
IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 

Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 09, 2022 

 
 

                                                                                                                                                                           4594 

ON STANDARDISED MOMENTS OF FORCE DISTRIBUTION IN 

SIMPLE LIQUIDS 

1NARENDRA BANDARI,2RAJU BARADI,3SRINIVAS BOGA,4THOGARLA 

PARIMALA 
1Associate Professor,234Assistant Professor 

Department of Mathematics 

Kshatriya College of Engineering 

ABSTRACT 

The force distribution of a tagged atom in a Lennard-Jones fluid in the canonical ensemble is 

studied with a focus on its dependence on inherent physical parameters: number density (n) 

and temperature (T). Utilising structural information from molecular dynamics simulations of 

the Lennard-Jones fluid, explicit analytical expressions for the dependence of standardised 

force moments on n and T are derived. Leading order behaviour of standardised moments of 

the force distribution are obtained in the limiting cases of small density (n → 0) and low 

temperature (T → 0), while the variations in the standardised moments are probed for general 

n and T using molecular dynamics simulations. Clustering effects are seen in molecular 

dynamics simulations and their effect on these standardised moments is discussed. 

I INTRODUCTION: 

Understanding the moments and measures 

of a distribution for a fully atomistic 

molecular dynamics (MD) simulation 

allow us to better fit coarser models that 

reproduce these1–3. It is often the case in 

model coarse graining that we wish to 

directly reconcile the energy landscape of 

the fully atomistic system to a more basic 

representation that allows us to maintain as 

many physical properties of the system of 

interest, with as little computational cost as 

possible4 . Though, it is also natural to 

match forces between the high and low 

resolution systems in an effort to 

reproduce the force distribution which will 

inherently give rise to the energy 

landscape5–10.   Let F 

= [F1,F2,F3] denote a force on a tagged 

atom in a liquid. Depending on the relative 

positions of other atoms, force F can vary 

over a range of values and a detailed 

information on F can be obtained by 

calculating properties of its equilibrium 

distribution, which we will call force 

distribution in this manuscript. 

Considering an isotropic system, the 

equilibrium distribution of each force 

coordinate is the same. We define the 

standardised moment of the force 

distribution by averaging over the k-th 

power of its first coordinate as 

 

where F k 1 is the k-th moment of the 

force distribution and αk standardises the 

k-th moment by scaling it with the k-th 

power of the standard deviation of the 

force distribution. In a simple 

homogeneous fluid with radially 

symmetric interactions between particles, 

the force distribution will exhibit 

symmetry around the origin and thus all 

odd standardised moments vanish, i.e. 0 = 

α1 = α3 = α5 = .... As α2 ≡ 1 by definition 

(1), the first non-trivial standardised 

moment is kurtosis, denoted α4, which 

provides a measure of spread that details 

how tailed the force distribution is relative 

to a normal distribution11. In this paper, 

we study how the force distribution 
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depends on the number density of a 

homogeneous many-body system, and the 

temperature of the same system in a 

canonical ensemble. We will do this by 

studying the behaviour of the second 

moment of the force distribution F 2 1 and 

standardised even moments α4, α6, α8, .... 

If the force distribution was Gaussian, then 

the even standardised moments would be 

 

and the second moment F 2 1 would be 

sufficient to parametrize the force 

distribution. However, the force 

distributions in simple liquids have been 

reported to deviate from Gaussian 

distribution12–14. In particular, by 

comparing the results of our analysis with 

Gaussian moments in equation (2), we can 

also quantify how non-Gaussian the real 

force distribution is. 

Much work has been done in the area of 

force distributions of many-body systems: 

with seminal work from Chandrasekhar15 

that employed Markov’s theory of random 

flights to give an expression for the force 

distribution of a many-body system 

interacting through a 1/r gravitational 

potential. More recent work has been done 

with the help of MD by Gabrielli et al16, 

who derived an expression for the kurtosis 

of the force distribution for a lattice system 

of atoms interacting through the 

gravitational potential. Further, using the 

classical density functional theory, an 

expression for the probability distribution 

of force for a system interacting through 

an arbitrary weakly repulsive potential was 

derived by Rickayzen et al17,18 . 

In this paper, we study the number density 

and temperature dependence of the force 

distribution for a many-body system 

interacting through a Lennard-Jones 12-6 

potential19,20 , which is ubiquitously used 

and has been shown to model 

homogeneous systems of interacting 

(Argon) atoms well21–23 . 

In Section III, an in depth investigation is 

given to the simple two-body system in 

one spatial dimension, which provides the 

ideal platform to illustrate the underlying 

methods while retaining interesting 

dynamical behaviour. From first principles 

we derive first-order partial differential 

equations (PDEs) describing the 

dependence of the standardised moments 

of the force distribution has on parameters. 

In doing so we further derive an analytic 

expression for the partition function of a 

two-body system that depends solely on 

the standardised moments of the force 

distribution whereupon the expression is 

exact in an asymptotic limit of the density 

going to zero (n → 0). Similarly, an 

expression is derived relating the average 

energy of the system to standardised 

moments of force from the temperature 

dependent PDE. In parameter regimes 

where long-range forces between atoms 

dominate, we use a truncated Taylor series 

expansion to derive the leading order 

behaviour of the kurtosis of the force 

distribution in the limit n → 0. Finally, we 

utilise a Laplace integral approximation to 

ascertain the leading order behaviour of 

the standardised moments of force at low 

temperatures (T → 0). Results from simple 

MD simulation are presented to provide 

evidence for the efficacy of these methods 

and underlying assumptions. This is 

followed by Section IV, where the natural 

idea that long range force calculations 

dictate asymptotic behaviour is extended 

from the 1D model to many-body systems 

of arbitrary size in three spatial 

dimensions. These systems exhibit the 

physical properties of standard MD 

simulations: i.e. cubic geometry with 

periodic boundary conditions that employ 

the minimum image convention. In 
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particular, we can analyze the system by 

performing calculations on a central cubic 

cell. In Section IV B, MD results are 

displayed for many-body systems. We 

present the dependence of the standardised 

force moments on density, n, and 

temperature, T, and discuss the parameters 

and integrator schemes utilised in 

producing the results of MD simulations. 

II. NOTATION  

We consider a system of N identical atoms 

interacting via the Lennard-Jones 12-6 

potential19. This is a ubiquitous 

interatomic pairwise potential; here the 

potential between atoms labelled i, j = 

1,2,...,N positioned at qi ,qj ∈ R 3 is given 

(in reduced units24) by the expression 

 

where ri j =  qi −qj  is the distance between 

atoms. The Lennard-Jones potential (3) 

between two atoms has a unique minima 

obtained at  

We employ the framework of statistical 

mechanics for this closed many-body 

system and describe atom i = 1,2,...,N by 

phase space coordinates {qi ,pi} ∈ R 6 , 

were pi denotes the momentum of the i-th 

atom. We work in the canonical ensemble 

with temperature T; the partition function 

therefore becomes 

 

where V is the volume of our closed 

system, and q = (q1,q2,...,qN) T and p = 

(p1,p2,...,pN) T are vectors containing the 

positions and momenta of all atoms in the 

system. Our integration domain is given by 

Ωq × Ωp ⊂ R 3N × R 3N. This denotes the 

phase space of our system. For systems of 

interest Ωp ≡ R 3N. The underlying 

geometry of the system (and principle 

simulation cell) is a cubic box of size L > 

0, therefore Ωq ≡ (−L/2,L/2] × ··· × 

(−L/2,L/2]. The phase space volume 

elements in equation (4) are denoted by 

 

Throughout this work we make use of 

reduced units24, utilising Argon 

parameters25. In particular, all instances of 

T in this work can be translated back to SI 

units with the transformation T → kBT 

where kB is the Boltzmann factor. 

Therefore, in the partition function (4), we 

have β = 1/T and h is the Planck constant 

(≈ 0.186 in reduced units). Finally, H(q,p) 

is the classical Hamiltonian H(q,p) = K(p) 

+U(q) with kinetic energy K(p) = |p| 2/2 

(where the usual factor of mass is unity 

under reduced units) and a general 

potential U(q). The statistical average of a 

quantity X for this N-body system is given 

by 

 

where the Boltzmann factor acts as a 

statistical weighting for a configuration 

{q,p} ∈ R 6N, normalised such that h1i = 

1. We label atoms so that the first one is 

the tagged atom. Denoting the force on the 

tagged atom produced from the j-th atom 

by Fj = [Fj,1,Fj,2,Fj,3] ∈ R 3 , for j = 

2,3,...,N, the total force F = [F1,F2,F3] on 

the tagged atom is 

 

We define 
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for k = 0,1,2,.... Then we have 

 

Then the k-th standardised moment (1) is 

given by 

 

where we are interested in cases k = 

4,6,8,.... 

In order to study how the force distribution 

depends on the physical parameters of 

interest it is useful to identify how changes 

in these parameters will manifest 

themselves in the system. Indeed, we 

choose to work in the canonical ensemble 

with a target temperature of T: this is 

accomplished with the use of a thermostat 

which is discussed further in Section IV B 

and Appendix B. It is more illuminating to 

see that if we have a system with a fixed 

number of free interacting atoms N in a 

cubic box of side L; the (reduced) number 

density is given by n = N/L 3 . Therefore 

the approach we employ in this paper to 

ascertain how values of standardised 

moments depend on number density, will 

be to keep the number of atoms fixed but 

vary the box width L - this will manifest as 

a change in density n. Similarly one could 

keep the volume of the cubic box the same 

and vary the number of atoms though this 

is a point of discussion in Section IV B. 

For the remainder of the paper we will 

study systems with different spatial 

dimensions. The size of the system varies 

by changing the number of particles N; we 

will use equation (8) as a crucial initial 

point in each calculation. We will naturally 

proceed by investigating systems of 

increasing complexity; starting from a 

cartoon one-dimensional model and 

culminating to a general many-body 

system of arbitrary size in three spatial 

dimensions. 

III. ONE ATOM IN A POTENTIAL 

WELL 

We now go on to illustrate three 

approaches to obtain the dependence of the 

force distribution on parameters n and T. It 

is useful to note that, as we are now 

working in one spatial dimension, density 

n is proportional to 1/L, i.e. we have n ∝ 

1/L. We will consider a simple system in 

one spatial dimension consisting of two 

atoms interacting through the Lennard-

Jones potential (3) in interval [0,L] with 

periodic boundary conditions. One of the 

atoms is considered to be fixed at position 

q0 = L/2 ∈ [0,L] and the other atom is free 

to move, therefore, we have N = 1 free 

atom. Its position is denoted x ∈ [0,L]. 

Therefore, the inter-atomic distance is r = 

|x − q0|. Using our simplified one-

dimensional set up, F1 = F and Ωq = (0,L), 

equation (7) reduces to 

 

which is the marginalised expected value 

of the k-th moment of force F(x) = 

−dU/dx, where we have dropped 

subscripts in the Lennard-Jones potential 

(3) and we write it as U(z) = 4(z −12 − z 

−6 ). Utilising the symmetry of the 

potential (and therefore the force) we are 

left with 

 



IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 

Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 09, 2022 

 
 

                                                                                                                                                                           4598 

In what follows, we will assume that we 

are in a regime where the box width L 

satisfies L ≫ r∗, where r∗ = 2 1/6 

minimizes the Lennard-Jones potential U. 

A. Differential equation for 

standardised moments 

We consider a perturbation of the form L 

→ L+δL. Using equation (10) and 

considering terms to the order O(δL), we 

obtain 

 

Using equation (8), we approximate 

αk(L+δL) 

 

 where our notation αk(L) highlights the 

dependence of the standardised moments 

of force, αk , on L, and function υk(L) is 

given 

 

Taking the limit δL → 0, we obtain the 

derivative of the k-th standardised moment 

of force, with respect to L, 

 

where υk(L) are expressed in terms of 

integrals (10) as given by equation (11). 

B. Far-field integral approximation 

To further analyze integrals (10), we 

introduce a cutoff c, which satisfies that r∗ 

< c < L/2, where r∗ = 2 1/6 is a unique 

maximum of exp[−β U(z)], which can be 

Taylor expanded as β(1+4z −6 +4z −12 

−16/3z −18 +8z −24 ...). Considering 

sufficiently large L, we can choose the 

cutoff c, so that 

 

 where tolerance ε is chosen to be 10−4 in 

our illustrative computations. This splitting 

allows us to numerically calculate the bulk 

of the integral (10) as a constant 

independent of L and then use the second 

term to give an analytic expression for αk 

with dependence on L, and ultimately on 

n. 

The range of values of T that are of typical 

use are chosen in order to maintain the 

liquid state of Argon during simulation. 

These are approximately temperatures in 

the interval 0.70 < T < 0.73 under ambient 

conditions26. Therefore, as volume is 

varied we are in a regime where β = O(1), 

for convenience we set β = 1. Though 

given that the density of our system 

changes between each simulation some 

systems will be in a liquid phase and 

others in a gaseous phase, this is a point of 

discussion in Section IV B. 

Splitting the integration domain [0,L/2] of 

integral (10) into [0, c] and [c,L/2], we use 

the exact form of the integrand in [0, c] to 

obtain a ‘near-field’ contribution. Utilising 

an approximate form for the integrand 

given by the truncated Taylor expansion 

f(z) in the domain [c,L/2] gives rise to a 

density dependent ‘far-field’ contribution. 

Combining these we arrive at the 

approximate form for f0(L). Using cutoff c 

= 2, equation (13) is satisfied with ε = 

10−4 . Therefore, upon numerically 

calculating the bulk contribution for the 

integral with domain [0,2], we get 

 

with b0 = −0.71832, which depends on our 

choice of cutoff c = 2. Similarly, we can 
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calculate far-field integral approximations 

of integrals (10) for general values of k = 

2,4,6,8,10,12. The integrand F k (r) exp[−β 

U(r)] has maxima when r = r∗ = 2 1/6 or 

when kU′′(r) = β (U ′ (r))2 . This forms a 

cubic in r 6 that can be solved. For the 

values of k used in this work, this 

sometimes results in a global maximum, 

that always lies at a distance less than r < 

r∗ from the origin. Therefore r∗ = 2 1/6 is 

the furthest maximum of the integrand 

from the origin.  

Splitting integral (10) into a near-field and 

far-field contribution, using the general 

cutoff c = 2, we find 

 

The near-field contributions, bk , generally 

increase vastly if we increase the value of 

k, for example 

 

while the dependence on L decreases more 

rapidly for larger values of k. Therefore, 

the non-negligible density contributions to 

αk(L) in the low density limit come 

exclusively from the normalisation f0(L) 

given by (14).  

Substituting equations (14) and (15) in 

equation (8), we obtain an expression for 

the general k-th standardised moment of 

force 

 

Using the values of b0, b2 and b4 given by 

(16), we obtain the dependence of the 

kurtosis of the force distribution on the 

reduced number density n = 1/L in the 

dilute limit n → 0 as α4 = 

−10.828+15.074n −1 +O n 6  . Figure 1 

compares this result with the results 

obtained by MD simulation of the one 

atom system. We observe that MD is in 

good agreement with the results obtained 

by formula (17). 

C. Leading order behaviour for 

differential equation (12) 

Since L/2 > r∗, the force F(L/2) 

monotonically decreases as a function of 

L. When looking at leading order 

approximations in the low density limit n 

→ 0 (equivalent to limit L → ∞) to 

equation (12), we need to analyse υk(L). 

The second and third term in equation (11) 

converge to zero more rapidly than the 

first term as L → ∞, therefore the leading 

order behaviour is given by the first term. 

 

By utilising the far field integral 

approximation (14), we arrive at f0(L) ∼ 

(b0 +L), where b0 = b0(c) is a constant 

term that depends on cutoff parameter c. 

With this, our leading order approximation 

of the k-th standardised moment, α 0 k , 

obey 

 

 

FIG. 1. Plot of α4 as a function of n = 1/L 

for the illustrative one-atom system. 

Results of MD simulations are compared 

with α4 = −10.828 + 15.074n −1 obtained 

by using equation (17) with b0, b2 and b4 
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given by (16) (blue dashed line). MD 

simulation results for temperature T = 1 

utilising Langevin dynamics27 described 

in equation (B1), with friction parameter γ 

= 0.1, are represented by red dots. The MD 

simulation length was a total of 1.1×108 

time steps with the first 107 time steps 

used for initialisation. 

Finally this gives us tha 

 

where the Planck factor of 1/h arises 

instead of 1/h 3 due to the fact that we are 

in one-dimensional physical space. Using 

(10), we obtain 

 

Considering the low density limit n → 0 

(i.e. L → ∞) in equation (12) and using 

(18) and (21), we obtain 

 

as L → ∞. In particular, we can obtain the 

partition function (20) in the dilute (low 

density) limit by using information 

 

FIG. 2. Approximation of the partition 

function Z1(T,V) obtained using the right 

hand side of equation (22) with k = 4 and 

values of kurtosis (α4) estimated from MD 

simulation (blue dashed line). The exact 

values obtained by (20) are plotted as the 

red dots. 

about the moments of the force 

distribution. The accuracy of equation (22) 

is illustrated in Figure 2, where we use k = 

4. We use MD simulations of a single 

atom, using a range of simulation box 

widths L. We estimate the values of 

kurtosis of the force distribution, its 

derivative with respect of L and use the 

right hand side of equation (22) to estimate 

the Z1(T,V). Considering L ≥ 10, the result 

is within 5% error when compared with 

the exact result (20), while for larger 

values of box width L the error decreases 

to around 1%, confirming that the formula 

(22) is valid in the asymptotic limit L → 

∞. 

D. Temperature dependence of 

standardised moments 

One can perform a similar analysis as in 

Section III A, viewing the moments αk = 

αk(T) as a function of temperature T = 1/β. 

To do that, we consider the moment 

definition (10) as a function of temperature 

T, namely, we define 

 

Considering small perturbations of these 

functions with respect to T → T +δT, while 

fixing the domain length L, and collecting 

terms up to first order in δT, we obtain 

 

Where 

 

Combining equations (24) and (25) with 

equation (21) where β = 1/T, we obtain 
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Since −∂/∂β(lnZ1) is equal to the average 

energy of the system, hEi, we have 

 

where the first term on the right hand side 

of equation (26) is the average kinetic 

energy of our one-atom system. 

Substituting equation (8) into the second 

term on the right hand side, it can be 

rewritten as T 2∂ (ln f0)/∂T. Thus, using 

equation (6), we confirm that the second 

term on the right hand side of equation 

(26) is the average potential energy. 

E. Low temperature limit  

Next, we consider the behaviour of the k-

th standardised moment of force, αk(T), 

given by equation (8), in the low 

temperature limit, T → 0, which is 

equivalent to the limit β → ∞. Since the 

inter-atomic potential U(r) has a global 

minimum at r = r∗ in interval [0,L/2], 

integrals of the form (10) and (23) can be 

approximated by Laplace’s method in the 

limit β → ∞ and T → 0, respectively. A 

general discussion of Laplace’s method is 

given in Chapter 6 of the book by Bender 

and Orszag28. We calculate the asymptotic 

expansion of f0(T) by applying Laplace’s 

method to integral (23) for k = 0. We 

approximate the integration limits of 

integral (23) to lie within the domain r ∈ 

(r∗ − ε,r∗ + ε), where ε ≪ 1, and we Taylor 

expand U(r) at r = r∗. Using U ′ (r∗) = 0, 

we have 

 

where we denote the m th derivative of U 

as U (m) for m ≥ 3. Substituting into 

integral (23), we arrive at the asymptotic 

expansion 

 

as T → 0, where constant B0 is given by28 

 

To apply Laplace’s method to integral (23) 

for k = 2,4,6,..., we note that F k (r) = (U ′ 

(r))k for even values of k. Using the 

truncated Taylor expansion around r = r∗ 

and noting that U ′ (r∗) = 0, we have 

 

where Ck,1 and Ck,2 are constants, which 

can be expressed in terms of the 

derivatives of potential U(r) at r = r∗ (see 

equations (A1) and (A2) in Appendix A). 

This gives the asymptotic expansion 

 

as T → 0, where constants Ak and Bk are 

given by 

 

And 

 

where the last formula reduces to equation 

(28) for k = 0. Substituting (27) and (30) 

into (8) gives the following expression in 

the limit T → 0: 

 

In particular, we have α2 ∼ 1+O T 2  and 
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31) Therefore, Laplace’s method predicts 

that the standardised moments of the force 

distribution, αk(T), tend to the values 

given in equation (2) for Gaussian 

moments in the low temperature limit. 

This limiting behaviour is to be expected 

as during the Laplace approximation we 

use a Gaussian distribution to approximate 

the Boltzmann factor. We can interpret this 

approach as approximating the force 

distribution as Gaussian and perturbations 

of the system around small temperatures 

give rise to non-Gaussian contributions to 

the standardised moments. Results from 

MD simulation are illustrated in Figure 3 

over the range of values of temperature T. 

We see that the behaviour of kurtosis, α4, 

is well approximated by the linear 

approximation 3+203T/6 given in equation 

(31) for the temperature values satisfying 

T ≤ 0.1, though this agreement diverges as 

temperature T increases and higher order 

terms, O T 2  in equation (31), become 

significant. In Figure 3, we fix the box 

width as L = 10. Increasing the box width 

much further would take us to a regime 

where the particle is essentially free and 

the approximation calculated by the 

Laplace method around the potential 

minimum would lose validity. 

IV. MANY-BODY S 

TEMS In this section we employ the far 

field approximation approach introduced 

in Section III B and we will vary the 

number density of the system by changing 

the size L of the integration domain, which 

will be given as the three-dimensional 

 

20 FIG. 3. Kurtosis, α4, as a function of 

temperature, T , for T ≤ 0.3. The linear 

behaviour is estimated as α4(T) ∼ 

2.9388+37.002T for T ∈ (0.01,0.10) (using 

the MD computed data, with density n = 

0.1, visualized as red dots). We compare 

this to the theoretical linear result 

3+203T/6 predicted by equation (31) 

(illustrated by the blue dashed line. 

cube [0,L] 3 . Using notation introduced in 

Section II, the distance between atoms 

labelled i, j = 1,2,...,N positioned at qi ,qj ∈ 

R 3 is denoted by ri j =  qi −qj   . Taking 

into ccount the periodic boundary 

conditions, the distance  qi −qj   is the 

minimum image inter-atomic distance 

given by 

 

(32) where the overline denotes ζ = ζ 

−L[ζ/L] for ζ ∈ R and [.] rounds a real 

number to the nearest integer. For an 

interacting N-body system the 

dimensionality of the integral given by 

equation (7) is 3N. We first present an 

illustrative calculation with N = 2 

interacting atoms in Section IV A and then 

we study systems with larger values of N 

in Section IV B. 

A. Dependence of αk on density for N = 2 

interacting atoms 

 In Section III, we have considered two 

atoms in the onedimensional spatial 
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domain, where one atom was fixed at 

position q0, i.e. we have effectively 

studied a single atom in a one-dimensional 

potential well. Here, we will consider N = 

2 interacting atoms in the three-

dimensional cubic domain [0,L] 3 with 

periodic boundary conditions. We calculate 

the k-th standardised moment of force 

according to equation (8). To do so, we 

consider equation (7), where we have d 3q 

= d 3q1 d 3q2, U(q) = U(r12), F1(q) = 

F1(r12) and we integrate over the domain 

Ω = [0,L] 3 ×[0,L] 3 to get 

 

(33) It is useful to introduce a change of 

coordinates ξ ℓ = q ℓ 1 −q ℓ 2 and η ℓ = q 

ℓ 1 + q ℓ 2 for ℓ = x, y,z. We note that r12 

is only dependent on the ξ ℓ variables, 

therefore one can trivially integrate (33) 

through the η ℓ variables as the integrand 

has no dependence on these to obtain 

 

where r12 is the minimum image inter-

atomic distance (32). This integral can be 

written in terms of standard Euclidean 

distance r 2 = (ξ x ) 2 + (ξ y ) 2 + (ξ z ) 2 

as 

 

where dξ = dξ x dξ y dξ z . In order to 

analyse fk further by implementing a far 

field approximation, we need to make sure 

we are in a regime where the integrand is 

small - we do this by introducing a cutoff 

γ, which will divide the cube [0,L/2] 3 into 

8 cuboid subdomains, including 

Utilising the symmetry of the problem, we 

can rewrite integral (34) as 

 

Considering (35) for k = 0, the integral 

over Ω1 is independent of L and provides 

a bulk contribution to f0 that will depend 

on γ. The remaining three terms have 

integration domains that allow the 

integrand to be accurately described by a 

Taylor expansion giving the leading order 

contribution in the asymptotic limit L → ∞ 

as f0 ∝ L 6 , which can be rewritten in 

terms of the density, n, in the form 

 

Considering fk for k 6= 0, the integral over 

Ω1 in equation (35) is again independent 

of L. However in the far field expansion 

the integrals over Ω2, Ω3 and Ω4 all decay 

with L due to the force factor. As the 

integration domain has essentially been 

transformed into that of inter-atomic 

distances about the three coordinates, 

when we increase the domain length, the 

interatomic force necessarily decays to 0. 

Therefore in the limit L → ∞ the dominant 

term arises from integrating over Ω1, and 

we see that, for k = 2,4,6,8,..., 

 

This leaves us with the final result that in 

the low density limit n → 0, combining 

equation (8) with asymptotic expressions 

(36) and (37), 

 

While this result has been calculated for N 

= 2 interacting atoms, it is also confirmed 

for larger values of N by estimating the k-
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th standardised moments using MD 

simulations, as it is shown in the next 

section. 

 

TABLE I. The length of MD simulation, 

tsim, the (smallest) box width, L0, used for 

simulations with N atoms and density n0 

for MD simulations with varying 

temperatures. 

B.MD simulations with N interacting 

atoms 

In this section we present the results from 

MD simulations of many-body systems in 

three spatial dimensions using different 

values of N, including the case N = 2 

(analyzed in Section IV A). Atoms are 

subject to pairwise interactions governed 

by a Lennard-Jones potential, given in 

equation (3). For each system we use a 

velocity-Verlet23 integrator and maintain 

the system in the canonical ensemble by 

incorporating a Nosé-Hoover 

thermostat37, see Appendix B. We perform 

two types of MD simulation studies: those 

that are used for studying how the number 

density, n, of a system affects standardised 

moments, and those that aim to probe 

temperature dependency. In all cases we 

utilise a time step ∆t = 0.01. In the case of 

the simulation with N = 2 atoms, we 

initialise the positions of atoms by setting 

q1 = 0 and q2 = (L/2,L/2,L/2), whereas for 

the N = 8, 64, 512 atom systems, we 

choose to initialise these on a uniform 

cubic lattice. 

The MD simulation parameters are 

summarised in Table I, where tsim is the 

total simulation time used for calculating 

the required statistics, which is preceded 

by the initial simulation of length tsim/10 

used for equilibrating the system. When 

investigating the number density 

dependence, we perform 20 simulations 

each with a box width of L = L0 × (6/5) 

i−1 , where i = 1,2,...,20 labels the 

simulation number and L0 is the smallest 

cubic box width. We simulate the N = 

8,64,512- atom systems with L0 = 3, 5, 10, 

respectively. This enables direct 

comparison because we can identify 

triplets of simulated systems 

corresponding to systems of the same 

number densities. The two-atom system 

however is simulated in a sparser regime 

with L0 = 5. We calculate statistics on the 

fly for every time step, for every atom and 

for each coordinate - therefore we average 

the computed results over the number of 

time steps (tsim/∆t) and atom coordinates 

(3N). In particular, the statistics are 

calculated over 3N tsim/∆t data points. 

This is equal to 6×1011 (resp. 1.536×109 ) 

data points in the simulation with N = 2 

(resp. N = 512) atoms. 

Calculating the number density in three 

spatial dimensions by n = N/L 3 , we can 

study the behaviour of kurtosis α4 as n 

varies. The results are presented in Figure 

4. We see general agreement between 

behaviour of each of the four systems. We 

see when n is equal, the values of kurtosis 

are larger for N = 2 than for the many-

body systems with N = 8,64,512, which 

agree well amongst themselves. 

The results in Figure 4 enable us to test the 

asymptotic expression (38) for k = 4 

derived in the limit n → 0. Util-
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FIG. 4. Dependence of kurtosis α4 on 

density n. Each of the larger atomic 

systems (N = 8,64,512) is simulated over 

the same domain of number densities, 

while the N = 2 system is simulated in a 

sparser domain, though all are simulated in 

three spatial dimensions. We truncate the 

results of the N = 2 simulation in the plot, 

however the additional data points are used 

to calculate the results displayed in Figure 

5. 

 

FIG. 5. Comparison of the results of MD 

simulations for a range of values of the 

number of atoms, N. After long time 

simulation, we compute the asymptotic 

behaviour αk ∝ n −κ and compare the 

leading order power scalings for each 

system. We compare this with the 

theoretical result (38) (denoted as a blue 

dashed line) that in the limit n → 0 we 

expect the universal behaviour κ = k/2 − 1, 

where k = 2,4,6,... denotes which 

standardised moment of force we are 

looking at. 

ising similar log-log plots for MD data, we 

estimate the power law behaviour of each 

standardised moment, αk , for k = 

4,6,8,10,12. Figure 5 illustrates the results. 

All systems agree well with the predicted 

asymptotic behaviour (38), in particular 

the N = 512 atom system. There is a slight 

deviation between the results due to the 

fact that the smaller atom systems require 

a larger tsim in order to converge fully to 

the predicted value. This discrepancy is 

amplified when looking at higher 

standardised moments due to the fact that 

we are calculating statistics resulting from 

F 12 1 (i.e. for α12) compared to F 4 1 (i.e. 

for α4), for example. 

 

FIG. 6. Dependence of kurtosis α4 on 

temperature T . Each atomic system is 

simulated at approximately the same 

density n = n0 given in Table I. 

The dependence of kurtosis α4 on 

temperature T is presented in Figure 6, 

where we keep the density fixed at n = n0 

given in Table I. We observe that as 

temperature increases so does the kurtosis 

of the force distribution associated with 

each system. This can be explained in 

terms of the dynamics of the interacting 

atom system. If we maintain each system 

in the canonical ensemble, we expect on 

average that each atom will have a kinetic 

energy equivalent to 3T/2 (when in 

reduced units). As we increase this target 

temperature, the atoms become more 

energetic and thus are able to probe closer 

interatomic distances before a large 

repulsive force overcomes this inertial 

attraction. The range of forces on the 

tagged particle widens as temperature 

increases and therefore contributes to more 

outlier results in the distribution - leading 

to heavier tails and therefore distributions 

which become increasingly leptokurtic. 
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In Figure 6, we observe that there is a 

qualitative difference between the results 

for N = 2 and larger atom systems. We see 

a bifurcation for the N = 64 and N = 512 

systems at some temperature T∗ ∈ 

(0.6,0.65), where a steady increase in 

kurtosis changes to a rapid increase. This 

bifurcation point in the phase plane lies on 

the coexistence boundary with (n,T) = 

(1/64,T∗) and is due to a clustering 

mechanism which has been seen in MD 

simulations of Lennard-Jones fluids29. 

From our results we see that the N = 2 

system has missed this behaviour 

completely. Snapshots of the N = 512- 

atom system at some T = 0.6 < T∗, and T = 

0.66 > T∗ are displayed in Figure 7. For T 

= 0.6, we see a large cluster has formed in 

the many-atom system. There would be far 

fewer outlier force results in this case due 

to the fact that the large majority of atoms 

are moving as a collective and effectively 

have fixed inter-atomic forces. Compared 

to the T = 0.66 snapshot, where we see that 

the atoms are too kinetically unstable to 

form these larger stable cluster structures, 

this results in more outlier forces felt 

between atoms due to the fact that the 

system is intrinsically more disordered. It 

is useful to note that this bifurcation point 

is located on the vapour-liquid coexistence 

boundary, the mechanisms of which have 

been studied on dilute Lennard-Jones 

fluids30; here we see that this results in a 

bifurcation on standardised moments of 

the force distribution. 

To understand the underlying variations of 

kurtosis, α4, with respect to changes in 

temperature and density, we use 12 × 16 

MD simulations with N = 512 atoms and 

tsim = 3 × 106 , varying simulation 

parameters (n,T), where n = 10−2 + 

(i−1)/10, for i = 1,2,...,12, and T = 10−1 + 

j/10, for j = 1,2,...,16. The sampled values 

of excess kurtosis (α4 −3) are displayed in 

Figure 8. Here a bifurcation can be seen 

when using the smallest density n = 0.01, 

as the change in colour is prominent in this 

vertical strip, indicating a large change of 

kurtosis. This occurs around T = 0.6, 

which is consistent with the result in 

Figure 6, where we saw the bifurcation 

similarly located, though the slight shift in 

temperature is accounted for by the shift in 

density parameters used in each simulation 

(namely n = 0.01 in Figure 8 and n = 1/64 

in Figure 6). 

In general, this low density strip contains 

the largest values of kurtosis, and covers 

much of the purely gas phase of the 

Lennard-Jones fluid. This paper has so far 

probed the low density limit in an attempt 

to understand why the standardised 

moments of force are so large, though 

Figure 8 gives a good overview that in 

general, regardless of phase, a decrease in 

temperature, or an increase in density, 

systematically lead to a lower value of 

standardised moments. In this case as n → 

∞ or T → 0, we expect the α4 → 3 (excess 

kurtosis tends to zero). This limiting 

regime corresponds to the solid phase of a 

Lennard-Jones system, where the force 

variations are minimal and the distribution 

is Gaussian. There is not enough space, 

nor energy, that lead to (many) outlier 

forces experienced by any atom, so the 

force distribution becomes less and less 

skewed from Gaussian, the deeper we 

probe in these regions. This intuition was 

demonstrated analytically in Section III E 

when we showed this limiting behaviour 

on a 1D cartoon model with equation (31). 

It is interesting to note that these changes 

in values of α4 appear smooth about 

changes in temperature and density (in 

absence of the bifurcation point for larger 

values of n), regardless of phase 

transitions. 
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FIG. 7. Snapshots31 of the MD simulation 

are taken for the system with N = 512 

atoms at time t = 7.5×105 for: (a) T = 0.6 < 

T∗; and (b) T = 0.66 > T∗. Density is n = 

1/64. 

V. DISCUSSION AND CONCLUSIONS 

In Section III we have demonstrated use of 

a variety of methods to study the 

standardised moments of the force 

distribution in order to probe both their 

temperature and number density 

dependence. This gave way to a rich 

structure where we show that the partition 

function for a 1D system can be calculated 

entirely from these standardised moments. 

Extending the far field method introduced 

in Section III B to a system with N atoms 

in three-dimensional physical space, 

Section IV studies the dependence of αk 

on number density n, 

 

FIG. 8. The excess kurtosis, α4 −3, 

calculated as a function of density n and 

temperature T for n ≤ 1.11 and T ≤ 1.7. 

The white dotted lines describe 

coexistence lines of different phases of a 

LennardJones fluid taken from the 

literature32–35. The solid black dots 

indicate (from left to right), the critical 

point and vapour-liquid-solid triple points. 

deriving the asymptotic expression (38). 

Our analytic results are contrasted with 

MD simulations of four systems of N = 

2,8,64,512 interacting Lennard-Jones 

atoms and these are compared. The results 

agree well with theoretical predictions 

though the results for systems with larger 

values of N are seen to converge more 

readily to the theoretically predicted 

results. In particular, rich dynamics such as 

clustering of Lennard-Jones fluids is 

completely missed by the systems with 

smaller values of N, but captured for 

systems with N as small as N = 64 atoms. 

In general, as temperature increases αk 

increases due to energetic nature of atoms 

allowing them to push closer together and 

experience larger forces. Clustering 

exhibited at the vapour-liquid coexistence 

phase incurs a bifurcation point whereby a 

large increase is seen in the standardised 

moments of force in Figure 6, though a 

general increase in temperature, or 

decrease in number density, results in an 

increase in a4 regardless of the 

temperature/number density domain 

studied, as shown in Figure 8. 
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