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ABSTRACT:  

Distribution customers and prosumers are extremely concerned about power quality in 

relation to the contemporary smart grid for the power industry (PQ). In fact, they choose to 

pay more money to ensure that they have access to a consistent and high-quality power 

supply. Even if the quality of the voltage and current offered to customers is a big concern, 

operators continue to place all of their attention on reliability. There are no established norms 

for tracking, penalising, or enforcing PQ-based tariff structures in LV distribution networks. 

To address the challenge of monitoring electrical grids in the face of unexpected occurrences 

resulting from the introduction of new energy sources, this paper presents a graphical cluster 

analysis-based approach that could be applied in Smart Power Quality Analysers (SPQAs), a 

proposed Instrument Class S in compliance with the standard UNE-EN 61000-4-30. 

Instruments can initiate the measuring operation based on a predetermined PQ threshold, 

producing the time-domain higher-order statistics (HOS) features necessary for classification 

in the event of an electrical outage. The results are good, with two separate classes of signals 

(sags and transients) and an accuracy of 80% over a battery of 160 signals. This paper also 

introduces the uncertainty inter-cluster area. Grid operators can improve database 

characterisation and introduce certain qualitative criteria for smart grid monitoring due to 

analysis of intensity cluster disruptions. 

Keywords. Internet of Things, Smart grid, Power Quality, Cluster analyser, higher-order 

statistics, Energy monitoring. 

1. INTRODUCTION 

Power quality (PQ) is often neglected in favour of ensuring a steady supply of electricity 

in nations still on the path to economic development. Although power quality (PQ) problems 

have been around since the end of the 19th century, they have become more severe and 

common with the introduction of new power electronic equipment into the distribution 

network. According to a report by Brookings India [1], low PQ is one of the main reasons 

why India's distribution sector is the weakest link in the power industry financially and 

operationally. Utility companies face a significant problem in the monitoring and regulation 

of PQ. Therefore, utility companies do not monitor or maintain PQ for Low voltage 

(LV) residential customers. Interestingly, today's consumers, who are aware of the 

consequences of low PQ, are prepared to pay a premium for a reliable power source [2]. One 
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of the effects of low PQ is flickering in the lighting system, as the supply voltage fluctuates 

and affects the home appliances. The human eye experiences discomfort due to the constant 

flickering. Furthermore, computers and electronic loads are harmed by oscillatory and 

impulsive transients or surges [3]. Electromechanical equipment, such as fans and motors, are 

likewise negatively impacted by voltage fluctuations [4]. Damage to utility infrastructure is a 

side effect of PQ disturbances experienced by customers. For instance, the DC offset from 

today's consumer loads can cause distribution transformers to overheat and possibly become 

saturated. Overheating and premature failure of supply cables is another consequence of 

harmonics in consumer load current [5]. A European PQ study [6] estimates that annual 

financial losses in EU-25 nations due to PQ disturbances average roughly 150 billion Euros. 

The most recent research on India's PQ regulation laws [7] by the Asia Power Quality 

Initiative found that the country's utilities had a solid system for maintaining a constant 

frequency and a steady supply. Voltage fluctuations, transients, and harmonic distortion, all 

examples of poor power quality (PQ), are not being adequately addressed. As a result, the 

grid and the users bear the costs and consequences of inadequate PQ. Therefore, PQ 

monitoring and regulation is crucial for utilities in modern smart grids [31]. 

The expansion of databases made available by sensors and measuring units in the energy 

industry, particularly in the context of the Smart Grid (SG), necessitates the development of 

new criteria and methodologies for maintaining a rigorous check on power quality (PQ). 

Distributed energy resources (DERs) integration is getting increasingly challenging as the 

energy business adjusts to these new challenges. To better track the health of the network and 

enhance signal processing, individuals are developing novel data storage methods. 

Optimization, forecasting, classification, and cluster analysis are just some of the data 

analytics methods that can simplify the SG's data [8]. On the smart grid of the future, the 

traditional supply-and-demand relationship for electricity will change. As a result of the shift 

in operating conditions and the substantial volume of bidirectional power flows, voltage sags, 

over voltages, and switching transients may increase. 

Therefore, it is crucial to standardise methods of measuring and analysing rapid voltage 

fluctuations in order to reduce the occurrence of PQ problems during grid modernization, 

which is a consequence of the scenario. To comprehend the recurring events on the power 

supplied to the end user, new intelligent instruments and PQ parameters that represent the 

analysis in real time and regulate that the power supplied remain within the limits must be 

studied. Even if the information collected by the power grid's sensors might be 

overwhelming, it can be managed with the help of cluster analysis [9]. Cluster analysis is able 

to reveal the underlying organisation and connections in network data. The network operator 

must, however, first set up a set of categorization rules that are based on the anticipated 

results. 

Quantifying a power quality parameter separate from many others of the network 

structure, such as the kind of consumer, climatic conditions, etc., was essential for the 

construction of a prediction system. Cluster analysis has been proven in previous research to 

be an effective method of data classification [10]. 
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Figure 1. Real-time examination of a recorded signal depicting a transient presence. 

 

A 50 Hz frequency with a sampling frequency of 20 kHz (400 samples per cycle). The 

samples indicate that there are 50 PQ indices in the signal. Data collection, performance 

quality assessment, and classification analysis are the three stages of analysis that have been 

carried out to categorise the behaviour of disruptions. Once the PQ evaluation of the signal 

has above the threshold PQ >= 0.05, the HOS analysis of the signal is triggered. Data that is 

above the cutoff is clustered using the HOS mean for this classification analysis. 

In other works, data mining tools and techniques are developed for the efficient reporting 

of network problems using pattern recognition [11]. This is done by detecting and diagnosing 

power quality disturbances, failures, and alerts in critical situations. Cluster analysis in power 

signals, grounded on HOS features, reveals useful insights about PQ occurrences, as 

demonstrated in [12] and [13], by differentiating between second-, third-, and fourth-order 

maxima and minima cumulates. A qualitative analysis of the PQ clusters is something that we 

do in order to hone down on what exactly needs to be observed during a particular session. 
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This is important because there are a lot of different cluster analyses to choose from, and we 

need to sort a lot of data. 

In this work, we recommend employing a cluster analysis approach through the use of a 

virtual instrument (VI). With the specifics of the voltage provided by the general distribution 

networks UNE EN501690:2007 in mind throughout its construction, the instrument has been 

designed to process data in real time via a wirelessly configured session. We honed in on the 

best sessions to use a Class A instrument that checks the power line in accordance with UNE-

EN 61000-4-30 regulations (CA 230v, 50Hz). 

 
Figure 2.  PQ analysis was performed in accordance with the protocol established by the 

PQ Instrument 

The device performs session-based, real-time data processing (on-line). Additionally, a 

battery of previously collected signals can be analysed (offline). If the value of a PQ index 

rises beyond a certain threshold, the instrument will begin analysing the measurement time 

series [14]. (Fig. 1). The HOS-based index incorporates details of the associated PQ events 

with the identified disruptions. The block diagram shown in Fig.1 depicts: Collecting 

information, measuring performance, and sorting it. Therefore, a signal space (various 

clusters) is defined by the events detected and the representations of HOS from the 

classification analysis aid with this. 

In order to more precisely characterise the signal space, it is best to base the 

categorization analysis (qualitative analysis) on the instrument output and the results of 

previous working sessions (cluster analysis based in HOS). Narrowing in on certain cluster 

regions and localities will enhance the smart grid decision-making process (sags and 

transients clusters, depending on the deviation of the HOS values in a battery of signals 

analysed). The suggested method of PQ cluster analysis consists of the three basic processes 

shown in Fig. 2: feature representation, cluster selection, and cluster analysis. Cluster analysis 
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is preceded by displaying the data's distribution in terms of its dispersal's skewness, kurtosis, 

and variance-skewness pairs. The operator can study the session's output and make a decision 

regarding the network's PQ cluster selection based on the previously represented behaviour of 

the data. In the end, the clusters' average HOS and data distribution in cluster shape as a 

function of perturbations are taken into account during the selection's area analysis (PQ 

cluster analysis). To normalise data distribution and more precisely characterise the signal 

space of the investigated network, an axis analysis approach (HOS-axes) based on the 

absolute values of HOS (the theoretical values of the HOS on a healthy signal) has been 

developed [33]. It provides a visual depiction of the signal's many cluster locations, some of 

which are unclear inter-cluster spaces and others of which are focused in sag and transient 

clusters in terms of intensity [34]. 

 

2. RELATED WORK 

Recent years have seen a multitude of exciting studies conducted on PQ-based smart metres 

[32]. The purpose of this article is to examine the shortcomings of some of these metres in 

order to develop a more effective metre that meets all the requirements for practical 

application. In [15], the authors recommend certain guidelines for designing a PQ-based 

smart metre, as well as some functionality that should be included. It provides a solid 

groundwork upon which to build the meter's structure. However, the design is primarily 

conceptual, with little consideration given to how it might actually be implemented. The 

smart PQ metre demonstrated in [16] measures voltage and frequency-related PQ indices and 

events for residential users. Though it does not monitor or measure the consumer current,. In 

addition, the functionality of energy metering is not integrated and a separate computer is 

required. Consequently, PQ and energy metering must be implemented using two distinct 

pieces of hardware. For PQ monitoring, the authors of [17] suggest an Ethernet-based smart 

metre that uses LabVIEW to evaluate voltage quality. It has a load scheduling feature that can 

be used to boost PQ instantly [18]. This metre does not measure consumer current distortions 

and also necessitates an additional computer to run LabVIEW. In [19], the authors suggest a 

standalone smart metre that, under linear load conditions only, may detect voltage dips and 

spikes, supply frequency, and power factor. However, neither the voltage harmonic distortion 

nor the current harmonic distortion of power-electronic powered loads nor the displacement 

power factor can be accurately measured (DPF). The smart metre produced by the authors in 

[20] is based on the Raspberry Pi computer and is unable to detect current distortion caused 

by the consumer. The voltage parameters are the only ones measured by the open-source 

Raspberry Pi-based PQ analyzer described in [21]. In addition, the utilisation of Raspberry Pi 

is not only pointless but also costly and has a considerably greater level of power 

consumption. In [22], a smart metre can measure both energy use and basic PQ, and it also 

has anti-theft protections. The consumer-facing quality rating features are missing, though. In 

[23], we see a complex proposal for an FPGA-based PQ monitoring system, but this system 

requires a separate computer with LabVIEW installed. In [24], another FPGA-based smart 

energy metre is presented that may be utilised as a standalone device in the home. However, 

this technology is extremely intricate and too expensive for home use. It's safe to say that 

home PQ monitoring applications cannot benefit from the portability or low cost of FPGA- 

and Raspberry-Pi-based smart metres. More recently, several people have voiced worries 

about the privacy of their data being collected by smart metres. Smart metres can provide a 
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comprehensive picture of what appliances are in use because they may collect data 

incrementally over short time periods. This vulnerability poses a serious threat to consumers' 

privacy [25] since it can lead to the identification of specific traits that reveal information 

about a home's socioeconomic position, residence, and equipment. Some institutional 

adjustments are necessary as data management becomes increasingly important to the 

advancement of AMI [26]. 

3. THE PQ EXPERIMENTAL CLUSTER 

The analysis is based on 160 50-Hz signals that were sampled at a rate of 20 kHz (400 

samples per cycle). The threshold for categorization is a significance level of PQ 0.05, and 

the types of disturbances that occur are also taken into account (sag or transients) [35]. 

Previously gathered data was divided into 70 sags and 90 transients. The sags display an 

irregularity of 10% to 90%. Half of the transients studied exhibited impulsive behaviour 

while the other half exhibited oscillatory behaviour. All sagging signals exceeded the PQ 

threshold of 0.05 in a number of cycles, and roughly 27% of transients met the requirements 

overall. The PQ feature representation of the HOS average of 70 sags and 25 transients is the 

output (Fig.3-5). The final output of the cluster session is a graphical depiction of the 

examined data and further exploration into the clusters' behaviour (Fig.2, PQ cluster 

analysis). 

3.1.  PQ Data Representation  

Data representation is the starting point for PQ cluster analysis (Fig. 3-5). Signals over the 

PQ threshold, dips, and transients had their average HOS values visually displayed (variance 

vs. skewness, variance vs. kurtosis, and kurtosis vs. skewness). 

3.2.  PQ Cluster Selection 

The PQ Data Representation's major HOS-axes are used to determine which clusters to use 

depending on how closely they align with the theoretical values of variance (0.5), skewness 

(0.0), and kurtosis (1.5). (Figs. 3–5). The axes help characterise novel elements of the 

clusters, sag, and transients, as indicated by the examined database (as is possible to see in 

Fig. 6-8). 

Cluster analysis is connected to the baseline values of variance (0.5) and skewness (-0.5) on 

the HOS-axes, as seen in the representation Variance vs. Skewness (0.0). (Fig.6). There is a 

direct correlation between data signal strength and total HOS volume, as shown by the data's 

scatter along the main axis. When looking at the data, you can make out three distinct 

clusters: a sag area, an area with transients, and a cluster where the data disturbances are 

superimposed. You're in the “uncertainty region,” as they say. To differentiate between the 

two groups inside the uncertainty region, the PQ classification results for sags and transients 

(Fig.6) are unclear. 

Clusters are chosen based on three criteria: the kind of the disturbance, the quantity of data, 

and the precision along the HOS axes. The network operator will be better able to choose the 

cluster based on these factors. In the two temporary groups (Fig. 6), one had positive 

skewness and variance whereas the other had negative values for these statistical measures. 

Data is classified as positive or negative based on the skewness of the representation. With a 

transient presence of 28%, the positive cluster is situated symmetrically with respect to the 
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variance axis (quite close to 0.5). Located to the right of the variance axis, this transitory 

cluster accounts for 36% of the total. 

. 

Figure 3. Skewness vs Variance representation 

 

Figure 4. Kurtosis vs variance representations 
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Figure 5. Skewness vs Kurtosis representations 

Data in the sag cluster is arranged symmetrically along the skewness axis, making it more 

stable than the transient cluster [27]. Furthermore, 88.5% of sag data can be classified along 

the skewness axis (which spans a range between 0.0 and 0.45) with relevance. The layer of 

uncertainty shows a long area aligned with the variance axis, with the variance values ranging 

from 0.45 to 0.5. (0.5). The HOS figures showed that most of the data recorded by the 

instrument tended to be skewed toward negative values for skewness and variance. There are 

two types of transients found in the data set analysed: impulsive transients, which make up 

50% of the total, and oscillating transients, which make up the other 50%. The divergence 

from the normal symmetry and variance values was induced by the impulsive nature of the 

transients [28]. 
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Figure 6. Variance vs Skewness, and cluster selection-based on the proposed method 

and the analysis of the signal space from the database. 

 

Figure 7. Analysis of the signal space in the database and the proposed method for 

selecting PQ clusters, comparing the variance and kurtosis. The HOS axes are shown. 
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Figure 8. The signal space in the database is analysed, and PQ clusters are selected 

based on their Kurtosis and Skewness values, as per the recommended technique. The 

HOS axes are shown. 

As shown in Fig. 7, the variance (0.5) and kurtosis (1.5) serve as the HOS-axes in a 

representation of variance versus kurtosis (1.5). (1.5). The sag and ephemeral clusters are 

shown within an uncertainty region. The percentage of transients in the transient cluster is 

52%, whereas the percentage of sags in the sag cluster is 88.6%. The variance and kurtosis 

values in both sags and transients exhibit little variation (uncertainty). The data's behaviour in 

the zone of uncertainty reveals a compacted region, with 48% transients and 11.4 percentage 

points of sags. In Fig.8 we see a representation of skewness and kurtosis where the HOS-

axes, kurtosis (1.5), and skewness (0.0), show a cluster graph that leans toward centrality. It 

turns out that 64 percent of the sag cluster members are stationary, whereas 4% are merely 

passing through [29]. 

When considering the relationship between the transient cluster and the uncertainty region, 

the kurtosis axis acts as a boundary. There are two distinct regions of uncertainty, one 

positive and one negative, demonstrating the skewness's impact. Transients account for 12% 

of the data, while sags account for 2.8%, in the positive uncertainty region. Of the total data, 

28% are temporary fluctuations, and 2.8% are a sag, all of which occur in the region of 

negative uncertainty. There are 52% of records in the temporary cluster. Determining a more 

precise cluster is aided by the trend of 3rd-4th order disturbances (skewness and kurtosis 

values) in the sag. 

4. RESULTS AND DISCUSSION 

4.1.  Cluster Analysis 

The graphs are expected to be much simplified by the cluster analysis. To further encompass 

high-intensity regions, the study incorporates new spatial criteria of HOS along with extra 
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axes (Fig.9). Sag cluster analysis reveals, in reality, that there is a notably concentrated group 

of sags (80%) between the values of variance (0.3-0.45) and between the values of skewness 

(0.3-0.45). (-0.3). Similar analysis of cluster intensity can be performed on the transient’s 

cluster, allowing for the discovery of two more intensity clusters between values of variance 

(0.5-0.55) and skewness (0.05-0.02) and (-0.02-0.02). (-0.05). 30.8% of the intensity clusters 

are affected by the transient. 

A majority (80%) of the sags in the batteries of the examined signals are consistent with PQ 

values in the sags between 80 and 90% of disturbance, as shown by the intensity cluster 

analysis results. Various different HOS representations of cluster intensity have been 

investigated, after the PQ cluster process was first implemented. The data are more 

condensed in Fig. 10's Variance vs. Kurtosis graph, making it simpler to distinguish between 

the sag and transient cluster areas. Consequently, the chosen clusters are linked to the primary 

axes, while the uncertainty region is determined by the secondary axes. Cluster intensity 

between variance (0.3-0.45) and between kurtosis (about 1.5) is consistent, suggesting a high 

degree of confidence in the sag cluster (1.55-1.45). Between these variance and kurtosis 

values, the fleeting cluster remains stable (1.55-1.45). As a consequence, the impact of the 

cluster variance accurately portrays the sag intensity clusters. Database clustering is stabilised 

by kurtosis in such a way that it is impossible to determine which transients are oscillating 

and which are impulsive. 

 

Figure 9. A PQ cluster analysis of variance vs. skewness is performed using the 

proposed method in conjunction with the signal space obtained from the database. In 

addition, more cluster intensities are revealed, and additional HOS-axes are traced. 
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Figure 10. According to the proposed method and the examined database, PQ Cluster 

Analysis, Variance vs. Kurtosis. Other cluster intensities are displayed, and more HOS 

axes are traced. 

An analysis of kurtosis vs skewness (shown in Figure 11) that makes use of the extra axes 

reveals that the HOS behaviour has a tendency toward the formation of intensity clusters, 

with two transients' clusters (one positive and one negative) and two uncertainty zones. In 

addition, there are two potential grey regions (one positive and one negative). Eight percent 

of the data is transient, and 2.8% of the sags fall into the 1.5-1.55 range (positive uncertainty 

zone) of kurtosis and skewness (0.05–0.02). In the region of uncertainty characterised by a 

negative value between kurtosis (1.5-1.55) & skewness (-0.02-0.2), 32% of the data are 

transients, and 4.2% sag (-0.05). Approximately 16% of the total population may be part of 

the positive transient cluster (with kurtosis values between 1.45 and 1.5 and skewness values 

between 0.05 and 0.02). The negative transient cluster accounts for 20% of the data (between 

kurtosis 1.45 and 1.5 and skewness -0.02 and -0.05). The greatest density of information lies 

inside a small elliptical region that accounts for 24.2% of the total area of the sag intensity 

cluster (sag cluster core). 
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Figure 11. Kurtosis against skewness in a PQ cluster analysis, using the proposed 

method and the examined data. Other cluster intensities are displayed, and more HOS 

axes are traced. 

The proposed method of the PQ Cluster Analysis is part of the PQ Virtual Instrument's 

classification process. The findings of a clustering session are typically displayed in the form 

of graphs that reveal the nature of the data examined as well as any constraints that may 

apply. PQ Data Representation, the initial stage of the process, uses the averaged value of the 

collected HOS to identify patterns in the data. 

Second, PQ Cluster Selection adds a new criterion by requiring that the primary HOS-axes 

coincide with the theoretical HOS values of variance (0.5), skewness (0.0), and kurtosis (1.5), 

which are indicative of a high-quality signal. This additional criterion was included to 

guarantee optimal precision when doing PQ Cluster Selection. The fundamental HOS-axes 

provide a first step in classifying data in HOS spaces. The symmetrical analysis means that 

the cluster can contain a negative component with regard to the skewness axis in some 

circumstances. Since variance plays a key role in defining the sags cluster, visualisations that 

emphasise variance also serve to clearly distinguish it. In any case, the 3rd-4th order 

representation (Skewness vs. Kurtosis) is useful in that it provides extra clusters for which to 

undertake more robust identification. 

In the final phase, PQ Cluster Analysis, we expand on the conventional cluster selection by 

defining new criteria and a new space for clustering (Fig 3-5). Locating intensity clusters that 

are in accordance with the usual PQ values at the measurement point allows us to characterise 

typical occurrences at a certain place on the grid. The most prevalent causes of outages at 

various nodes may be better understood, and potential smart grid infrastructure flaws can be 

more easily located, using this data (including distributed smart metres). To sum up, PQ 

Cluster Analysis shows how disturbances behave in operation through the HOS spatial 
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representation, and it gives you the option of defining an offline signal database or an online, 

real-time session (online). 

5. CONCLUSION 

This article presents a qualitative PQ cluster analysis. In order to conduct this analysis, the 

PQ Virtual Instrument, a Smart Power quality Analyzer, is being used. Multiple types of real-

world data were used to test the effectiveness of the analysis. Both signal space definition and 

battery signal categorization can benefit from the PQ Cluster Analysis. The PQ Cluster 

Analysis provides illustrative examples of the characteristics of the database that was 

examined. HOS do exceptionally well when it comes to discovering novel features in the 

electrical signal. Cluster analyses verify HOS can tell the difference between two types of 

electrical problems. We can now more accurately identify and classify sag and ephemeral 

clusters. A similar procedure is used to pinpoint a zone of overlap and ambiguity. An 

improved definition of the clusters is made possible by using the axis analysis approach 

(HOS-axes), which allows for the classification of 80% of the most important occurrences. 

We hope that future research will bring new criteria for the detection of various disturbances. 

The cluster selection process now in use relies on qualitative analysis, which points to a 

viable direction for future use of data mining tools. However, the grid operator would be able 

to learn a great deal more about the network and make more informed choices in future 

sessions with this level of detail. To manage the trade-off between database size and 

usefulness for analysis, the PQ clustering method suggested here introduces the criteria of 

capturing and storing data over a PQ Threshold. Since PQ problems may occur as a result of 

the degree of DER, and new PQ indices are becoming increasingly necessary in grid 

modernization, the HOS-based intensity clusters present new regions of alarms and critical 

reports that might be applied in a monitoring session of the SG. 
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