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ABSTRACT: 

It is demonstrated that U can be constructed as a function of the interatomic distance 

variables rij = |qi − qj |, given that the potential U meets certain symmetry assumptions, by 

considering the interatomic potential U(q), where q = [q1, q2,..., qN ] ∈ R 3N is a vector 

defining locations, qi ∈ R 3. Furthermore, if N > 5, the potential U can be expressed as a 

function of a suitable subset of the distance variables rij, where the number of distance 

variables varies in a linear fashion with N, the number of atoms. 

INTRODUCTION  

The theory of classical interatomic potentials 

has been developed for decades, a review of 

this research area is provided by Murrell et al 

[1] or more recently by Ackland [2]. The basis 

of molecular modelling is dependent on 

creating a suitable potential energy function 

that defines the free energy surface and 

dynamics of the system, accurately, while also 

balancing computational feasibility. One must 

compromise by reducing degrees of freedom 

with some method of coarse-graining [3]. A 

key way to do this is by explicitly constructing 

a potential energy function that reduces the 

complexity of the system. Many such function 

choices can naturally arise for a given system 

[4]. Commonly pair potentials are used to 

approximate potential energy contributions 

though caution must be taken to use these 

appropriately [5]. Despite this: effective pair 

potentials in many classical circumstances 

have had fair degrees of success for decades in 

simulations of liquids [6–11]. To obtain more 

accurate results from thermodynamic 

calculations, many-body contributions are 

considered in the potential energy function 

[12, 13]. An example potential incorporating 

two-body and three-body terms is the 

Stillinger-Weber potential [14] which 

accurately incorporates the geometry of 

silicon, meaning that not only do the pairwise 

bonds between the silicon atoms matter, but 

also the triangular sub structures connecting 

neighbouring atoms [15]. The embedded atom 

method potentials [16] incorporate an effective 

pairwise potential and a density dependent 

contribution without using the geometric 

features explicitly. Progressing from pair 

potentials, to those incorporating three-body 

terms, and four body terms, the most general 

interatomic potential considered is a sum of all 

of these contributions, which can also include 

the single body terms that arise when an 

external field is present. The n-body terms are 

explicitly evaluated given the coordinates of 

the N atoms: which can be thought of as 

vertices of a polygon (if co-planar) or a 

polyhedron. These n-body terms in the 

potentialare then thought of as 

contributions arising from the ngon 

substructures of the shape formed by the 

vertices. This forms the basis of 

fragmentation methods used in ab initio 

quantum chemistry, a summary and a 

closed form expression for energy is 

presented by Richard et al [17]. Tandem to 

this, cluster descriptions of manybody 

configurations [18] can also be used in 

conjunction with n-body expansions of the 

many-body potential [19], this differs from 

the previous method as this relies on the 

ordering of vertices as opposed to their 

position. Non-reciprocal interactions, 



IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 
ISSN PRINT 2319 1775 Online 2320 7876 

Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 10, Iss 09, 2021 

636 

 

 
 
 

where pairwise forces do not obey 

Newton’s third law [20], are applicable to 

colloidal physics [21], active transport 

[24], and plasma physics [22, 23]. The 

statistical mechanics framework used to 

analyse such a system that exhibits 

nonreciprocity relies on defining an 

interatomic potential: Ivlev et al [25] have 

provided some pioneering analysis in this 

area. A question that has not been 

answered is characterising when a general 

interatomic potential displays non-

reciprocal interactions. For example, if the 

potential depends purely on pairwise 

distances, then reciprocity is a 

consequence, so one possible way to 

approach this problem is to study under 

what symmetries can we conclude that a 

general position dependent potential 

function, can be written as function that 

depends purely on distances. Separately, 

this is a fundamental question that 

underpins classical potential theory, and it 

is addressed in this paper in Theorems 1 

and 2. We should note that thought into 

symmetries of a potential has been 

undertaken by Kinghorn et al [26]: this 

was used to analyse a specific functional 

form of potential developed, whilst in 

Section II we consider a general potential 

with the goal of understanding when 

distances are appropriate variables used to 

describe the potential function. The 

potential function U considered in this 

paper has translational, rotational and 

reflectional symmetries as formulated in 

Definition 1, where we study systems of 

identical particles (atoms, or more 

generally, coarse-grained particles). We 

present proofs of Theorems 1 and 2 in 

Section III, where we also show that we 

only require a relatively small subset of 

distances to uniquely determine the 

potential as stated in Theorem 2. 

Limitations of this description are 

discussed in Section IV, where we also 

present some generalizations of Theorems 

1 and 2 to mixtures of atoms of different 

types. 

The configuration of a system of N atoms 

at positions qi , i = 1, 2, . . . , N, is defined 

as a 3N-dimensional vector q = (q1, q2, . . 

. , qN ) ∈ R 3N . We note that these can 

provisionally be thought of as vertices of 

an N-gon, or an N-polyhedron, assuming 

that qi 6= qj for i 6= j. The lengths of 

edges are distances between atoms, which 

we denote by 

 

In this paper, we study potential functions 

U : R 3N → R called central potential 

functions which satisfy certainsymmetries 

as specified in Definition 1. These 

symmetries are: (i) translational 

invariance; (ii) rotational invariance; (iii) 

reflectional invariance; and (iv) parity for 

i,j identical atoms. An example of potential 

satisfying the assumptions in Definition 1 

is 

 

The symmetries considered in Definition 1 

are satisfied by other generalizations of the 

example potential (2), which include n-

body terms depending only on the 

distances (1) between atoms. In fact, the 

symmetries (i)-(iv) imply that the potential 

U : R 3N → R can be written as a function 

of distances. We have the following 

theorem which we prove in Section III. 

Theorem 1. A central potential function U : 

R 3N −→ R can be written as 

 

where the N(N − 1)/2 inputs are 

interpreted as the set of all pairwise 
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distances (1) between atoms. Considering 

N = 2, Theorem 1 states that a central 

potential function U of 6 variables can be 

written as a function φ of 1 variable, r12. 

Consequently, Theorem 1 reduces the 

dimensionality of the potential U for any N 

< 7. If N = 7, then we have 3N = N(N − 

1)/2 = 21 and the 21-dimensional state 

space R 3N corresponds to the 21 distance 

variables (1). Since the dimension of the 

state space scales as O(N) and the number 

of distances scales as O(N2 ), Theorem 1 

can be further improved by considering 

only a subset of the distance variables (1). 

In Section III, we also prove the following 

result. 

Theorem 2. Let N ≥ 4. Then a central 

potential function U : R 3N −→ R can be 

written as 

 

where the (4N − 10) inputs are a subset of 

the set of all pairwise distances (1). 

Considering N = 4 and N = 5, we have 4N 

−10 = 6 and 4N − 10 = 10, respectively. In 

particular, Theorems 1 and 2 state the same 

conclusion for N = 4 and N = 5. Theorem 

2 improves the result of Theorem 1 for N > 

5. We will prove Theorems 1 and 2 

together in Section III by considering the 

cases N = 2, N = 3, N = 4, N = 5 and N > 

5. Applying Theorem 2 to our example 

potential (2), we observes that it reduces 

the number of independent variables for N 

> 5. In particular, while function φ 

constructed in the proof of Theorem 2 

depends only on distances (1), it is not 

given in the form (2). In addition to central 

potential functions satisfying conditions in 

Definition 1, there are potentials to which 

Theorems 1 and 2 are not applicable. For 

example, if the potential U corresponds to 

an external non-uniform 

 

and U will neither satisfy the conditions in 

Definition 1, nor will it be possible to 

write as a function of pairwise distances 

(1). Assuming that there is no external 

field present and that we have a system of 

N identical atoms interacting (i.e. U 

satisfies condition (iv) in Definition 1), 

then we can formally write it as a sum of 

the n-body interactions for 2 ≤ n ≤ N in the 

form 

 

where we can naturally think about n-

polyhedrons of atoms as the input to the 

potential function, but these are fixed in 

space and a natural assumption is that 

given this input, it should not matter where 

we fix this polyhedron (leading to 

translational invariance (i)), or how we 

orient this polyhedron (rotational 

invariance (ii)). One slightly more subtle 

assumption, is that we should be allowed 

to reflect our polyhedron in any plane that 

keeps the polyhedron on one side 

(reflectional symmetry (iii)). One 

difference between symmetries (i)–(ii) and 

(iii)– (iv) is that the former ones are 

continuous symmetries whereas the 

reflection invariance (iii) and parity (iv) 

are not. Noether’s theorem [27] states that 

each continuous symmetry gives rise to a 

corresponding conserved quantity (in a 

closed system). In particular, translational 

invariance (i) leads to conserved linear 

momentum (which is a consequence of 

reciprocity of forces) and rotational 

invariance (ii) gives rise to conserved 

angular momentum. In the next section, we 

provide a proof that functions obeying 

symmetries (i)–(iv) should only rely on 

distances and we also show that a proper 
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subset of pairwise distances for N > 5 can 

be used to describe the potential function 

U. 

III. PROOFS OF THEOREMS 1 AND 2 

 We prove Theorems 1 and 2 together by 

considering the cases N = 2, N = 3, N = 4 

and N = 5, followed by an inductive 

argument for N > 5. We define 

displacement vectors by 

 

A. The case N = 2 

We define function φ : [0,∞) → R by 

 

where kˆ is a unit vector in the 

direction of the positive z axis and 0 = 

[0, 0, 0]. Given atom positions q1, q2 

∈ R 3 , we translate the configuration 

to position atom 1 at the origin. Using 

symmetry (i) in Definition 1, we have 

U(q1, q2) = U(0, ∆12). We then rotate 

the axes using rotation R1 ∈SO(3) 

such that the displacement vector 

connecting the two atoms is aligned 

with the positive z axis, giving R1∆12 

= r12kˆ, while maintaining R10 = 0. 

Using symmetry (ii) in Definition 1, 

we have 

 

where the last equality follows from 

our definition (5). This concludes the 

proof of Theorem 1 for N = 2. 

B. The case N = 3  

Given atom positions q1, q2, q3 ∈ R 3 

, we consider the function U(q1, q2, 

q3). Using symmetry (i) in Definition 

1, we translate the configuration to 

position atom 1 at the origin and 

consequently, we have 

 

Given that we have three axes to rotate 

around, we canalways find a rotation 

R1 such that R1∆12 = r12kˆ, as wedid 

in the N = 2 case. Using symmetry (ii), 

we have 

 

However the key point is that 

R2R1∆13 is uniquely defined by the 

triangle with lengths r12, r13 and r23, 

theangles of which can be calculated 

using the cosine rule,i.e. R2R1∆13 can 

be expressed as 

 

Therefore there exists function φ : 

[0,∞)3 → R suchthat U(q1, q2, q3) = 

φ(r12, r13, r23), for any q1, q2 andq3, 

confirming Theorem 1 for N = 3. 

C. The case N = 4 

Given atom positions q1, q2, q3, q4 ∈ 

R3, these can bethought of defining the 

vertices of a tetrahedron (or ifco-planar 

a quadrilateral). Following similar 

steps as inthe case N = 3 in Section III 

B, we translate atom 1 
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FIG. 1. A schematic of the constructive 

method in aid of theproof for the case 

N = 3.to the origin, apply rotation R1 

to orient displacementvector ∆12 with 

the positive z axis, then do a 

secondrotation R2 that fixes the 

triangle formed by the verticesof atoms 

1, 2 and 3 in the x-z plane. As in 

Section III B,we have 

 

Using equation (6), we know that 

R2R1∆13 is determined entirely by 

distances r12, r13 and r23. All 

thatremains to be shown is that 

R2R1∆14 is determined bypairwise 

istances. We note that the triangle 

formed byatoms 1, 2 and 3 (denoted as 

ABC in the lower partof our 

illustration of the proof in Figure 2) is 

uniquelydetermined (after orienting 

one side with the positive zaxis). 

Consequently, this fixes the side BC. 

On the otherhand the triangle BCD is 

uniquely determined (as oneside BC is 

fixed) by distances r23, r24 and r34. 

These canbe thought of as two 

triangles which can rotate around 

ahinge BC, so to determine the vector 

R2R1∆14, we necessarily need the 

final distance r14 that gives the 

anglebetween the planes containing 

triangles ABC and BCD(two 

configurations are illustrated in Figure 

2). If triangles ABC and BCD are co-

planar, the set of all pairwise distances, 

with this orientation, will give a 

uniquedescription of R2R1∆14. If 

these triangles are not coplanar, this 

final distance gives two possible 

vectors forR2R1∆14. These correspond 

to a unique R2R1∆14 andthe copy 

obtained by reflection in the plane 

containingtriangle ABC. However by 

property (iii) we know thatif we reflect 

in the plane containing ABC with a 

matrixdenoted Q, then 

 

Therefore there exists function φ : [0,∞)6 

→ R suchthat U(q1, q2, q3, q4) = φ(r12, 

r13, r14, r23, r24, r34), forany q1, q2, q3 

and q4, confirming Theorem 1 for N = 4. 

 

 

FIG. 2. A schematic of the constructive 

method in aid ofthe proof for N = 4. For 

clarity we have only highlightedthe 

additional three displacement vectors, 

though the triangleformed by vertices {1, 

2, 3} lying in the x-z plane is the sameas in 

Figure 1. 

The case N = 5 To proceed in this case, we 

note that any N vertex polyhedron can be 

made by adding a single vertex to an N −1 

polyhedron or polygon (in the case where 

all other points are co-planar). The task at 

hand, as in the case N = 4 in Section III C, 

is being able to determine the displacement 

vectors once we have translated and 
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rotated the configuration such that 

R2R1∆12 = r12kˆ is aligned with the 

positive z axis. An N = 5 polyhedron can 

be constructed from either adding a vertex 

onto a pre-existing N = 4 polyhedron (at 

most 3 points are co-planar), or an N = 4 

polygon (where all points are co-planar). 

In the first case, we may take any 3 

vertices on the pre-existing polyhedron: 

call these vertices the transformed 

positions of atoms 2, 3, 4 (by property (iv) 

in Definition 1). If we know r25, then this 

fifth vertex must lie on a sphere of radius 

r25, with the transformed position of atom 

2 as the centre: we denote this S2. 

Similarly, we construct S3 and S4 as 

spheres of radii r35 and r45 respectively. 

This is illustrated in Figure 3(a). The fifth 

vertex lies at the intersection of three 

spheres S2, S3 and S4, which contains at 

most two points. If it contains exactly two 

points, then we need another distance r15 

(which is the distance from the vertex in 

the pre-existing polyhedron that was not 

used as a centre of spheres S2, S3 or S4) to 

determine which of those two positions is 

correct, see Figure 3(b). In this way: 4 

more distances are used to specify all of 

the vertices of the N = 5 polyhedron. 

Therefore, there exists function φ : [0,∞) 

10 → R such that U(q1, q2, q3, q4, q5) = 

φ(r12, r13, r14, r15, r23, r24, r25, r34, r35, 

r45), for any q1, q2, q3, q4 and q5. To 

arrive at this conclusion, we used an 

assumption that no four points are co-

planar. If this is not the case, then we need 

less distances for the specific 

configuration. 

 

For example, if the pre-existing 4 vertices 

are co-planar: utilising the sphere approach 

for any three of those vertices will result 

again in two possible positions for vertex 

5, however using the pairwise distance 

between this vertex and the new vertex 

gives no information, as the fourth point 

lies on the plane of symmetry formed by 

the spheres. In this case we use property 

(iii), considering the reflective symmetry 

about this plane to argue that we have 

determined all displacement vectors with 

this orientation uniquely up to a reflection 

in the plane containing vertices 1, 2, 3 and 

4. In this case, we do not need the fourth 

distance mentioned above, and evaluating 

U(q1, q2, q3, q4, q5) is possible with the 9 

pairwise distances. The tenth distance is 

also not needed if the intersection of 

spheres S2, S3 and S4 is exactly equal to 

one point (when vertices 2, 3 and 4 are co-

linear). Thus we have proven Theorems 1 

and 2 in the case N = 5.  

           E. The case N > 5  

We inductively prove that a similar setup 

as in the N = 5 case in Section III D works 

by constructing polyhedra of higher order 

by the addition of a new vertex. Say that 

the N −1 case required the set of distances 

DN−1 to evaluate U(q1, . . . , qN−1), 

where |DN−1| = 4(N − 1) − 10. Which is 

true for the base case of N = 5. The most 

general case to consider is when we have 

an N −1 polyhedron before we introduce 

the new vertex. In this case, any three of 

the N − 1 vertices can be chosen, say i, j, 

k. The three distances riN ,rjN , rkN are 

used to create three intersecting spheres 

and two potential positions for vertex N. 

We use vertex l, which is not coplanar to i, 

j, k and distance rlN determines this 

position uniquely. Therefore the required 

set of distances to evaluate U(q1, . . . , qN ) 

is DN = DN−1∪{riN , rjN , rkN , rlN }, 

i.e. we need 4N − 10 pairwise distances. If 
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there are at least four co-planar points, 

then we only need 3 additional pairwise 

distances (so we would only need 4N −11 

pairwise distances). Since the inductive 

step holds for all N, and it works for the 

base case of N = 5, this concludes our 

proofs of Theorems 1 and 2 for all N. 

IV. DISCUSSION AND 

CONCLUSIONS  

Theorems 1 and 2 demonstrate that the 

potential U can be expressed in a way that 

solely depends on the pairwise distances 

between atoms due to the manybody 

system's symmetry. Theorem 1 provides a 

non-linear transformation of U from a 

function of 3N variables q into a function 

of N(N − 1)/2 distance variables, which is 

not optimal as it is demonstrated in 

Theorem 2, where the number of distance 

variables scales linearly with N. This is 

because U is a function of the 3N-

dimensional state space. Theorem 2 

reduces the number of distance variables to 

O(N), taking into account the example 

potential (2) that depends on all N(N −1)/2 

distance variables. But if we utilize the 

potential's resultant form, φ, this does not 

directly

 

where S is the collection of pairs of indices 

{i, j} corresponding to the subset of 

distances that is used to determine φ in 

Theorem 2. where rij is defined by (1). The 

number of terms in the first sum on the 

right side of (7) is O(N), but the number of 

terms in the second sum on the right side 

of (7) scales as O(N2). This indicates that 

the number of elements in the set S scales 

as O(N), according to Theorem 2. We can 

find k ∈ {1, 2,..., N} such that {i, k} ∈ S 

and {j, k} ∈ S by taking {i, j} 6∈ S into 

consideration. Specifically, the cosine rule 

can be used to describe distance rij for {i, 

j} 6∈ S in terms of distances rik and rjk. 

As a result, for any index in the set S, we 

may find an explicit form of the potential 

U as a function of O(N) distances. 

Summations over O(N2) terms, however, 

will be present in the second term of the 

form (7). In other words, Theorem 2 does 

not make the φ computations less complex 

than O(N2). It is provided to show that, 

just as the dimension of the phase space 

scales linearly with N, so does the number 

of distance variables required. Theorem 2 

offers a non-linear translation of U, which 

is a function of 3N variables q, into a 4N − 

10 distance variable function, φ, for N ≥ 4. 

For N > 11, this result does not lower the 

number of independent variables, even 

though it improves the O(N2) scaling of 

Theorem 1. The number of distance 

variables used in Theorem 2 to determine 

φ is equal to the number of independent 

variables defining U if N = 10, and 

Theorem 2 reduces the dimensionality if N 

< 10. Symmetries (i)–(iv) of a central 

potential function in Definition 1 indicate 

that the potential can be expressed as a 

function of pairwise distances (1), which is 

the formulation of Theorem 1. However, a 

partial inverse of Theorem 1 also holds, 

i.e., any potential provided as a function of 

pairwise distances fulfills symmetry 

assumptions (i)–(iii). Translations, 

rotations, and reflections are Euclidean 

isometries, preserving pairwise distances 

between atoms. In this study, we consider 

systems of identical particles, as stated in 

property (iv). Specifically, for systems of 

identical atoms, symmetries (i)–(iv) are 

both sufficient and essential for a potential 

to be represented as a function of pairwise 

distances. Theorems 1 and 2 can be 

extended to particle mixes, meaning that 

they apply to systems in which Definition 

1's symmetry (iv) is broken. Then, 

potential U can be defined as a function of 

pairwise distances, according to 
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characteristics (i)–(iii) of the potential. 

Potential functions that cannot be 

represented as a function of pairwise 

distances can be found by further reducing 

the number of symmetries that the 

potential U possesses. As an illustration,

 

fulfills the translational symmetry (i) but 

not the rotational symmetry (ii) for every 

nonzero constant vector d. U(q) = |q1| is an 

example of a potential function that 

satisfies the translational symmetry (i) but 

not the rotational symmetry (ii). Indeed, 

for a potential to be represented as a 

function of pairwise distances (for systems 

of non-identical particles), symmetries (i)–

(iii) are both sufficient and essential. 
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