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Abstract 

In sophisticated and automated technological processes, the consequences of a defect 

may rapidly spread, resulting in a decrease in process performance or, in the worst-case scenario, 

a catastrophic collapse. This implies that defects must be identified as soon as feasible, and 

choices must be taken to prevent their impacts from spreading and to limit process performance 

deterioration. Various defects influence the behaviour of the process in different ways, and the 

fault may be identified by ruling out faults for which the anticipated behaviour of the process 

differs from the actual behaviour. A model represents the anticipated behaviour of the process 

for various problems in model-based diagnostics.A diagnostic system is a gadget that detects 

problems. A variety of tests in the diagnostic systems discussed here use observations of the 

process to verify the consistency of various elements of the model. The collection of tests that is 

used to determine which problem has occurred must be carefully chosen. Furthermore, using 

fewer tests reduces the on-line computing cost of operating the diagnostic system and reduces the 

overall complex and time-consuming task of test creation.A two-step design process for building 
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diagnostic systems is presented, with the ability to choose which tests to employ implicitly by 

choosing which portions of the model should be tested with each test. The test design for each 

component may then be done using any current model-based diagnostic method. 

There are two kinds of design objectives suggested in terms of the capacity to identify 

defects. The initial aim is to create a sound and comprehensive diagnostic system, which has the 

following properties. The diagnostic system calculates the flaws that, when combined with the 

observation, are compatible with the model. The intended isolability is the second objective, and 

it specifies which defects should be differentiated from other faults. 

INTRODUCTION 

Our contemporary civilization is heavily reliant on sophisticated technical processes that 

are dependable. Apart from meeting process performance criteria, human safety, environmental, 

and process protection standards are other examples of demands that must be met. All 

components of a process must operate properly according to their intended objectives in order to 

fulfil all of these criteria. A flaw is anything that alters the behaviour of a process component to 

the point that it no longer serves its intended function (Blanke et al., 2003). In complex and 

automated processes, the consequences of a defect may rapidly spread, resulting in process 

deterioration or, in the worst-case scenario, catastrophic collapse. As a result, defects must be 

identified as soon as feasible, and choices must be taken to prevent process failure by halting the 

spread of their effects and minimising process performance deterioration. It is not enough to 

know that a problem has happened; it is also essential to know what kind of fault has occurred in 

order to make the best choices. Problem detection is the process of determining whether or not a 

fault has occurred, whereas defect isolation is the process of determining the kind and location of 

the fault. 

Methods for identifying and isolating defects are included in the area of diagnostics, and 

a device for this purpose is known as a diagnosis system. Figure 1.1 depicts the basic 

configuration of a diagnostic application, with a diagnosis system diagnosing a process. The 

process, that is, the system to be diagnosed, is considered to be operating in one of a number of 

pre-defined modes, referred to as system behavioural modes. A no-fault mode and certain fault 

modes are usually included in the collection of pre-defined system behavioural modes. An 
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observation is the input to the diagnostic system that contains all available information about the 

current behaviour of the process. Sensor measurements and controller outputs are usually 

included in an observation. The goal of a diagnostic system is to identify and isolate process 

flaws based on observations. 

Figure 1.1: A general setup of a diagnosis application with a diagnosis system diagnosing a 

process.  

There are two major drawbacks to evaluating each behavioural model individually. The first 

drawback is that the number of behavioural modes may be considerable, particularly when 

several faults are included, resulting in a high number of tests. The second drawback is that each 

system behavioural mode defines the behaviour of all process components, which implies that 

each test must take into account a model of the whole system, including all sensor and controller 

inputs. As a result, the computational cost of performing these tests is anticipated to be 

considerable. 

Both of these drawbacks may be overcome by testing behavioural models that are subsets of 

equations. As a result, each test simply utilises the observed behaviour of a portion of the 

process, using just a few sensor and controller signals as inputs. Furthermore, by evaluating a 

tiny portion of a process, this single test covers all system behavioural modes that define the 

same anticipated behaviour for this section. As a result, by evaluating tiny subsets of equations, 

both the computing cost of each test and the number of tests may be decreased. 

. 
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Figure 1.2: Architecture of a diagnosis system.  

 

Good Fault Isolation Capability  

There is a trade-off between low on-line computing complexity and excellent fault 

separation capabilities when developing a diagnostic system. We'll suppose that a diagnostic 

system designer sets a fault isolability objective, and that the on-line computational complexity is 

then reduced based on that goal. The designer may describe the fault isolation objective in this 

thesis by utilising one of the two different kinds of fault isolation goals listed below. 

The initial objective is to build a diagnostic system that utilises all of this information, 

and a diagnosis model summarises all knowledge about the anticipated behaviours of the 

process. The best feasible diagnostic system is achieved by combining all information about the 

anticipated behaviours of the process. This kind of diagnostic system will be referred to as a 

sound and comprehensive diagnosis system. 

The first objective is more difficult to achieve than the second. For complex systems, the 

first objective may be too ambitious, and it is therefore feasible to limit the first goal such that all 

anticipated behaviour information is only applied to a subset of behavioural modes. In addition, a 
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simplified form of the second objective is to define the modes we want to differentiate from 

others. 

 

A FRAMEWORK FOR MODEL BASED DIAGNOSIS  

 

Fault diagnosis has been addressed in the literature primarily from two viewpoints. The 

first is control theory (here called FDI), for example (Gertler and Singer, 1990; Gertler, 1998), 

and the second is AI, for example (Gertler and Singer, 1990; Gertler, 1998) (Kleer et al., 1992; 

Reiter, 1987; Kleer and Williams, 1987; Hamscher et al., 1992). The literature on fault diagnosis 

in the area of control theory has mostly concentrated on the issue of residual generation. That is, 

how can off line generate residual signals that are zero in the fault-free situation yet sensitive to 

faults, given a system model. In the area of artificial intelligence, the emphasis has been on fault 

isolation and how to calculate residuals on the fly. In this chapter, we demonstrate how FDI and 

AI (or, more precisely, consistency-based diagnosis) techniques may be coupled to create a 

defect diagnostic framework that will be utilised in this thesis. The suggested framework is also 

based on statistical hypothesis testing concepts, namely the technique structured hypothesis tests 

from (Nyberg, 2002a, 1999). 

We will be able to effectively handle fault models, many distinct fault kinds (e.g. 

parameter- and additive faults), and more than two behavioural modes by integrating these 

concepts from FDI, AI, and hypothesis testing. 
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Figure 2.1: The system to be diagnosed. The location of possible faults are denoted with a red 

flash.  

per component, general differential-algebraic models, noise, uncertainties, decoupling of 

disturbances, static and dynamic systems, and isolation of multiple faults.  

The modeling framework and how information about different faults is incorporated in 

the model are described in Section 2.1. The design of a diagnosis system is then presented in 

Sections 2.2 and 2.3. The connection to FDI methods are more explicitly elaborated in Section 

2.4. Finally, Section 2.5 discusses the output from the diagnosis system.  

Modeling Framework  

This section describes the modeling framework that is later used in the construc tion of 

the diagnosis system. Using this modeling framework, all information about the faults are 

included in the model. This fault information is then the basis for the reasoning about faults.  

Throughout the chapter, we will exemplify some concepts and techniques on the 

following example.  

Diagnosis Tests  

A diagnosis system is assumed to consist of a set of diagnosis tests which is a special 

case of a general statistical hypothesis test (Casella and L.Berger, 1990) and a procedure to 

compute consistent behavioral modes by using the outcome of the tests. This idea has been 
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described as structured hypothesis tests (Nyberg, 2002a). We will in this section discuss 

diagnosis tests and later, in Section 2.3, describe how several diagnosis tests are combined to 

form a diagnosis system.  

To define a diagnosis test we need the notion of a test quantity Ti(z) which is a function 

from the observations z to a scalar value. A diagnosis test for a noise free model can then be 

defined as follows:  

Definition 2.2 (Diagnosis Test, δi). Let Φi ⊆ B and let sys denote the system behavioral 

mode that the system to be diagnosed is in. A diagnosis test δifor the null hypothesis H0
i: sys ∈ 

Φiis a hypothesis test consisting of a test quantity Ti: Z 7→ R and a rejection region Ri ⊂ R such 

that  

sys ∈ Φi → Ti(z) < Ri    (2.7)  

The complement of the null hypothesis is called the alternative hypothesis and is denoted 

by H1
i: sys < Φi. Definition 2.2 means that if Ti(z) ∈ RC

i, sys ∈ Φi can not hold. This is the same 

thing as saying that the null hypothesis H0
iis rejected and the alternative hypothesis H1

iis 

accepted. The statement sys ∈ Φi becomes in this case a so called conflict (Kleer and Williams, 

1987), i.e. an expression in behavioral modes that is in conflict with the observations.  

Designing a Complete Diagnosis System  

By computing the set of candidates as in (2.20) and following the two guidelines for 

designing tests, i.e. (2.15) and (2.16), the diagnosis system becomes complete as the next 

theorem shows.  

Designing a Sound Diagnosis System  

A diagnosis system is sound if and only if for each behavioral mode b ∈ B and for each 

observation  

z ∈ Z \ O(Mb)    (2.32)  

there exists a test δi such that the following expression holds  

(Ti(z) ∈ Ri) ∧ (b ∈ Φi)    (2.33)  

Testing Small Models  

In this section an example illustrates how the number of tests can be decreased by testing 

models with few equations.  
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Consider the electrical circuit shown in Figure 2.3 consisting of a battery B, two resistors 

R1 and R2, one ideal voltage sensor S1, and two ideal current sensors S2 and S3. All six 

component have two behavioral modes, the no-fault mode NF and the unknown fault mode UF. 

The set consisting of the no-fault behavioral mode, all single faults, and all multiple faults is B. 

The fault-free 

 

behavior of the components are described by the model M:  

This means that  

X = {I,I1,I2, V}  

Z = {U, yV, yI2}  

and the corresponding domains are X = ӀR4 and Z = ӀR3.  

A straightforward way to fulfill (2.34) for all b ∈ B is as said before to test all behavioral 

models. For the electrical circuit, where all multiple faults are considered, there are 26 = 64 

behavioral modes. Next it will be discussed how to reduce the number of tests from the number 

of behavioral modes.  
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First, there are behavioral models that are not rejectable models. In the electrical circuit 

only 29 out of the 64 behavioral models are rejectable models. The 29 behavioral modes with 

rejectable behavioral models are those seen in Figure 2.2. This figure will below be explained 

more in detail.  

There can be several rejectable behavioral models with equal observation sets, i.e. O(M1) 

= O(M2) where M1 and M2 are two different behavioral models. 

 

 

Figure 2.3: An electrical circuit  

For the electrical circuit example the behavioral model {1, 4, 5, 6, 7} of R1&R2 and behavioral 

model {1, 2, 3, 4, 5} of S2&S3 have equal observation sets, i.e.  

O({1, 4, 5, 6, 7}) = O({1, 2, 3, 4, 5}) = {[U yV yI yI2]|U − yV = 0} (2.45)  

A minimal set of equations with the same observation set is {4, 5} which is a subset of both the 

two behavioral models. It holds that  

O({1, 4, 5, 6, 7}) = O({1, 2, 3, 4, 5}) = O({4, 5})  

Since the equation sets {4, 5}, {1, 4, 5, 6, 7}, and {1, 2, 3, 4, 5} have equal obser vation 

sets, it is sufficient to check the consistency of for example only {4, 5} to determine the 

consistency of both behavioral models. For each behavioral model in the example, it can be 

realized that there exists a unique minimal set with the same observation set. These equation sets 

and there corresponding behavioral modes are shown as a Hasse diagram in Figure 2.2 partial 

ordered by the subset relation. Instead of checking the consistency of all 29 rejectable behavioral 

models, it is sufficient to check the consistency of all the 14 models in the figure.  
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In the linear case it is also possible to determine the consistency of all models in the 

figure by checking the consistency of only the sets on the lowest levels. These 8 sets are the 

minimal sets that represents rejectable models. The constraint (2.34) for the behavioral modes on 

the lowest level imply that it is necessary to check all sets on the lowest level, except for {3, 4, 

7}, {3, 5, 7}, and {4, 5} which can be replaced by {1, 3, 4, 7}, {1, 3, 5, 7}, and {1, 4, 5} 

correspondingly. Hence the minimum number of models that must be checked to obtain a sound 

and complete diagnosis system is 8. Hence this example shows that by testing small models the 

number of tests can be decreased.  

 

Systems with Noise  

The relation (2.7) can sometimes not hold strictly when the diagnosis test is used together with a 

noisy system. If noise is present, (2.7) can then be replaced by specifying the probability that 

(2.7) holds. In statistical hypothesis-testing theory, this requirement is usually written as  

P(Ti(z) ∈ Ri|sys ∈ Φi) ≤ α     (2.46) 

 

That is, the probability of rejecting the null hypothesis H0
i: sys ∈ Φi given that sys ∈ Φi holds 

must be less or equal to a significance level α called the false alarm probability. The idea behind 

hypothesis testing is to have a false alarm probability that is very small, in fact so small that it is 

realistic to assume that the formula (2.7) holds.  

SOUNDNESS WHEN DIAGNOSING LINEAR STATIC SYSTEMS  

Following the strategy described in Section 2.3.3, the construction of a diagnosis system starts 

with finding a set ω = {M1, . . . , Mn} of rejectable models to test. If the diagnosis system should 

be sound, these models Mi ∈ ω must fulfill \  

                    (3.1)  

for all b ∈ B according to Theorem 2.2.  

The model equations are considered to be linear static equations in this chapter. There are 

numerous solutions to (3.1) in general, but we're especially interested in rejectable sets with 
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modest cardiacity, as discussed in Section 2.6. We construct rank-conditions to see whether a set 

satisfies (3.1). It is shown that checking the consistency of all minimum sets Mi Mb that are 

rejectable models is adequate under these circumstances. In the linear situation, such sets of 

equations are known as minimum overdetermined (MO) sets. 

The primary challenge in this chapter is to choose a collection of models to test that 

satisfy (3.1) for all behavioural modes b B. This issue may be broken down into many sub-

problems, one for each of B's behavioural modes. Only the sub-problem of identifying a given a 

behavioural model Mb is addressed in Sections 3.1-3.7. After you've solved these sub-problems, 

you may combine the answers to solve the complete issue for all behavioural modes in B, as 

shown in Sections 3.8 and 3.9. 

 

 

Linear Static Models  

Consider a linear static model Mb for a specific behavioral mode:  

Hbx + Lbz = 0     (3.2)  

where Hb and Lb are constant matrices, x is a vector of unknowns and z is a vector of 

known variables.  

Example 3.1  

Throughout this chapter we will use the electrical circuit example presented in Section 

2.6 to illustrate concepts and theoretical results. Two behavioral modes NF and R1&R2 and 

there corresponding behavioral models will be studied. By using the model (2.44), the behavioral 
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model MNF can be written in the matrix form (3.2)as  

  (3.3) 

The behavioral model for behavioral mode R1&R2 is equal to the set MR1&R2 = {1, 4, 5, 

6, 7} of equations in (2.44).  

To write for example the equations in MR1&R2 in the form (3.2) by using the matrices H 

and L in (3.3), some matrix notation is needed. For a matrix A, an ordered row index set R and an 

ordered column index set C are defined such that A = (Aij|i ∈ R, j ∈ C), where Aij is the (i, j)-entry 

of A. For I ⊆ R and J ⊆ C, A[I, J] = (Aij|i ∈ I, j ∈ J) denotes the sub-matrix of A with row index 

set I and column index set J. Shorthand notations for the matrices A[I,C] and A[R, J] will be A[I] 

and A[:, J] respectively. Now, the set MR1&R2 of equations can be written in the form (3.2) 

as where the matrices H and L are defined in (3.3).  

 

H[MR1&R2]x + L[MR1&R2]z = 0    (3.4)  

 

We will find sets ω of models Mi such that (3.1) is fulfilled for a behavioral mode b. That 

is the consistency of the models in ω will determine the consis tency of the behavioral models 

Mb. In (3.1) observation sets are used and in the next section we will discuss consistency and 

observation sets in the linear static case.  

Observation Sets  

For linear static models an observation z is assumed to be a snap-shot of the vector z, i.e. 

a value of the vector z = z0 ∈ Rnz where nz is the dimension of z. Let nx be the dimension of x. A 

linear model  
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Hx + Lz = 0      (3.5)  

consisting of the equations M is consistent with an observation z = z0, if  

∃x ∈ Rnx; Hx + Lz0 = 0    (3.6)  

is true. The observation set O(M) for the equations M is then formally defined as        O(M) = {z 

∈ Rnz|∃x ∈ Rnx; Hx + Lz = 0}                           (3.7)  

The observation set O(M) can in the linear case be expressed without x as follows. Let NH 

be any matrix such that the rows of NH is a basis for the left null-space of the matrix H. This 

means that NH has the maximum independent rows which solves  

NHH = 0     (3.8)  

By multiplying (3.5) from left with NH, we get  

NHLz = 0     (3.9)  

The expression (3.6) is equivalent to (3.9), i.e.  

O(M) = {z ∈ Rnz|NHLz = 0}    (3.10)  

This result will be shown analogously for linear differential equations in The orem 6.2. 

Each row of NHL defines a consistency relation, i.e. an equation containing only known 

variables. We will say that consistency relations are linearly independent if their corresponding 

rows in NHL are linearly indepen dent. 

Redundancy and Rejectable Models  

Existence of redundancy was defined in the previous chapter, and for linear systems, it is 

also possible to quantify redundancy as follows.  

 

 

Conclusions 

we demonstrated how to build a diagnostic system by starting with a diagnosis model and 

selecting a collection of rejectable models to test = M1,...,Mn. It was also shown there that a 
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diagnostic system based on may be sound and complete if and only if the set (3.1) for all 

behavioural modes b B. 

The theory and methods for obtaining a minimal cardinality solution of (3.1) given a 

diagnostic model M with linear static equations were provided in this chapter. One important 

conclusion is that if is selected as the set of all possible MO sets in the diagnostic model M, then 

for all behavioural modes b B, satisfies (3.1). It has also been shown that include all MO sets in 

to fulfil (3.1) for all behavioural modes b B is not always required. A theory for choosing MO 

sets has been established, including the rank condition as a crucial finding. The rank condition is 

then utilised to choose MO sets in Algorithm 2. The algorithm's output includes all minimum 

subsets that satisfy (3.1) for all behavioural modes b B. The set of all minimum sets is then 

reduced to a minimal cardinality set of MO sets. This is significant because a minimal cardinality 

set that meets (3.1) for all behavioural modes b B corresponds to a sound and comprehensive 

diagnostic system with the fewest tests. Several instances of reducing the number of tests in the 

development of reliable and comprehensive diagnostic systems. 

Finally, the behavioural modes that affect any residual generated from M are provided by 

the equation assumptions according to (assump(M))C under a mild rank condition on the 

diagnostic model and given a MO set M. As a result, if the model's rank condition can be 

confirmed, no additional fault impact analysis of each residual is required. 

REFERENCES 

1. J. Åslund, J. Biteus, E. Frisk,M. Krysander, and L.Nielsen. A systematic inclusion of 

diagnosis performance in fault tree analysis. In IFAC World Congress, Prague, Czech Republic, 

2005. 

2. J. Åslund, J. Biteus, E. Frisk, M. Krysander, and L. Nielsen. Safety analysis of 

autonomous systems by extended fault tree analysis. International Journal of Adaptive Control 

and Signal Processing, 2006. Accepted for publication. 

3. A.Asratian, T.Denley, and R.H¨aggkvist. Bipartite Graphs and their Applications. 

4. Cambridge University Press, 1998. 

http://www.ijfans.org/


Research Paper 

  
 

 e-ISSN 2320 –7876 www.ijfans.org 

  Vol.11, Iss.9, Dec 2022 
© 2012 IJFANS. All Rights Reserved 

 

334 
 

5. M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes - Theory and 

Application. Prentice Hall, 1993. 

6. M. Blanke, M. Kinneart, J. Lunze, and M. Staroswiecki. Diagnosis and Fault-Tolerant 

Control. Springer-Verlag, 2003. 

7. B. Buchberger. An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-

dimensional Polynomial Ideal. PhDthesis,University of Innsbruck, Austria, 1965. 

8. G. Casella and R. L.Berger. Statistical Inference. Duxbury Press, 1990. 

9. J. P. Cassar andM. Staroswiecki. Astructural approach for the design of failure detection 

and identification systems. In IFAC Control of Industrial Systems, Belford, France, 1997. 

10. J.Chen andR. J. Patton. RobustModel-Based FaultDiagnosis forDynamic Systems. 

Kluwer, 1999. 

11. E. Y. Chow and A.S.Willsky. Analytical redundancy and the design of robust failure 

detection systems. IEEE Trans. on Automatic Control, 29(7):603–614,1984. 

12. M.-O. Cordier, P. Dague, F. Levy J. Montmain, M. Staroswiecki, and L. Trave- 

Massuyes. Possible conflicts: a compilation technique for consistency-based diagnosis approach 

from the artificial intelligence and automatic control perspectives. IEEE Transactions on 

Systems, Man, and Cybernetics–Part B: Cybernetics, 34(5):2163– 2177, 2004. 

13. D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer– Verlag, 

second edition, 1997. 

14. O. Dressler and P. Struss. Model-based diagnosis with the default-based diagnosis 

engine: Effective control strategies that work in practice. In In Proceedings of the European 

Conference on Artificial Intelligence, pages 677–681. ECAI-94, John Wiley & Sons, 1994. 

15. O. Dressler and P. Struss. A toolbox integrating model-based diagnosability analysis and 

automated generation of diagnostics. In Proceedings of the 14th International Workshop on 

Principles of Diagnosis (DX03), pages 99–104, Washington, USA, 2003. 

16. O. Dressler, C. B¨ottcher, M. Montag, and A. Brinkop. Qualitative and quantitative 

models in a model-based diagnosis system for ballast tank systems. In Int. Conf. on Fault 

Diagnosis (TOOLDIAG), pages 397–405, Toulouse, France,1993. 

http://www.ijfans.org/


Research Paper 

  
 

 e-ISSN 2320 –7876 www.ijfans.org 

  Vol.11, Iss.9, Dec 2022 
© 2012 IJFANS. All Rights Reserved 

 

335 
 

17. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs. Canadian Journal of 

Mathematics, 10:517–534, 1958. 

18. D. Dusteg¨or, E. Frisk, V. Coquempot, M. Krysander, and M. Staroswiecki. Structural 

analysis of fault isolability in the DAMADICS benchmark. Control Engineering Practice, 

14(6):597–608, 2006. 

19. L. Eriksson. Structural algorithms for diagnostic system design using Simulink models. 

Master’s thesis, Link¨opings universitet, 2004. 

20. P. M. Frank. On-line fault detection in uncertain nonlinear systems using diagnostic 

observers: a survey. International Journal of Systems Science, 25(12): 2129–2154, 1994. 

21. E. Frisk. Residual Generation for Fault Diagnosis. PhD thesis, Link¨opings Universitet, 

November 2001. 

22. E. Frisk and M. Nyberg. Using minimal polynomial bases for fault diagnosis. In Proc. 

European Control Conference, 1999. 
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