Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 10, Spl Iss 1, 2021

Elevating Solar Still Performance with Wick-Finned Absorber and Nano-Enhanced PCM Technology

S. Shanmugan, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522302, Andhra Pradesh, India

Abstract

The study aimed to enhance the heat transfer efficiency between saline water and the absorber in a Tubular Solar Still (TSS). This improvement was achieved by exploring various absorber designs, including flat and finned configurations. The research compared the performance of three systems: Conventional Solar Stills (CSS), the Tubular Solar Still (TSS), and a modified version with finned absorbers, known as Finned Tubular Solar Still (FTSS). To facilitate slow upward movement of feed water through the absorber, jute wick materials were employed as a covering for the finned absorbers. Furthermore, the internal sides of the TSS were equipped with reflective mirrors to evaluate their impact on performance. In a bid to further enhance the FTSS's capabilities, Phase Change Materials (PCMs) mixed with copper oxide nano particles were incorporated.

1. Introduction

Freshwater scarcity is a critical issue in both developed and developing countries. Various techniques have been employed to address this challenge and enhance freshwater productivity systems, including humidification dehumidification (HDH) [1], reverse osmosis (RO), multi-stage flash (MSF), vapor compression (VC), solar still (SS), and multi-effect boiling (MEB). The solar still, a compact water desalination unit, offers a viable solution for obtaining potable water in remote areas [2]. However, its low daily production has prompted extensive research to maximize freshwater output. Several investigations have focused on minimizing the saline water depth [3], increasing feed water temperature using solar water collectors, and employing mirrors to enhance solar energy absorption [4].

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 10, Spl Iss 1, 2021

2. Materials and methods

a. Reference solar still b. Trays solar still c. Finned trays solar still

Fig. 1 Photograph of tested solar stills.

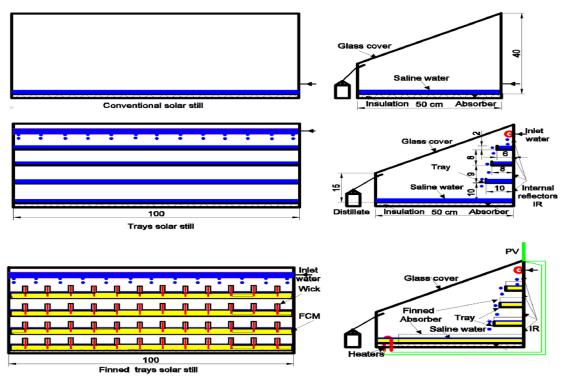


Fig. 2 Cross-sectional view of TSS, FTSS and conventional SS.

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 10, Spl Iss 1, 2021

Table 1Propertiesonanoparticles.	f PCM and PCM	with CuO
Property	PCM with CuO nanoparticles	PCM (Paraffin wax)
Melting point, °C	53	54
Density, kg/m ³	941	876
Specific heat, kJ/kg °C	2.05	2.1
Thermal conductivity, W/ m °C	0.28	0.21
Latent heat of fusion, $kJ/kg \ ^{\circ}C$	187	190

Table 2 Properties of nanoparticles.					
Chemical composition	Density	Specific heat	Size,	Thermal conductivity	
CuO	6320 kg/m ³	42.36 J/mol K	10-14 nm	76.5 W/m K	

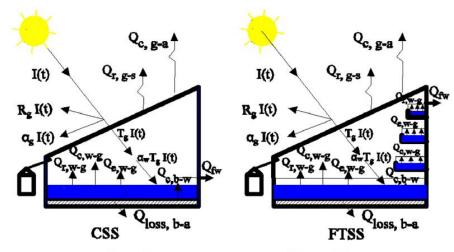


Fig. 3 Heat transfer rates to or from CSS and FTSS.

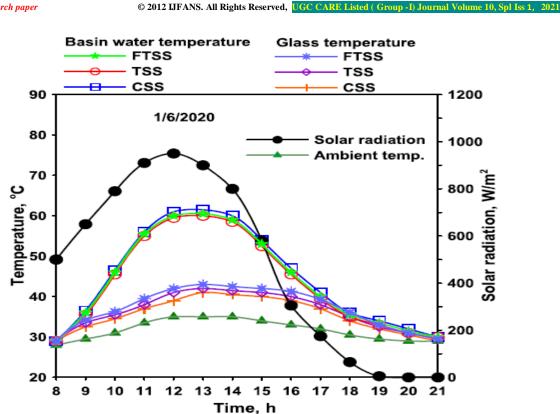


Fig. 5 Temperatures and solar radiation profiles for tested SSs.

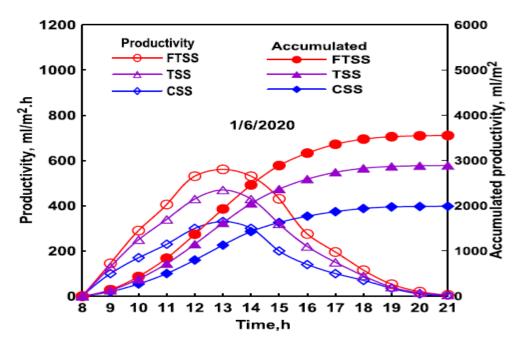


Fig. 6 The accumulated and hourly output yield for tested solar stills.

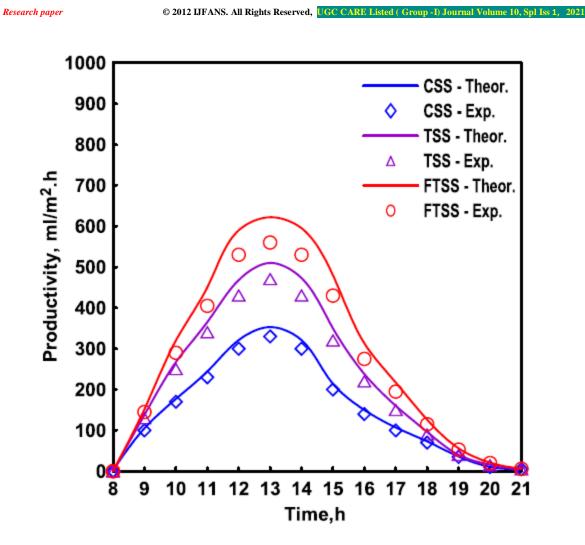


Fig. 4 A comparison between experimental and theoretical water productivity for tested solar stills.

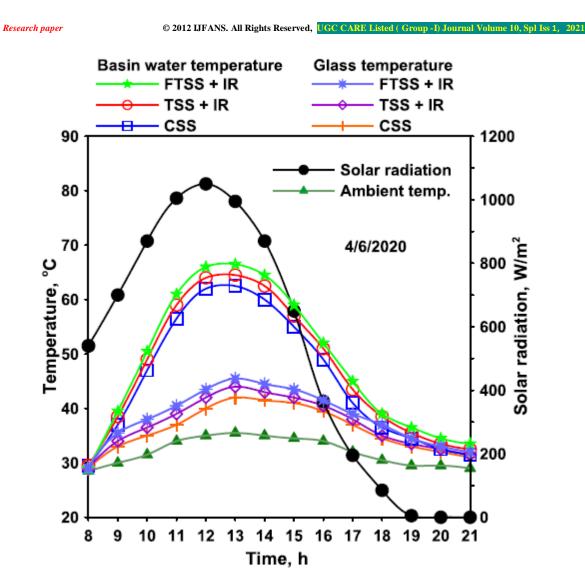


Fig. 7 Temperatures and solar radiation profiles for tested SSs with IR.

Research paper

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 10, Spl Iss 1, 2021

hour	Trays temperat	Trays temperature, °C			Average, °C
	Upper	intermediate	lower	°C	
8	29.5	29.3	29	28	29
9	44	42.5	41	38	39
10	54	52.5	50	47	48.5
11	65.5	63.5	61	57	58.5
12	72	70.8	68	63	64
13	73	72	68.7	64	64.5
14	70.6	68.5	65	61	63
15	66	64	61	57	57
16	59	57.5	54	50.5	52
17	51	49.5	47	44	44
18	44	43.5	42	40	40
19	38	37	36	35	35.5
20	34	33.5	33	32	32.5
21	31	30.8	30.5	30	30.5

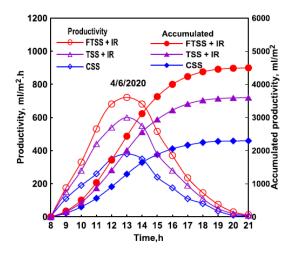
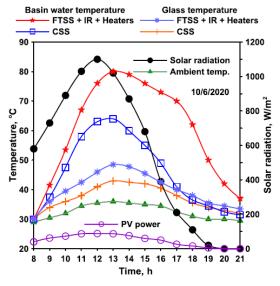
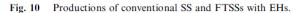
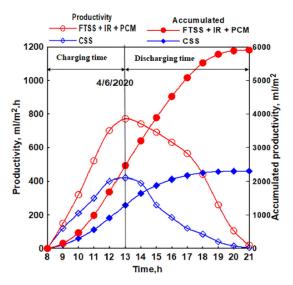


Fig. 8 The accumulated and hourly output yield for tested solar stills with IR.


Fig. 0 Hourly distribution of temperatures DV nower and color

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal

Productivity Accumulated FTSS + IR + Hea FTSS + IR + Heaters CSS CSS 1200 7000 6000~E 10/6/2020 1000 E Productivity, ml/m².h 5000 productivity, 0005 800 600 2000 Accumulated pr 400 200 11 12 13 14 15 16 17 18 19 20 21 8 9 10 Time,h

Research paper

olume 10, Spl Iss 1,

2021

Fig. 12 The productivity of CSS and FTSS with PCM and nanoparticles.

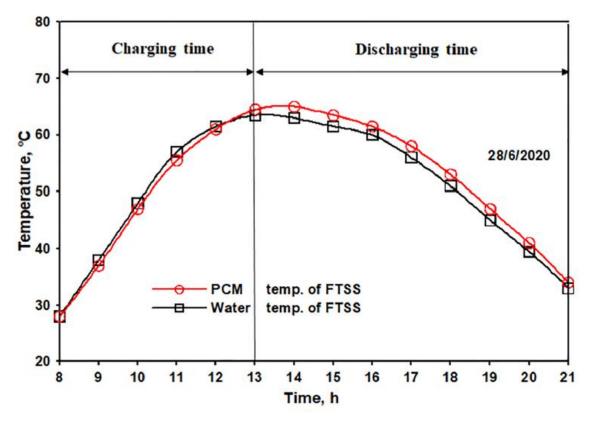


Fig.11 Temperatures of PCM and saline water of FTSS.

Table 4 Daily thermal efficiency of CSS and FTSS with IR under different investigated conditions.						
Tested case	CSS	TSS	FTSS	FTSS + Heaters	FTSS + FCM	FTSS + FCM + Heaters
Thermal Efficiency, %	34	43	49	59	54	63

6. Conclusion

Research paper

© 2012 LJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 10, Spl Iss 1, 2021

In the present study, increasing the surface area of absorber of TSS was targeted for better performance of the distiller. As a result, the TSSs with finned and flat absorbers shapes have been studied.

References

[1] A.S. Abdullah, Z.M. Omara, M.A. Bek, F.A. Essa, An augmented productivity of solar distillers integrated to HDH unit: Experimental implementation, Appl. Therm. Eng. 167

(2020) 114723, https://doi.org/10.1016/j.applthermaleng.2019. 114723.

[2] A.S. Abdullah, F.A. Essa, Z.M. Omara, M.A. Bek, Performance evaluation of a humidification– dehumidification unit integrated with wick solar stills under different operating conditions, Desalination 441 (2018) 52–61.

[3] F.A. Essa, A.S. Abdullah, Z.M. Omara, A.E. Kabeel, W.M. El- Maghlany, On the different packing materials of humidification–dehumidification thermal desalination

techniques-A review, Cleaner Prod. 277 (2020) 123468, https:// doi.org/10.1016/j.jclepro.2020.123468.

[4] H. Chang, R. Hu, Y. Zou, X. Quan, N. Zhong, S. Zhao, Y. Sun, Highly efficient reverse osmosis concentrate remediation by microalgae for biolipid production assisted with electrooxidation, Water Res. 174 (2020) 115642, https://doi.org/10.1016/j.watres.2020.115642.