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ABSTRACT 

Mammals' inner ears are made up of the vestibule and three semicircular canals, 

which are involved with balance, and the cochlea, which is involved with hearing. 

The bone chambers and membranous ducts remain morphologically continuous even 

though distinct parts of the inner ear are responsible for various functions. The 

development of internal cochlear structures, including the primary and secondary 

bony laminae, the morphology of the spiral nerve ganglion, and the nature of cochlear 

coiling, including the total number of turns completed by the cochlear canal and the 

relative diameters of the basal and apical turns, are all included in the gross anatomy 

of the cochlea that has been related to auditory physiologies. The semicircular canals' 

general sizes, shapes, and orientations are connected to their sensitivity to head 

rotations and perhaps to locomotor movements. We may be able to learn more about 

the form and function of the inner ear by examining intraspecific variation, 

particularly in the size and positioning of the semicircular canals. 
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Introduction 

The vertebrate nervous system's unique sensory division includes the otic (ear) region. The 

cochlea in the ear's cochlea serves as the organ of hearing, and the vestibule and semicircular 

canals serve as the organ of balance. The inner ear's balancing and hearing organs are tiny 

structures housed in chambers that range in size from less than 1 mm3 in shrews to more than 

1000 mm3 in baleen whales (1). Humans have an inner ear that is about 150 mm3 in size. 

Despite their diminutive size, the inner ear organs are biologically very strong. It is incredible 

that such tiny objects can result in a wide range of issues, including tinnitus, motion sickness, 
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and a general lack of balance. The ear area has been one of the most thoroughly investigated 

systems of vertebrate anatomy and physiology in part because of this phenomena. 

The auditory and vestibular systems are important components in vertebrate biology just based 

on their functions. Early tetrapod evolution, when newly terrestrial creatures switched from 

perceiving water-borne to air-borne sounds, undoubtedly involved hearing (2). Early 

mammals, who were probably nocturnal (3,4), would have needed to rely on non-visual senses 

to move through the Mesozoic world. 

For phylogenetic research at both more- and less-inclusive taxonomic levels, the inner ear's 

anatomy is instructive. For instance, the cochlea in live therian mammals (marsupials and 

placentals) makes at least one full 360-degree turn, but less so in monotremes and more 

basally positioned species (5-7). It is possible to see ancestral morphologies in the bony 

labyrinths of marsupial and placental mammals from the Mesozoic epoch, such as the fusion 

of the posterior and lateral semicircular canals to produce a secondary common crus. Many 

crown Therian clades, including primates, rodents, some carnivorous mammals, and a number 

of marsupial clades, lack the secondary common crus, and most extant mammals have 

posterior and lateral canals that are distinct over their entire lengths (8-10). Primates' inner ear 

measurements vary between great apes and other primates (11), as well as between humans 

and chimpanzee subspecies (12). Squamate reptiles' inner ears can include additional 

phylogenetic data (13-16). 

Anatomy and function of the inner ear 

Mammals have three distinct parts to their ears: the outer, middle, and inner ears. The external 

acoustic meatus connects the outer surface of the head to the tympanic membrane, or eardrum, 

through the pinna, which directs sound from the environment into the ear region of the head. 

The three ear ossicles (malleus, incus, and stapes) are located within the tympanic cavity of 

the middle ear, which extends from the tympanic membrane to the lateral surface of the skull. 

The bony labyrinth, or inner ear in mammals, is a network of interconnected cavities within 

the petrosal bone. The membranous labyrinth, a network of interconnecting soft tissue sacs 

and channels, is located inside the bone labyrinth. The term "canal" is only used to describe 

elements of the bone labyrinth in traditional ear terminology; membrane channels are referred 

to as "ducts." The membrane labyrinth is divided into two sections: a superior section that 

contains the utricle of the vestibule and the three semicircular ducts and related ampullae, and 

an inferior section that contains the cochlear duct and the saccule of the membranous 

vestibule. 
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The membranous labyrinth is both filled with and encircled by lymphatic fluid. Perilymph fills 

the gaps around the membranous labyrinth within the bone labyrinth. Similar to extracellular 

fluid in composition, perilymph is high in sodium but low in potassium (18). 

Endolymph is present in the membranous vestibular apparatus and cochlear duct. In contrast 

to perilymph, endolymph has a pH close to blood plasma, a composition similar to 

intracellular fluid, and is rich in potassium ions but lacking in sodium ions (19-20). 

Vibrations in the endolymph, caused by the stapes dial or head motions, stimulate the 

vestibular system's motion receptors and the cochlea's auditory receptors. Despite the fact that 

the cochlea's sensory function is hearing and the vestibule's sensory function is balance, 

endolymph from one region can flow into the other and alter the function of the other. For 

instance, variations in the volume and pressure of the vestibular endolymph have an impact on 

both the auditory and vestibular systems. 

Cochlea 

All living animals have a bone cochlea that is coiled around a central axis known as the 

modiolus, with the exception of monotremes, in which the canal is twisted toward its end but 

does not fully turn (21-23). The cochlear branch of cranial nerve VIII travels through the 

hollow middle of the modiolus. The cochlear spiral's basal end begins close to the fenestra 

vestibuli for the stapedial footplate, and its apex is known as the tip. 

Most of the cochlear spiral's length is occupied by the cochlear duct, which divides the scalae 

tympani and vestibuli. However, at the spiral's tip, the helicotrema allows communication 

between the two outer scalae. 

Within the cochlear duct, the basilar membrane's vestibular surface is where the spiral organ 

of Corti rests. Cochlear hair cells in the organ of Corti translate auditory perceptions. Along 

the axial edge of the basilar membrane, a longitudinal row of flask-shaped inner hair cells can 

be seen. Within the organ of Corti, columnar cells known as outer hair cells are located more 

radially. Over 75% of the sensory cells in the cochlea come from the outer hair cells (24). 

The cranial nerve VIII, which leaves the cranium by the internal acoustic meatus on the 

endocranial surface of the petrosal, innervates the outer and inner hair cells. A cochlear branch 

descends into the modiolus of the cochlea, while a vestibular branch extends posteriorly to 

innervate the vestibular end organs. The cribriform walls of the modiolus serve as a bone sieve 

for a number of tiny nerve passageways leading from the ganglion to the spiral auditory nerve. 

Vestibular system 
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All jawed vertebrates, including cartilaginous fishes, bony fishes, amphibians, reptiles, and 

mammals, have three semicircular canals in the bony vestibule. Jawless vertebrates have two 

semicircular canals, whereas modern hagfish only have one. These include live lampreys and 

many extinct "ostra- coderms" (25). 

The vestibular crus, a minor constriction of the bony vestibule, separates the elliptical and 

spherical recesses, which do not precisely depict the shapes of the membrane structures (26). 

The spherical saccule is typically smaller than the membrane vestibule's oblong utricle. 

The cristae within the ampullae of the semicircular ducts and the maculae within the utricle 

and saccule are two different types of vestibular end organs found in the membranous 

vestibule. Otolithic organs, which recognize linear accelerations, are the maculae of the utricle 

and saccule taken together. 

ANATOMICAL AND FUNCTIONAL VARIATION 

All anatomical systems are subject to morphological variation, a phenomena that occurs in 

nature. The most common correlation between morphological diversity and locomotor and 

auditory function is found in the inner ear. For instance, the number and length of inner and 

outer hair cell cilia within the cochlea vary amongst mammalian species (26). In particular, the 

lengths of the outside hair cells are inversely associated with the frequency at which 

sensitivity is highest, resulting in an increase in outer hair cell length as the upper frequency 

limit falls (27). Along with a downward shift in peak sensitivity along the length of the 

cochlear organ, the lengthening of the cells also occurs from the basilar membrane's base to its 

apex within a single cochlea. 

Variations in the cochlea 

It has been theorized that cochlear volume in primates corresponds to auditory physiology in 

that a rise in cochlear cavity volume relative to body mass denotes a decrease in both low and 

high frequency sensitivity thresholds (28). Conversely, compared to their close cousins, such 

as rodents, colugos (also known as "flying lemurs"), and tree shrews, primates' cochleae tend 

to be more voluminous in relation to body mass (29). 

The size and rigidity of the basilar membrane are possibly the characteristics of the cochlea 

that have drawn the most attention in regards to their relevance to hearing physiology. 

Observations support the hypothesis that mammals susceptible to the highest frequency sound 

waves have the thickest and stiffest basilar membranes. The stiffness of the membrane is 

positively correlated with the frequencies at which the cochlea is most sensitive (30). (31-32). 

The main and secondary bony laminae can be found in the fossil record easily, but since they 
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are such delicate structures, they are rarely completely preserved. The laminar gap has been 

used as a proxy for basilar membrane width, although caution has been urged in doing so 

because estimates using the laminae may be incorrect by as little as 25% or as much as over 

100% of the true membrane width for whales (33). On the other hand, the distal edge that 

opposes the main bony lamina is significantly more fragile than the proximal end of the 

secondary bony spiral lamina, which connects to the radial wall of the auditory canal. As a 

result, the proximal end has a better potential for preservation. 

Variations in the semicircular canals 

Variations in the vestibular system have received a lot of attention recently. Semicircular 

canals and rotating perceptions have been linked for almost 150 years (34), and current 

research in evolutionary biology is focused on the relationships between canal structure, 

orientation, sensitivity, behavior, and phylogeny. Numerous studies have inferred the agility 

and locomotor skills of numerous extinct and living species, including primates, whales, 

ungulates, and sloths, based on the size and structure of the semicircular canals (35-37). 

Variations in semicircular canal morphology as they relate to locomotor differences across a 

wide range of mammals representing a spectrum of behaviors have not yet been thoroughly 

and methodically studied. Additionally, the sensitivity of a semicircular canal arc has not been 

clearly associated with the form of the canal. However, neurophysiological evidence suggests 

a relationship between the semicircular canal circuit's size, which is commonly described as 

the semicircular canal's arc's radius (38–40), and the canal's sensitivity (41). 

In marine mammals, a complete loss of vestibular function may indicate a fully aquatic 

existence. For instance, it is well known that the semicircular canals of cetaceans are smaller 

than the cochlea (42) and that the fossil record reveals this pattern throughout the history of 

cetaceans (43). 

The intraspecific diversity in the shapes and orientations of vestibular parts is a fascinating 

and potentially significant pattern that has lately emerged. Three-toed sloths showed more 

intraspecific variation in semicircular canal orientation than faster moving species like 

tamanduas and armadillos, according to a study on the bone labyrinths of xenarthrans (45). 

Additionally, mice bred for high levels of voluntary wheel running compared to a non-selected 

control group do not differ in the widths of their semicircular canals, but they do in their forms 

(46). 

CONCLUSION 

One of the most well researched areas of the nervous systems in vertebrates is the inner ear. 
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The coiled cochlea, which is involved in hearing, and the loops of the semi-circular canals, 

which are involved in balance, appear to be the basic structure and function of the inner ear. 

Vertebrate morphologists are learning more about the extent of morphological variation within 

and across species, and these differences very certainly correspond with the enormous range 

of hearing and locomotor physiologies reported across Mammalia. The degree and kind of 

coiling inside the cochlear spiral, as well as the forms and orientations of the semicircular 

canals, all require more research in the area of intra-specific variation. There may be 

particularly intriguing links between how intraspecific variations in anatomy and physiology 

translate to relationships between interspecific shape and function. 
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