introduced by Frucht and Harary in 1970. By using the above result, we introduce Sum of Power n Divisor Cordial Labeling of Connected Graphs.
Definition 1.1. A Sum of Power n Divisor Cordial labeling of a graph G with a collection of vertex V is a bijection f from V to $\{1,2,3, \ldots,|V(G)|\}$, where an edge $u v$ is assigned the value 1 if 2 divides $(f(u)+f(v))^{n}$ and the edge $u v$ is assigned the value 0 if 2 does not divides $(f(u)+f(v))^{n}$. The number of edges labeled with 0 and the number of edges labeled with 1 differ by no more than 1 . A graph with a sum of power n divisor cordial labeling is called a Sum of Power n Divisor Cordial Graph.
Definition 1.2. Path refers to a walk where each of the vertices $u_{0}, u_{1}, \ldots, u_{n}$ are distinct. A path on n vertices is denoted by P_{n}.

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

Definition 1.3.

A graph obtained from a path P_{n} by attaching a pendant edge to every internal vertex of the path is called Hurdle graph. It is denoted by $H d_{n}$ and has $n-2$ hurdles.

Definition 1.4.

A graph obtained from an open ladder by joining each u_{i} with $\mathrm{v}_{\mathrm{i}+1}$ for $1 \leq i \leq n-1$ and each $\mathrm{u}_{\mathrm{i}+1}$ with $\mathrm{v}_{\mathrm{i}+1}$ for $1 \leq i \leq n-2$ is called an open triangular ladder and is denoted by $O\left(\mathrm{TL}_{\mathrm{n}}\right)$.
Definition 1.5. The double ladder graph is the graph obtained by using cartesian product of path graph P_{n} with n vertices and P_{3}. It is denoted by $P_{n} \times P_{3}$.
Definition 1.6. Circular ladder graph is a simple graph obtained by using cartesian product of cycle graph C_{n} with n vertices and path graph P_{2}. It is denoted by $C L_{n}$.

2. Main Results

Theoren 2.1. A Hurdle graph $H d_{n}$ is a sum of power n divisor cordial graph.
Proof. Let $G=H d_{n}$ be hurdle graph with $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ as the vertices of path and let $\beta_{1}, \beta_{2}, \ldots, \beta_{n-2}$ be the vertices of the pendant edges attached to the internal vertices of the path. Let $V(G)=\left\{\alpha_{i}: 1 \leq i \leq n\right\} \cup\left\{\beta_{i}: 1 \leq i \leq n-2\right\}$ and $E(G)=\left\{\alpha_{i} \alpha_{i+1} ; 1 \leq i \leq n-1\right\} \cup$ $\left\{\beta_{i} \alpha_{i+1} ; 1 \leq i \leq n-2\right\}$. Then G has $2 n-2$ vertices and $2 n-3$ edges. Define a function $f: V(G) \rightarrow\{1,2, \ldots,|V(G)|\} \quad$ by $f\left(\alpha_{i}\right)=i, 1 \leq i \leq n, \quad f\left(\beta_{i}\right)=f\left(\alpha_{n}\right)+i, 1 \leq i \leq n-2$. Then the induced edge labels are $f^{*}\left(\alpha_{i} \alpha_{i+1}\right)=0,1 \leq i \leq n-1, f^{*}\left(\beta_{i} \alpha_{i+1}\right)=1,1 \leq i \leq$ $n-2$. Hence $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. Thus, hurdle graph $H d_{n}$ is a sum of power n divisor cordial graph.
Example 2.2. The sum of power n divisor cordial labeling of $H d_{7}$ as shown in the figure.

Figure 1. Hd_{7}
Theorem 2.3. A graph obtained by attaching P_{4} at each vertex of P_{n} is a sum of power n divisor cordial graph.
Proof: Let P_{n} be a path $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. Let $\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i}$ be the $\mathrm{i}^{\text {th }}$ copy of $P_{4} ; 1 \leq i \leq n$. The resultant graph G is the required graph is with $V(G)=\left\{\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i}: 1 \leq i \leq n\right\}$ and $E(G)=\left\{\alpha_{i} \alpha_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{\alpha_{i} \beta_{i}, \beta_{i} \gamma_{i}, \gamma_{i} \delta_{i}: 1 \leq i \leq n\right\}$. Then G has $4 n$ vertices and $4 n-1$ edges. Define a function $f: V(G) \rightarrow\{1,2, \ldots,|V(G)|\}$ by $f\left(\alpha_{i}\right)=3 i-2,1 \leq i \leq n$, $f\left(\beta_{i}\right)=3 i, 1 \leq i \leq n, f\left(\gamma_{i}\right)=3 i-1,1 \leq i \leq n, f\left(\delta_{i}\right)=f\left(\beta_{n}\right)+i, 1 \leq i \leq n$. Then the induced edge labels are $f^{*}\left(\alpha_{i} \alpha_{i+1}\right)=0,1 \leq i \leq n-1, f^{*}\left(\alpha_{i} \beta_{i}\right)=1,1 \leq i \leq n, f^{*}\left(\beta_{i} \gamma_{i}\right)=$ $0,1 \leq i \leq n, f^{*}\left(\gamma_{i} \delta_{i}\right)=1,1 \leq i \leq n$. Hence $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. Thus, the graph G is a sum of power n divisor cordial graph.

Example 2.4. The sum of power n divisor cordial labeling of G when $n=5$ as shown in the figure.

Figure 2.
Theorem 2.5. The Open Triangular Ladder $O\left(T L_{n}\right), n \geq 2$ is a sum of power n divisor cordial graph.
Proof: Let $G=O\left(T L_{n}\right)$. Let the vertices of G be $V(G)=\left\{\alpha_{i}, \beta_{i}: 1 \leq i \leq n\right\}$ and the edges are $E(G)=\left\{\alpha_{i} \alpha_{i+1}, \beta_{i} \beta_{i+1}, \alpha_{i} \beta_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{\alpha_{i} \beta_{i}: 2 \leq i \leq n-2\right\}$. Define a function $f: V(G) \rightarrow\{1,2, \ldots,|V(G)|\}$ by $f\left(\alpha_{i}\right)=2 i-1,1 \leq i \leq n, f\left(\beta_{i}\right)=2 i, 1 \leq i \leq n$. Then the induced edge labels are $f^{*}\left(\alpha_{i} \alpha_{i+1}\right)=1,1 \leq i \leq n-1, f^{*}\left(\beta_{i} \beta_{i+1}\right)=1,1 \leq i \leq$ $n-1, \quad f^{*}\left(\alpha_{i} \beta_{i}\right)=0,1 \leq i \leq n-1, \quad f^{*}\left(\alpha_{i} \beta_{i+1}\right)=0,2 \leq i \leq n-1$. Hence $\mid e_{f}(0)-$ $e_{f}(1) \mid \leq 1$. Thus, the graph G is a sum of power n divisor cordial graph.
Example 2.6. The sum of power n divisor cordial labeling of triangular ladder $O\left(T L_{4}\right)$ as shown in the figure.

Figure 3.
Theorem 2.7. The Double Ladder $P_{n} \times P_{3}$ is a sum of power n divisor cordial graph.
Proof: Let $\quad V\left(P_{n} \times P_{3}\right)=\left\{\alpha_{i}, \beta_{i}, \gamma_{i}: 1 \leq i \leq n\right\} \quad$ and $\quad E\left(P_{n} \times P_{3}\right)=$ $\left\{\alpha_{i} \alpha_{i+1}, \beta_{i} \beta_{i+1}, \gamma_{i} \gamma_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{\alpha_{i} \beta_{i}, \beta_{i} \gamma_{i}: 1 \leq i \leq n\right\}$. Then the graph $P_{n} \times P_{3}$ has $3 n$ vertices and $5 n-3$ edges. Define a function $f: V\left(P_{n} \times P_{3}\right) \rightarrow\left\{1,2, \ldots,\left|V\left(P_{n} \times P_{3}\right)\right|\right\}$ by
$f\left(\alpha_{i}\right)=2 i-1,1 \leq i \leq n, f\left(\beta_{i}\right)=2 i, 1 \leq i \leq n, f\left(\gamma_{i}\right)=f\left(\beta_{i}\right)+i, 1 \leq i \leq n$. Then the induced edge labels are $f^{*}\left(\alpha_{i} \alpha_{i+1}\right)=1,1 \leq i \leq n-1, f^{*}\left(\beta_{i} \beta_{i+1}\right)=1,1 \leq i \leq n-1$, $f^{*}\left(\alpha_{i} \beta_{i}\right)=0,1 \leq i \leq n, \quad f^{*}\left(\gamma_{i} \gamma_{i+1}\right)=0,1 \leq i \leq n-1, \quad f^{*}\left(\beta_{2 i-1} \gamma_{2 i-1}\right)=0,1 \leq i \leq \frac{n}{2}$, $f^{*}\left(\beta_{2 i} \gamma_{2 i}\right)=1,1 \leq i \leq \frac{n}{2}$. Hence $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. Thus, the graph G is a sum of power n divisor cordial graph.
Example 2.8. The sum of power n divisor cordial labeling of double ladder graph $P_{4} \times P_{3}$ as shown in the figure.

Figure 4.
Theorem 2.9. The Circular ladder graph $C L_{n}$ is not a sum of power n divisor cordial graph.
Proof: Let $G=C L_{n}$ be a circular ladder graph. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be the vertices of inner cycle and $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ be the vertices of outer cycle of circular ladder graph. Then $|V(G)|=2 n$ and $|E(G)|=3 n$. Define a function $f: V(G) \rightarrow\{1,2, \ldots,|V(G)|\}$ by $f\left(\alpha_{i}\right)=2 i-1,1 \leq i \leq n$, $f\left(\beta_{i}\right)=2 i, 1 \leq i \leq n$. Then the induced edge labels are $f^{*}\left(\alpha_{i} \alpha_{i+1}\right)=1,1 \leq i \leq n-1$, $f^{*}\left(\alpha_{n} \alpha_{1}\right)=1, f^{*}\left(\beta_{i} \beta_{i+1}\right)=1,1 \leq i \leq n-1, f^{*}\left(\beta_{n} \beta_{1}\right)=1, f^{*}\left(\alpha_{i} \beta_{i}\right)=0,1 \leq i \leq n$.

The sum of power n divisor cordial labeling of double ladder graph $C L_{5}$ as shown in the figure.

Figure 5.

Here $\left|e_{f}(0)-e_{f}(1)\right| \geq 1$. Thus, Circular ladder graph is not a sum of power n divisor cordial graph.

Conclusion:

It is very interesting and challenging as well as to investigate graph families which admit sum of power n divisor cordial labeling. Here we have proved as Hurdle graph $H d_{n}$, graph obtained by attaching P_{4} at each vertex of P_{n}, Double Ladder $P_{n} \times P_{3}$, Open Triangular Ladder $T L_{n}$, Circular Ladder $C L_{n}$,

References:

[1] J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic J. Combinatorics., 18 (2015) \# DS6.
[2] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, (1972).
[3] A. Lourdusamy and F. Patrick, Sum Divisor Cordial Graphs, Proyecciones Journal of Mathematics, 35(1), pp. 115-132, (2016).
[4] P. Preetha lal and M. Jaslin Melbha, Sum square divisor cordial labeling of Theta Graph, Jundishapur Journal of Microbiology, Volume 15(2), October (2022).
[5] P. Preetha lal and M. Jaslin Melbha, Sum of Powe n Divisor Cordial Labeling for Subdivision Graphs, European Chemical Bulletin, Vol. 12(8), pp. 3038-3050, (2023).

