

Volume 3, Issue 6, Oct-Dec 2014, www.ijfans.com

e-ISSN: 2320-7876

INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

IMPACT FACTOR ~ 1.021

Official Journal of IIFANS

e-ISSN 2320 –7876 www.ijfans.com Vol.3, Iss.6, Oct-Dec 2014 © 2012 IJFANS. All Rights Reserved

Research Paper

Open Access

COMPARATIVE ASSESSMENT OF NUTRIENT INTAKE OF URBAN AND RURAL ADULTS WITH SPECIAL REFERENCE TO CALCIUM, OXALATE AND PHOSPHORUS

Priyanka^{*} and Archana Chakravarty

Department of Home Science, Mahila Mahavidyalaya Banaras Hindu University, Varanasi, UP, India

*Corresponding Author: pritu.priyanka@gmail.com

Received on: 2nd November, 2014

Accepted on: 16th December, 2014

ABSTRACT

Calcium oxalate is the major component of about 75% of all urinary stones. Diet has a key role in determining urinary chemistry and can influence the stone formation. The nutritional risk factors include an inadequate intake of fluids or excessive intake of foods rich in oxalate, sodium and calcium. Diet influence urinary constituents and pH, which may affect stone nucleation and growth. The objective of calculation of calcium, oxalate, and phosphate intake in adults of urban and rural areas of Varanasi district. A community based crossectional study was undertaken on 304 adults (Urban 152, Rural 152), 18-60 years of age group. A pretested and predesigned questionnaire was used to collect the information for the study. Socioeconomic and demographic information of study subject was assessed by interview technique. Dietary intake of study subjects was assessed by 24 Hours dietary recall methods. The nutrients calcium, oxalate and phosphate were estimated by using Nutritive value of Indian Foods. It may be concluded that in both the studied community majority of the respondents belong to 31-45 years of age group while the percentage of male was higher than female in urban and it was just reverse in rural community. Rural subjects have significantly, and low socioeconomic status as compare to urban subjects. The mean calcium intake is found to be more among rural male and females than urban male and females respectively but difference is not significant. The mean oxalate intake is insignificantly higher among rural males than urban but among females it was significantly higher in urban community in comparison to rural. It is seen that the proportion of male and female subjects belong to rural area consuming less than RDA of phosphorus is more than the urban male and female subjects respectively & the differences is significant.

Key words: Adult, Stone disease, Calcium, Oxalate, Phosphate, Recommended Dietary Allowance.

INTRODUCTION

Stone disease is a multi-factorial disorder resulting from the combined influence of epidemiological, biochemical and genetic risk factors. Modern lifestyle changes, sedentary habits, lack of easiness, an unhealthy dietary plan, and overweight problems of the affluent societies-emerge to be the important promoters of the "stone-boom" in the new millennium both in developed and underdeveloped countries. Major risk factors that contribute to stone formation and its recurrence include "classic" risk factors in the urine (low urine volume, hypercalciuria, hyperoxaluria, hyperuricosuria, hypocitrauria, and hypomanesuria), epidemiological factors - climate, race, ethnicity, age, sex, body weight. Factors such as age, sex, ethnic and geographic distribution determines prevalence. The prevalence of calculi ranges from 4 to 20 percent (Hussain et al 1996). Curhan et al (1997) demonstrated that men have higher oxalate concentrations than in women. Calcium intake, particularly through milk and dairy products, may be associated with hypercalciuria and stone formation. However, inverse relationships between dietary calcium and stone formation have been demonstrated, in that groups of men and women with the highest calcium intake have been shown to have nearly one half the rate of stones as groups with the lowest intake (Curhan et al 1993, 1997). Dietary calcium binds in the intestinal lumen with dietary oxalate, forming an insoluble, non-absorbable complex. The reduction in urinary oxalate levels that occurs with increased intake of dietary calcium is proportionally more important than the increased urinary calcium levels. Like oxalate, some dietary calcium may also be less bioavailable. (Curhan et al 1997).Stone is formed usually due to deposition of calcium, phosphates and oxalates which are a major health hazards.

Diet has a key role in determining urinary chemistry and can influence the stone formation. The nutritional risk factors include an inadequate intake of fluids or excessive intake of foods rich in oxalate, sodium and calcium. Diet influence urinary constituents and pH, which may affect stone nucleation and growth (P.S.Viayabharathi & M. Amirthaveni 2008). A better understanding of the relationship between diet (rich in calcium, oxalate, and phosphate) and the risk of calculus

formation will have the potential to provide simpler and most cost effective measures of prevention of stone disease. Hence the present study was carried out with the objective of calculation of calcium, oxalate, and phosphate intake in adults of urban and rural areas of Varanasi district.

METHODOLOGY

STUDY DESIGN

A community based cross sectional design was adopted for this study.

STUDY SAMPLE

Male and female adult's age group 18-60 were considered for this study.

SAMPLE SIZE

The sample size is calculated on the basis of knowledge regarding calcium, phosphate and oxalate which are major constituent of stone formation in urban as well as rural adults. The proportion of adults had knowledge about stone constituent is decided after pilot survey in urban as well as rural community which comes out 40% and 25% respectively. The determination of sample size is fixed considering 1:1 ratio between urban and rural adults, level of significance at 5% ($\alpha = 0.05$) and 80% of power of test (1- β)=0.80 therefore after computing sample size come 304 which is decided into two equal part. Therefore 152 adults from rural as well as 152 adults from urban were selected.

Varanasi district has been divided into 8 blocks (namely Cholapur, Chiraigaon, Kashi Vidyapieth, Harahua, Baragaon, Pindra, Sivapur and Arazi Line) and 90 wards. Among 8 blocks Kashi Vidyapeeth block has been selected randomly and in 90 wards Nariya ward has been selected randomly. In Kashi Vidyapeeth block there are 122 villages and among these villages Susuwahi and Madhopur villages has been selected randomly. In Nariya ward, Saket Nagar,& Bhogabeer areas were included in the study . A door to door survey was conducted and only one male or female adult was selected from each household alternatively until the sample size has been attained.

TOOLS OF STUDY

Pretested and predesigned questionnaire was used for this study.

TECHNIQUE OF THE STUDY

The adults was personally informed the purpose of the study and their consent obtained prior to data collection. Socioeconomic and demographic information of study subject was assessed by interview technique. Dietary intake of study subjects was assessed by 24 Hours dietary recall methods. The nutrients calcium, oxalate and phosphate were estimated by using Nutritive value of Indian Foods (Gopalan et al 1989).

ANALYSIS OF DATA

Data thus generated was analysed with the help of Microsoft excel 2007 and SPSS version 16^{th} software. Appropriate table were generated, statistical test χ^2 , F test ,post hock and t, test applied.

SAMPLING METHODOLOGY

Total

RESULT AND DICUSSION

100.0

Г	able No. 1 : Re	egion wise	distribution of	of respondents	s according to	their sex and	socioeconomic stat	us.

Age (years)		Reg	Т	otal		
	Urban (152) Rural (152)				(304)	
	No.	%	No.	%	No.	%
<u><</u> 30	56	36.8	42	27.6	98	32.2
31 - 45	55	36.2	72	47.4	127	41.8
> 45	41	27.0	38	25.0	79	26.0
Total	152	100.0	152	100.0	304	100.0
Average Age <u>+</u> SD	38	3.01	3	38.74	38	8.38
	<u>+1</u>	2.51	+	11.43	<u>+1</u>	1.97
		t = 0.53, df	= 302, p >0.	.05		
Sex	No.	%	No.	%	No.	%
Male	90	59.2	61	40.1	151	49.7
Female	62	40.8	91	59.9	153	50.3
		$\chi^2 = 11.07$,	df = 1, p <0.	.01		
cio-economic status						
Low	20	13.2	54	35.5	74	24.3
Medium	60	39.5	76	50.0	136	44.7
High	72	47.4	22	14.5	94	30.9

Table 1 depicts that majority of respondents (41.8%) were from the age group 31-45 yrs, followed by younger age group in both type of localities. The average

152

age is (38.01 ± 12.51) in urban respondents and it is (38.74 ± 11.43) in rural but statistically, this difference is not significant. In urban community, male respondents

304

152

df = 2, p < 0.001

100.0

 $\gamma^2 = 44.10$,

100.0

(59.2%) were selected in more proportion than the rural male respondents (40.1%) whereas it was just in reverse proportion in female respondents. The difference in proportion of male and female respondent between urban and rural community is found to be statistically significant. In urban community, majority of respondents 47.4% belong to high socio-economic status followed by 39.5%

to medium socio-economic status whereas in rural area 50.0% and 35.5% belong to medium and low socioeconomic status respectively. The difference in proportion in connection to educational status, occupational status, type of work as well as various socio-economic statuses between urban and rural areas is statistically highly significant.

Table No. 2 : Reg	ion wise Distributi	on of subjec	ts on the	basis of pe	rcentage o	f calcium intake	with respect to RDA

Sex	Calcium of			Reg	gion		
	RDA %	Ur	Urban		Rural		otal
		No.	%	No.	%	No.	%
Male	<u><</u> 80	28	31.1	25	41.0	53	35.1
	80 - 100	33	36.7	14	23.0	47	31.1
	> 100	29	32.2	29	36.1	51	33.8
r	Total	90	100.0	61	100.0	151	100.0
		$\chi^2 = 3.$.37, $df = 2$,	p >0.05			
Female	<u><</u> 80	33	53.2	42	46.2	75	49.0
	80 - 100	18	29.0	25	27.5	43	28.1
	> 100	11	17.7	24	26.4	35	22.9
r	Total	62	100.0	91	100.0	153	100.0
		$\chi^2 = 1.$.61, $df = 2$,	p >0.05			
Total	<u><</u> 80	61	40.1	67	44.1	128	42.1
	80 - 100	51	33.6	39	25.7	90	29.6
	> 100	40	26.3	46	30.3	86	28.3
r	Total	152	100.0	152	100.0	304	100.0
		$\chi^2 = 2$.30, df = 2,	p >0.05			

Out of total male subjects 35.1% consumed less than 80% calcium of RDA while 33.8% above RDA but in urban male subjects it was 31.1% and 32.2% and in rural areas it was 41.0% and 36.1% respectively. There is no significant difference in proportion between urban and rural subjects in connection to calcium intake of RDA. It is observed that more than half 53.2% of urban females took calcium less than 80% of RDA followed by 29.0% in range of (80-100)% and minimum 17.7% more than RDA while less than 80% of RDA of calcium intake was observed 46.2%, (80-100)% in 27.5% and remaining 26.4% more than RDA in rural females. In this case also the difference is not statistically significant. *Amare B*. et al (2012) found in his study that 90.4%, respondents have inadequate intakes of calcium.

Table No. 3: Region wise Distribution	of average calcium intake (in	n mg) between male and female r	espondents.
---------------------------------------	-------------------------------	---------------------------------	-------------

Sex	Region				Statistics	
	Urban	Rural	Total	t	df	р
	Mean <u>+</u> SD	Mean <u>+</u> SD	Mean <u>+</u> SD			
Male	609.04 <u>+</u> 219.80	621.82 <u>+</u> 299.22	614.21 <u>+</u> 254.01	0.30	149	>0.05
Female	517.56 <u>+</u> 176.79	529.56 <u>+</u> 201.91	524.70 <u>+</u> 191.61	0.38	151	>0.05
Total	571.73 <u>+</u> 207.69	566.59 <u>+</u> 248.86	569.16 <u>+</u> 228.84	0.20	302	>0.05
	t = 2.73	t = 2.27	t = 3.47			
	df = 150	df = 150	df = 302			
	p<0.01	p<0.05	p<0.01			

The average calcium intake was found to be 609.04 mg in urban and 621.82 mg in rural males which are higher than females of urban (517.56) mg and rural (529.56) mg respectively and this difference between male and females is found to be statistically highly significant in both areas . It is also seen that there is no significant

difference in average consumption of calcium between urban and rural area among male, female as well as for both together while Harinarayan et al (2007) have reported in his study that urban male and female respondents have higher calcium intake than the rural.

Table No. 4: Region wise distribution of male respondents on the basis of calcium intake (in mg) in relation to different type of specified variable.

Variability	Region			Statistics		
-	Urban	Rural	Total	t	df	р
	Mean <u>+</u> SD	Mean <u>+</u> SD	Mean <u>+</u> SD			
Age			I			
<u><</u> 30	<u>596.54 + 208.88</u>	<u>558.91 + 273.77</u>	<u>582.60 + 233.18</u>	0.57	52	>0.05
31-45	<u>634.24 + 245.34</u>	<u>614.17 + 283.13</u>	<u>624.75 + 261.58</u>	0.28	53	>0.05
>45	597.73 ± 210.08	718.97 ± 350.69	641.03 ± 270.99	1.41	40	>0.05
Total	$\frac{009.04 + 219.80}{E - 0.28}$	$\frac{021.82 + 299.22}{F - 1.25 n > 0.05}$	$\frac{014.21 + 254.01}{E - 0.70}$			
	r = 0.20	r –1.25 p>0.05	r = 0.70 n>0.05			
Family Type	p> 0.00		p> 0.02			
Joint	620.10 <u>+</u> 247.62	525.28 <u>+</u> 259.38	576.85 <u>+</u> 255.25	1.41	55	>0.05
Nuclear	603.23 <u>+</u> 205.72	693.54 <u>+</u> 310.02	636.86 <u>+</u> 251.91	1.70	92	>0.05
	t = 0.35	t = 2.25	t = 1.41			
	df = 88	df = 59	df = 149			
	p >0.05	p<0.05	p>0.05			
Type of work						
Sedentary	672.65 <u>+</u> 211.24	610.78 <u>+</u> 337.07	653.94 <u>+</u> 253.18	0.73	41	>0.05
Moderate	582.48 <u>+</u> 230.30	618.50 <u>+</u> 300.40	596.54 <u>+</u> 258.71	0.61	80	>0.05
Heavy	551.04 <u>+</u> 155.16	637.49 <u>+</u> 283.48	604.24 <u>+</u> 242.33	0.88	24	>0.05
	F = 2.02 p>0.05	F = 0.03 p >0.05	F = 0.74 P >0.05			
SES		r				
Low	482 52 + 133 96	652 65 + 280 43	577 80 + 239 80	1.85	23	>0.05
Medium	$\frac{402.32}{570.26} + 187.47$	609.36 ± 294.45	591.80 ± 251.13	0.64	67	>0.05
High	663.09 ± 239.82	62649 + 37455	657.31 ± 261.71	0.38	55	>0.05
Ingn	F = 4.01	E = 0.11 p > 0.05	E = 1.35	0.50	55	20.05
	p <0.05	F = 0.11 p>0.05	p>0.05			
	Sign.pairs 1vs 3					
Education			·			
Low	511.20 <u>+</u> 184.19	671.24 <u>+</u> 287.30	620.03 <u>+</u> 265.95	1.44	23	>0.05
Medium	616.03 <u>+</u> 236.99	555.89 <u>+</u> 301.06	588.42 <u>+</u> 261.68	0.87	59	>0.05
High	620.31 <u>+</u> 213.15	684.72 <u>+</u> 303.05	636.17 <u>+</u> 237.44	0.94	63	>0.05
	F = 0.87 p >0.05	F = 1.28 p>0.05	F = 0.56 p>0.05			
Income						
<u>< 1000</u>	538.26 <u>+</u> 163.33	696.45 <u>+</u> 235.71	617.36 <u>+</u> 214.67	2.06	26	< 0.05
1000 - 2500	577.64 <u>+</u> 241.95	590.06 <u>+</u> 302.90	584.27 <u>+</u> 273.92	0.18	58	>0.05
>2500	648.01 <u>+</u> 216.44	619.93 <u>+</u> 347.98	641.32 <u>+</u> 251.00	0.38	61	>0.05
	F = 1.80 p>0.05	F = 0.61 p>0.05	F = 0.78 p>0.05			

It is also observed that there is no significant difference in average calcium intake between urban and rural males in various group of age, family type, type of

work, SES, educational status and monthly per capita income with the exception of only below poverty line.

Table No. 5: Region wise distribution of female respondents on the basis of calcium intake (in mg) in relation to different types of specified variable

Variability	Region				Statistics	
	Urban	Rural	Total	t	df	р
	Mean <u>+</u> SD	Mean <u>+</u> SD	Mean <u>+</u> SD			
Age				a - (.
<u><</u> 30	506.31 <u>+</u> 195.92	<u>554.48 + 234.82</u>	530.40 <u>+</u> 215.10	0.74	42	>0.05
31-45	494.56 <u>+</u> 132.48	528.83 <u>+</u> 188.15	<u>516.45 + 169.97</u>	0.82	70	>0.05
>45	5/7.95 <u>+</u> 213.78	507.19 ± 201.44	533.96 ± 206.18	1.01	35	>0.05
Total	517.50 ± 170.79 F = 1.08	$\frac{529.50 + 201.90}{F - 0.31}$	524.70 ± 191.01 F = 0.13			
	r = 1.00 n>0.05	r =0.51 p>0.05	n>0.05			
Family Type	pr 0102		p> 0102	L		l
Joint	559.40 <u>+</u> 196.20	519.51 <u>+</u> 203.92	533.01 <u>+</u> 200.70	0.76	63	>0.05
Nuclear	494.54 <u>+</u> 163.18	538.56 <u>+</u> 201.81	518.55 <u>+</u> 185.54	1.11	86	>0.05
	t = 1.39	t = 0.45	t = 0.46			
	df = 60	df = 89	$\mathbf{df} = 151$			
	p >0.05	p>0.05	p>0.05			
Type of work	520.22 × 1.69.27	522.29 + 214.14	52176 10626	0.11	102	.0.05
Sedentary	529.33 <u>+</u> 168.37	533.38 <u>+</u> 214.14	531.76 <u>+</u> 196.26	0.11	103	>0.05
Moderate	504.56 <u>+</u> 201.83	516.83 <u>+</u> 166.15	511.02 <u>+</u> 181.47	0.21	36	>0.05
Heavy	387.35 <u>+</u> 94.96	531.28 <u>+</u> 206.00	502.49 <u>+</u> 194.14	0.93	8	>0.05
	F = 0.68 p>0.05	F = 0.06 p >0.05	F = 0.23 P >0.05			
SES		·				
Low	552.38 <u>+</u> 230.53	529.77 <u>+</u> 193.42	533.92 <u>+</u> 198.33	0.31	47	>0.05
Medium	534.82 <u>+</u> 179.97	487.78 <u>+</u> 186.02	508.14 <u>+</u> 183.55	1.04	65	>0.05
High	483.64 <u>+</u> 151.42	651.07 <u>+</u> 236.51	542.47 <u>+</u> 199.64	2.63	35	< 0.05
	F = 0.75 p >0.05	F = 3.33 p<0.05	F = 0.46 p>0.05			
		Sign.pairs 2 vs 3				
Education				I		I
Low	547.62 <u>+</u> 197.35	524.20 <u>+</u> 177.89	529.29 <u>+</u> 181.05	0.44	67	>0.05
Medium	501.63 <u>+</u> 147.83	560.98 <u>+</u> 248.63	537.76 <u>+</u> 214.95	0.91	44	>0.05
High	511.89 <u>+</u> 186.20	463.97 <u>+</u> 178.43	500.54 <u>+</u> 183.16	0.68	36	>0.05
	F = 0.30 p >0.05	F = 0.83 p>0.05	F = 0.43 p>0.05			
Income						
<u>≤</u> 1000	529.98 <u>+</u> 195.49	532.91 <u>+</u> 167.35	532.21 <u>+</u> 172.67	0.06	57	>0.05
1000 - 2500	543.89 <u>+</u> 197.06	491.89 <u>+</u> 233.36	513.48 <u>+</u> 218.56	0.85	51	>0.05
>2500	488.59 <u>+</u> 148.99	597.37 <u>+</u> 221.90	528.38 <u>+</u> 184.18	1.88	39	>0.05
	F = 0.62 p>0.05	F = 1.41 p>0.05	F = 0.14 p>0.05			

Table 5 reveals that the average consumption of calcium in rural females was found to be higher among various category of age, family type, work type, SES, educational status and monthly per capita income with the exception of higher age group, joint type of family, low

and medium SES ,low and high educational status and monthly per capita income Rs.(1000-2500) respectively. There is no significant difference in average calcium intake between urban and rural females among different status of specified variables except high SES.

Sex		Region	Statistics			
	Urban	Rural	Total	t	df	р
	Mean <u>+</u> SD	Mean <u>+</u> SD	Mean <u>+</u> SD			
Male	111.20 <u>+</u> 52.02	115.75 <u>+</u> 58.31	113.03 <u>+</u> 54.50	0.50	149	>0.05
Female	111.58 <u>+</u> 85.62	82.61 <u>+</u> 37.11	94.35 <u>+</u> 62.93	2.86	151	< 0.01
Total	111.35 <u>+</u> 67.50	95.91 <u>+</u> 49.37	103.63 <u>+</u> 59.54	2.28	302	<0.05
	t = 0.03	t=4.28	t = 2.77			
	df=150	df=150 p<0.001	df=302			
	p>0.05		p<0.01			

Table No. 6 : Region wise distribution of average oxalate intake(in mg) between male and female respondents.

The average consumption of oxalate was found to be 111.20 mg among males and little higher 111.58 mg among females in urban community and a just reverse trend in average intake of oxalate is observed in rural i.e. maximum 115.75 mg among males and minimum 82.61 mg among females. There is a significant difference observed between male and female subjects in rural area only. It is also found that the average intake of oxalate is significantly higher in urban than rural females (Table 6). *Eric N. Taylor and Gary C. Curhan* (2007) has opined in his study that Mean oxalate intakes were higher 214 mg/d in men, than (183 mg/d) in women.

Table No. 7 : Region wise distribution of male respondents on the basis of the oxalate intake (in mg) in relation	to
different specified variables.	

Variability	bility Region				Statistics	
	Urban	Rural	Total	t	df	р
	Mean <u>+</u> SD	Mean <u>+</u> SD	Mean <u>+</u> SD			
Age						
<u><</u> 30	100.50 <u>+</u> 47.41	104.23 <u>+</u> 60.57	101.88 <u>+</u> 52.14	0.25	52	>0.05
31 - 45	121.71 <u>+</u> 56.30	123.04 <u>+</u> 54.30	122.34 <u>+</u> 54.86	0.09	53	>0.05
> 45	113.37 <u>+</u> 52.12	118.46 <u>+</u> 63.49	115.19 <u>+</u> 55.72	0.28	40	>0.05
Total	111.20 <u>+</u> 52.02	115.75 <u>+</u> 58.31	113.03 <u>+</u> 54.50			
	F = 1.35	F =0.60 p>0.05	F = 1.99			
	p>0.05		p>0.05			
Family Type						
Joint	120.15 <u>+</u> 55.69	116.59 <u>+</u> 89.35	118.53 <u>+</u> 56.89	0.23	55	>0.05
Nuclear	106.49 <u>+</u> 49.82	115.12 <u>+</u> 58.38	109.70 <u>+</u> 53.03	0.76	92	>0.05
	t = 1.19	t = 0.10	t = 0.96			
	df = 88	df = 59	df = 149			
	p >0.05	p>0.05	p>0.05			
Type of work						
Sedentary	124.86 <u>+</u> 56.30	115.28 <u>+</u> 62.44	121.96 <u>+</u> 57.64	0.50	41	>0.05
Moderate	106.13 <u>+</u> 51.44	121.80 <u>+</u> 60.00	112.25 <u>+</u> 55.11	1.26	80	>0.05
Heavy	95.53 <u>+</u> 33.18	104.02 <u>+</u> 53.06	100.76 <u>+</u> 45.86	0.45	24	>0.05
	F = 1.76 p>0.05	F = 0.49	F = 1.25			
		p >0.05	P >0.05			
SES						
Low	90.00 <u>+</u> 33.21	101.79 <u>+</u> 47.97	96.60 <u>+</u> 41.73	0.50	41	>0.05
Medium	112.16 <u>+</u> 57.10	128.07 <u>+</u> 65.07	120.92 <u>+</u> 61.69	1.26	80	>0.05
High	115.43 <u>+</u> 51.80	85.44 <u>+</u> 9.04	110.70 <u>+</u> 48.84	0.45	24	>0.05
	F = 1.08	F = 2.60 p>0.05	F = 1.94			
	p >0.05		p>0.05			
Education						_
Low	123.56 <u>+</u> 71.35	111.98 <u>+</u> 52.34	115.69 <u>+</u> 57.81	0.69	23	>0.05
Medium	100.80 <u>+</u> 46.68	115.19 <u>+</u> 62.23	107.40 <u>+</u> 54.38	1.07	67	>0.05
High	116.18 <u>+</u> 51.99	120.74 <u>+</u> 60.52	117.30 <u>+</u> 53.71	1.72	55	>0.05
	F = 1.11	F = 0.09 p>0.05	F = 0.55			
	p >0.05		p>0.05			
Income			-			
<u><</u> 1000	79.38 <u>+</u> 22.07	120.51 <u>+</u> 70.86	99.95 <u>+</u> 55.59	2.07	26	< 0.05
1000 - 2500	115.96 <u>+</u> 60.14	112.40 <u>+</u> 54.53	114.06 <u>+</u> 56.75	0.24	58	>0.05
>2500	117.70 <u>+</u> 50.52	118.45 <u>+</u> 57.18	117.87 <u>+</u> 51.71	0.06	61	>0.05
	F = 3.27 p<0.05	F = 0.11	F = 1.07			
	Sign.pairs	p>0.05	p>0.05			
	1 vs 2,3					

The article can be downloaded from http://www.ijfans.com/currentissue.html

It is observed that the average consumption of oxalate in rural males is found to be higher as compare to the urban males among various level of specified variables with the exception of joint type of family, sedentary work, having high SES, low educational status and medium economic status but no significant difference is observed in average oxalate intake between urban and rural males except below poverty line (Table 7).

Table No. 8 : Region wise Distribution of female respondents on the basis of the oxalate intake (in mg) in relati	ion to
different specified variables	

Variability		Region			Statistics		
	Urban	Rural	Total	t	df	р	
	Mean <u>+</u> SD	Mean <u>+</u> SD	Mean <u>+</u> SD				
Age							
<u><</u> 30	94.30 <u>+</u> 76.16	83.54 <u>+</u> 38.74	88.92 <u>+</u> 59.96	0.59	42	>0.05	
31-45	<u>129.26 + 103.33</u>	<u>84.36 + 39.45</u>	<u>100.57 + 72.23</u>	2.64	70	<0.01	
> 45	<u>105.89 + 57.68</u>	78.22 <u>+</u> 31.47	88.69 <u>+</u> 44.63	1.89	35	>0.05	
Total	<u>111.58 + 85.62</u>	82.61 <u>+</u> 37.11	<u>94.35 + 62.93</u>				
	F = 1.03	F =0.22 p>0.05	F = 0.66				
Family Type	p>0.05		p>0.05				
I anny Type	106.04 ± 73.76	80 35 + 34 57	89.05 ± 52.15	1.92	63	>0.05	
Nuclear	100.04 + 73.70 114 63 + 92 24	84.63 ± 39.50	98.26 ± 69.87	2.04	86	<0.05	
Tucicui	t = 0.38	t = 0.56	t = 0.90	2.01	00	<0.05	
	df = 66	df = 89	df = 151				
	p >0.05	p>0.05	p>0.05				
Type of work	-	-			•		
Sadantam	114 50 + 92 00	92 60 + 29 61	06.02 + 62.40	2.54	102	<0.05	
Sedentary	114.30 <u>+</u> 83.90	85.09 <u>+</u> 58.01	90.02 <u>+</u> 02.40	2.34	105	<0.03	
Moderate	109.78 <u>+</u> 95.18	75.94 <u>+</u> 30.62	91.97 <u>+</u> 70.26	1.51	36	>0.05	
Heavy	66.40 <u>+</u> 0.85	90.74 <u>+</u> 41.70	55.87 <u>+</u> 38.18	0.79	8	>0.05	
	F = 0.30 p>0.05	F = 0.54 p >0.05	F = 0.16 P >0.05				
SES		• •					
Low	104.97 <u>+</u> 100.06	75.70 <u>+</u> 24.08	81.07 <u>+</u> 47.65	1.70	47	>0.05	
Medium	118.11 <u>+</u> 87.66	83.78 <u>+</u> 36.88	98.64 <u>+</u> 65.69	2.18	65	< 0.05	
High	106.16 <u>+</u> 80.64	100.45 <u>+</u> 61.15	104.16 <u>+</u> 73.54	0.22	35	>0.05	
	F = 0.16 p >0.05	F = 2.28 p>0.05	F = 1.71 p>0.05				
Education		•					
Low	103.70 <u>+</u> 82.44	78.32 <u>+</u> 29.09	83.84 <u>+</u> 46.58	1.90	67	>0.05	
Medium	113.17 <u>+</u> 72.53	91.92 <u>+</u> 48.91	100.23 <u>+</u> 59.46	1.19	44	>0.05	
High	114.67 <u>+</u> 96.58	79.36 <u>+</u> 37.06	106.31 <u>+</u> 87.11	1.06	36	>0.05	
	F = 0.08 p >0.05	F = 1.28 p>0.05	F = 1.87 p>0.05				
Income							
<u>≤</u> 1000	131.35 <u>+</u> 123.25	77.97 <u>+</u> 29.03	90.64 <u>+</u> 67.59	2.72	57	< 0.01	
1000 - 2500	96.89 <u>+</u> 38.45	80.00 <u>+</u> 33.55	87.01 <u>+</u> 36.29	1.70	51	>0.05	
>2500	113.37 <u>+</u> 91.28	101.92 <u>+</u> 57.51	109.18 <u>+</u> 79.98	0.44	39	>0.05	
	F = 0.70 p>0.05	F = 2.55 p>0.05	F = 1.62 p>0.05				

Table (8) The mean oxalate intake among females of various group of specified variables in urban areas was

found to be higher as compare to the females of rural community except the females doing heavy work but

significant difference is observed only among 31-45 years of age group, nuclear family, engaged in sedentary type of

work, had medium SES and below poverty line respectively.

Sex	of RDA %	Region					
		Ur	ban	Ru	ral	Te	otal
		No.	%	No.	%	No.	%
Male	<u><</u> 80	0	0.0	7	11.5	7	4.6
	80 - 100	24	26.7	19	31.1	43	28.5
	> 100	66	73.3	35	57.4	101	66.9
	Total	90	100.0	61	100.0	151	100.0
		$\chi^2 = 1$	1.97, $df = 2$, p <0.01			
Female	<u><</u> 80	4	6.5	9	9.9	13	8.5
	80 - 100	13	21.0	34	37.4	47	30.7
	> 100	45	72.6	48	52.7	93	60.8
	Total	62	100.0	91	100.0	153	100.0
		$\chi^2 = 6$	6.13, df = 2,	p <0.05			
Total	<u><</u> 80	4	2.6	16	10.5	20	6.6
	80 - 100	37	24.3	53	34.9	90	29.6
	> 100	111	73.0	83	54.6	194	63.8
Total		152	100.0	152	100.0	304	100.0
$\chi^2 = 14.09, df = 2, p < 0.001$							

Table No. 9 : Region wise Distribution of subject on the basis of percentage of phosphorus in	take with respect to
RDA	

It is found that in urban community there was no male who took less than 80% of phosphorus of RDA while in rural area it was 11.5%. About two third of urban males 73.3% and more than half 57.4% of rural males took phosphate more than RDA while in range of taking phosphorus (80-100%) of RDA was observed to be among 26.7% males in urban and among 31.1% of males in rural community and difference in proportion between urban and rural is found

to be statistically highly significant. The female subjects of urban and rural community consumed phosphorus less than 80% of RDA in 6.5% and 9.9% whereas more than 100% of RDA in 72.6% and 52.7% respectively. Statistical test verifies the fact that there is significant difference in proportion of females belong to urban and rural community in relation to different level of phosphate intake of RDA (Table 9).

Table No. 10 : Region wise Distribution of average phosphorus intake (in mg) between male and female respondent

Sex	Region			Statistics		
	Urban	Rural	Total	t	df	р
	Mean <u>+</u> SD	Mean <u>+</u> SD	Mean <u>+</u> SD			
Male	723.70 <u>+</u> 122.68	634.03 <u>+</u> 113.05	687.48 <u>+</u> 126.46	4.55	149	< 0.001
Female	679.81 <u>+</u> 119.88	605.26 <u>+</u> 77.88	635.47 <u>+</u> 103.48	4.66	151	< 0.001
Total	705.80 <u>+</u> 123.07	616.81 <u>+</u> 94.31	661.30 <u>+</u> 118.18	7.08	302	<0.001
	t = 2.19	t =1.86	t = 3.93			
	F = 150	df = 150	df = 302			
	P<0.05	p>0.05	p<0.001			

Table (10) elucidate the facts that the mean intake of phosphorus among male and female subject was higher (723.70 and 679.81) mg in urban community than rural areas as it was (634.03 and 605.26) mg respectively same trend is also observed by Harinarayan et al (2007) in his

study. There is significant difference between male and female subjects in urban community and insignificant in rural as well as highly significant difference is observed between rural and urban areas of male, female as well as for both.

Table No. 11: Region wise Distribution of the male respondents on the basis of phosphorus intake (in mg) in relation to different types of specified variables

Variability	Region			Statistics		
	Urban	Rural	Total	t	df	р
	Mean <u>+</u> SD	Mean <u>+</u> SD	Mean <u>+</u> SD			
Age						
<u><</u> 30	728.29 <u>+</u> 134.30	644.30 <u>+</u> 104.28	697.19 <u>+</u> 129.62	2.40	52	< 0.05
31 – 45	728.62 <u>+</u> 115.96	641.23 <u>+</u> 116.49	687.31 <u>+</u> 123.26	2.78	53	< 0.01
> 45	712.63 <u>+</u> 118.19	607.87 <u>+</u> 121.71	675.21 <u>+</u> 128.44	2.72	40	< 0.01

The article can be downloaded from http://www.ijfans.com/currentissue.html

COMPARATIVE ASSESSMENT OF NUTRIENT INTAKE OF URBAN AND RURAL ADULTS WITH SPECIAL REFERENCE TO CALCIUM, OXALATE AND PHOSPHORUS

Total	723.70 <u>+</u> 122.68	634.03 <u>+</u> 113.05	687.48 <u>+</u> 126.46			
	F = 0.15	F =0.53 p>0.05	F = 0.35			
	p>0.05		p>0.05			
Family Type						
Joint	751.42 <u>+</u> 116.45	617.08 <u>+</u> 120.40	690.14 <u>+</u> 135.25	4.27	55	< 0.001
Nuclear	709.14 <u>+</u> 124.32	646.63 <u>+</u> 107.29	685.86 <u>+</u> 121.53	2.48	92	< 0.05
	t = 1.57	t = 1.01	t = 0.20			
	df = 88	df = 59	$\mathbf{df} = 149$			
	p >0.05	p>0.05	p>0.05			
Type of work						
Sedentary	714.83 <u>+</u> 134.60	640.62 <u>+</u> 154.47	692.40 <u>+</u> 143.24	1.59	41	>0.05
Moderate	726.98 <u>+</u> 116.38	620.84 <u>+</u> 100.97	685.56 <u>+</u> 121.69	4.24	80	< 0.001
Heavy	733.90 <u>+</u> 127.62	655.06 <u>+</u> 100.41	685.38 <u>+</u> 115.94	1.76	24	>0.05
	F = 0.13 p>0.05	F = 0.51	F = 0.04			
		p >0.05	P >0.05			
SES				-		-
Low	720.64 <u>+</u> 126.09	654.86 <u>+</u> 109.48	683.80 <u>+</u> 119.28	1.40	23	>0.05
Medium	717.03 <u>+</u> 131.76	636.58 <u>+</u> 117.59	672.72 <u>+</u> 129.64	2.68	67	< 0.01
High	728.71 <u>+</u> 118.24	590.89 <u>+</u> 97.65	706.95 <u>+</u> 125.17	3.29	55	< 0.01
	F = 0.09	F = 0.90 p>0.05	F = 1.16			
	p >0.05		p>0.05			
Education				-		-
Low	712.88 <u>+</u> 136.58	634.65 <u>+</u> 111.98	659.68 <u>+</u> 123.24	1.52	23	>0.05
Medium	759.03 <u>+</u> 118.81	615.75 <u>+</u> 113.01	693.26 <u>+</u> 135.86	4.80	59	< 0.001
High	701.67 <u>+</u> 120.01	665.38 <u>+</u> 114.37	692.74 <u>+</u> 118.81	1.06	63	>0.05
	F = 2.25	F = 0.98 p>0.05	F = 0.72			
	p >0.05		p>0.05			
Income						
<u><</u> 1000	726.86 <u>+</u> 110.16	655.63 <u>+</u> 110.22	691.11 <u>+</u> 114.09	1.72	26	>0.05
1000 - 2500	736.14 <u>+</u> 133.23	618.44 <u>+</u> 98.36	673.37 <u>+</u> 129.28	0.93	58	< 0.001
>2500	71 <u>5.52 + 121.59</u>	647.40 <u>+</u> 144.44	699.30 <u>+</u> 129.51	1.81	61	>0.05
	F = 0.25 p>0.05	F = 0.65	F = 0.66			
		p>0.05	p>0.05			

Although the urban male respondents were consuming on an average significantly more mean amount of phosphorus than rural males among various group of specified variables except sedentary and heavy type of worker, among low SES, among low and higher educational status as well as among low and high monthly per capita income group respectively.

 Table No.12: Region wise Distribution of the female respondents on the basis of phosphorus intake (in mg) in relation to different types of specified variables

Variability	Region			Statistics		
-	Urban	Rural	Total	t	df	р
	Mean <u>+</u> SD	Mean <u>+</u> SD	Mean <u>+</u> SD			
Age						
<u><</u> 30	671.47 <u>+</u> 136.03	606.50 <u>+</u> 88.95	638.98 <u>+</u> 118.24	1.88	42	>0.05
31 - 45	696.15 <u>+</u> 107.13	616.87 <u>+</u> 71.23	645.50 <u>+</u> 93.42	3.77	70	< 0.00
>45	662.57 <u>+</u> 120.43	580.87 <u>+</u> 77.32	611.78 <u>+</u> 102.49	2.52	35	< 0.05
Total	679.81 <u>+</u> 119.88	605.26 <u>+</u> 77.88	635.47 <u>+</u> 103.48			
	F = 0.43	F =1.67 p>0.05	F = 1.34			
	p>0.05		p>0.05			
Family Type						
Joint	701.51 <u>+</u> 125.14	610.44 <u>+</u> 73.18	641.26 <u>+</u> 102.66	3.71	63	< 0.001
Nuclear	667.88 <u>+</u> 116.77	600.63 <u>+</u> 82.37	131.19 <u>+</u> 104.45	3.16	86	< 0.01
	t = 1.06	t = 0.60	t = 0.60			
	df = 60	df = 89	df = 151			
	p >0.05	p>0.05	p>0.05			
Type of work						

The article can be downloaded from http://www.ijfans.com/currentissue.html

COMPARATIVE ASSESSMENT OF NUTRIENT INTAKE OF URBAN AND RURAL ADULTS WITH SPECIAL REFERENCE TO CALCIUM, OXALATE AND PHOSPHORUS

Sedentary	652.52 <u>+</u> 108.52	605.37 <u>+</u> 78.27	624.23 <u>+</u> 93.99	2.59	103	< 0.05
Moderate	748.18 + 129.48	606.20 <u>+</u> 83.70	672.03 <u>+</u> 127.46	3.97	36	< 0.001
Heavy	664.50 <u>+</u> 7.77	602.13 <u>+</u> 68.50	614.60 <u>+</u> 65.94	1.23	8	>0.05
	F = 4.17 p<0.05	F = 0.01	F = 3.29			
		p >0.05	P <0.05			
	Sign. Pairs		Sign. Pairs			
	1 vs 2		1 vs 2			
SES						
Low	733.58 <u>+</u> 169.23	597.25 <u>+</u> 76.65	622.29 <u>+</u> 111.34	3.74	47	< 0.001
Medium	653.24 <u>+</u> 118.87	606.53 <u>+</u> 84.67	626.75 <u>+</u> 102.75	1.88	65	>0.05
High	691.75 <u>+</u> 93.66	626.23 <u>+</u> 60.01	668.73 <u>+</u> 88.38	2.27	35	< 0.05
	F = 1.78	F = 0.68 p>0.05	$\mathbf{F} = 2.60$			
	p >0.05		p>0.05			
Education						-
Low	683.67 <u>+</u> 134.98	597.09 <u>+</u> 77.04	615.78 <u>+</u> 98.25	3.19	67	< 0.01
Medium	678.78 <u>+</u> 109.19	608.04 <u>+</u> 85.78	635.72 <u>+</u> 100.69	2.45	44	< 0.05
High	678.76 <u>+</u> 122.29	645.67 <u>+</u> 42.13	670.93 <u>+</u> 109.10	0.80	36	>0.05
	F = 0.01	F = 1.55 p>0.05	F = 3.60			
	p >0.05		P<0.05			
			Sign.pairs			
			1 vs 3			
Income	1		1			
<u><</u> 1000	663.45 <u>+</u> 167.91	614.27 <u>+</u> 73.21	625.94 <u>+</u> 104.07	1.56	57	>0.05
1000 - 2500	656.41 <u>+</u> 109.91	593.74 <u>+</u> 83.64	619.75 <u>+</u> 99.43	2.36	51	< 0.05
>2500	708.42 <u>+</u> 93.68	602.07 <u>+</u> 81.18	669.51 <u>+</u> 102.38	3.67	39	< 0.01
	F = 1.30 p>0.05	$\mathbf{F} = 0.65$	F = 3.17			
		p>0.05	P<0.05			
			Sign.pairs 1 vs 3			

The analysis clearly shows that average mean phosphorus intake was higher among urban females comparatively to rural females of various group of studied independent variables but significant difference between urban and rural area is found among (31-45) years and more than 45 years of age group, among nuclear as well as joint type of family, among sedentary and moderate type of work, among low and high SES, low and medium educational status as well as among medium and high monthly per capita income group of females respectively.

CONCLUSION

It may be concluded that in both the studied community majority of the respondents belong to 31-45 years of age group while the percentage of male was higher than female in urban and it was just reverse in rural community. Rural subjects have significantly, and low socioeconomic status as compare to urban subjects. The mean calcium intake is found to be more among rural male and females than urban male and females respectively but difference is not significant. The mean oxalate intake is insignificantly higher among rural males than urban but among females it was significantly higher in urban community in comparison to rural. It is seen that the proportion of male and female subjects belong to rural area consuming less than RDA of phosphorus is more than the urban male and female subjects respectively & the differences is significant.

REFERENCES

• Amare B, Moges B, Moges F, Fantahun B, Admassu M, Mulu A, Kassu A. Nutritional status and dietary

intake of urban residents in Gondar, Northwest Ethiopia. BMC Public Health. 2012 Sep 7; 12:752. doi: 10.1186/1471-2458-12-752.

- Eric N. Taylor and Gary C. Curhan(2007) Oxalate Intake and the Risk for nephrolithiasis Journal of the American Society of Nephrology. Journal of the American Society of Nephrology July vol. 18 no. 7 2198-2204
- Harinarayan et al (2007) High prevalence of low dietary calcium, high phytate consumption, and vitamin D deficiency in healthy south Indians. Am J Clin Nutr 2007; 85:1062–7.
- Curhan GC, Willett WC, Speizer FE (1997) Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women Ann Inter Med 126: 497.
- Gopalan C, Ramasastry B V Balsubramanyam S C, Narsinga Rao B S, Deosthale Y G, Pant K C. Nutritive value of Indian Foods 1989.Hyderabad; National institute of Nutrition.
- Hussain M, Lal M, Ahmed S, Zafar N, Naqvi SA, Abid-ul-Hassan, Rizvi S (1995) Management of urinary calculi associated with renal failure, Aug; 45(8):205-8.
- P.S,Viayabharathi & M. Amirthaveni (2008) Impact of nutritional intervention on urinary composition of stone formers The Ind.J.Nutr.Dietet.,45,169.