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ABSTRACT 
This study analyzes Tamil Nadu telephone data per 100 people from 2004 to 2021 and forecasts 

trends for the following five years using the ARIMA model. The dataset includes Tamil Nadu's 

2004–2021 telephone connections per 100 people. The Augmented Dickey-Fuller (ADF) test 

checks data stationarity before analysis. Non-stationary data can cause erroneous forecasts in 

time series analysis. The ADF test will detect if data needs differencing for stationarity. To 

determine ARIMA model orders, the ACF and PAF will be investigated. These functions 

provide data point correlations at different lags, helping pick ARIMA parameters. The ARIMA 

(0,2,1) model fits telephone data best based on ACF and PACF graphs. To achieve stationarity, 

the data must be differenced twice, and the model will have one moving average component 

lag. The ARIMA (0,2,1) model has AIC and BIC values of 126.19 and 127.73, respectively. 

Lower numbers imply greater model fit. The ARIMA (0,2,1) model predicts 2022–2025 

telephone statistics. This projection will reveal Tamil Nadu's five-year telephone connection 

trend per 100 people. Finally, the Box test will evaluate ARIMA model goodness-of-fit. The Box 

test validates model predictions by detecting considerable residual autocorrelation. This detailed 

research of Tamil Nadu's telephone data patterns will assist stakeholders make educated 

decisions about communications infrastructure and services for the future.  

Keywords: Telephone, ARIMA, Forecasting.  

INTRODUCTION 

The field of telecommunication occupies a central position in the contemporary global 

landscape, facilitating uninterrupted communication and facilitating the retrieval of information. 

The telecommunication sector in the state of Tamil Nadu, situated in the southern region of 

India, has experienced notable progressions throughout its history. The monitoring and 

prediction of telephone connections per 100 population in Tamil Nadu hold significant 
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importance for policymakers, service providers, and other relevant stakeholders in order to 

efficiently strategize and allocate resources. 

Time series forecasting techniques, such as the Autoregressive Integrated Moving Average 

(ARIMA) model, have demonstrated their efficacy in projecting future patterns by leveraging 

historical data. The ARIMA model is highly advantageous in the analysis of data that exhibits 

temporal dependencies, rendering it a suitable selection for forecasting telephone connections 

over a given time period. 

The aim of this study is to examine the historical telephone data per 100 population in Tamil 

Nadu spanning from 2004 to 2021. Additionally, the study intends to utilize the ARIMA model 

to predict the future trend for the subsequent five-year period, specifically from 2022 to 2025. 

Through the utilization of this model, our objective is to offer significant insights pertaining to 

the prospective expansion and demand for telecommunication services within the state. 

The analysis will be performed through a series of sequential steps. To begin with, we will assess 

the stationarity of the telephone data by employing the Augmented Dickey-Fuller (ADF) test. 

The concept of stationarity holds significant importance in the field of time series analysis, as it 

guarantees the constancy of statistical characteristics within the data throughout the course of 

time. In the event that the data is determined to lack stationarity, suitable differencing techniques 

will be employed in order to attain stationarity. 

Subsequently, an examination of the Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) will be conducted in order to ascertain the suitable order for the ARIMA 

model. These functions offer valuable insights into the relationship between the present 

observation and its previous lags, facilitating the selection of suitable autoregressive and moving 

average components for the model. 

After determining the most suitable ARIMA model, we will proceed to estimate its parameters 

and assess its goodness-of-fit by employing the Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC). These criteria will aid in assessing the efficacy of the 

model in capturing the inherent patterns present in the telephone data. 

After validating the ARIMA model, it will be employed to predict the telephone connections per 

100 population in Tamil Nadu for the upcoming five years. The projected values will offer 

significant insights to stakeholders, empowering them to anticipate potential expansion, 

strategize infrastructure development, and make well-informed decisions pertaining to 

telecommunication services. 

In summary, this research endeavor aims to enhance the collective comprehension of telephone 

usage patterns in Tamil Nadu, thereby offering significant insights for policymakers, 

telecommunication entities, and other relevant stakeholders. The utilization of the ARIMA 
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model will enhance the precision of forecasting telephone connections per 100 population, 

thereby aiding in the development of strategies to address the changing telecommunication 

demands of the state in the future. 

LITERATURE REVIEW: 
Zhang et al., (2021) Research and application of traffic Forecasting in customer service center 

based on ARIMA Model and LSTM Neural Network Model. The correlation between traffic data 

and the allocation of call center seats is a fundamental principle in the field of artificial 

intelligence research. Optimal configuration of call center human resources can be achieved by 

arranging corresponding agents based on varying traffic volumes. This paper employs the 

ARIMA model and LSTM neural network model, both of which are grounded in time series 

analysis, to forecast traffic patterns. An empirical investigation is being conducted on Python 

software, utilizing the power call center traffic data from Hebei Province as a representative case 

study. The empirical findings indicate that the LSTM neural network model exhibits superior 

predictive accuracy in comparison to the ARIMA model. 

 

Bianchi et al., (1998) Improving Forecasting for telemarketing centers by ARIMA modeling with 

intervention. This study examines approaches for anticipating telemarketing center calls for 

planning and budgeting. We compare additive and multiplicative Holt–Winters (HW) 

exponentially weighted moving average models to Box–Jenkins (ARIMA) intervention analysis. 

HW and ARIMA models are tested for telemarketing data forecasting. ARIMA models with 

intervention analysis outperform "simple models" like Holt–Winters for the time series analyzed, 

despite recent work suggesting otherwise. 

Grambsch et al., (1990) Forecasting demand for special telephone services: A case study. 

ARIMA models and squared error criterion-based optimum rules are used to predict future 

demand for products and services. We discovered that a model with independent increments with 

stable distributions was superior for predicting Special Services in the telephone company when 

evaluating a large number of time series. It accurately characterized predicted mistakes. This 

article describes the model, compares it to a state space model utilized for the problem, and uses 

numerous data analytic processes to determine how well the model matches the data. The report 

concludes with comments on projected forecast error magnitude. 

Zhang et al., (2010) Predicting social ties in mobile phone networks. Since social interactions 

evolve, a social network does too. Social ties drive social network development. Even within a 

group, social-tie strengths vary. We use mobile phone call-detail records to assess and forecast 

social connection strengths. We present a reciprocity index-based affinity model to quantify 

social-tie strengths. The affinity model maps call-log data to social-tie strengths over time as 

human social interactions vary. ARIMA model predicts social-tie strengths. over confirmation, 

we used actual call records of 81 users acquired over 8 months at MIT by the Reality Mining 

Project group and 20 users collected for 6 months by UNT's Network Security team. These users 
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have 5000 contacts. Our model worked in experiments. We predict socially close and near 

members with 95.2% accuracy. This research aids homeland security, spam detection, and 

marketing. 

 

METHOD AND APPROACH 
Time series :- A time series is a sequence of data points or observations collected and recorded 

over a specific period of time, where the data points are ordered based on their corresponding 

time index. In other words, it is a collection of data points that are indexed or labeled by time. 

 

Time series data is commonly encountered in various fields, including finance, economics, 

engineering, environmental science, and many others. It provides valuable insights into the 

behavior and patterns of phenomena that evolve over time. 

 

The characteristics of time series data include: 

 

1. Time Index: Each data point in a time series is associated with a specific time index or 

timestamp, indicating when the observation was made. 

 

2. Sequential Order: The data points in a time series are arranged in chronological order, with 

each subsequent observation occurring after the previous one. 

 

3. Temporal Dependence: Time series data often exhibits a certain level of dependence or 

correlation between observations. The value at a given time point can be influenced by its 

previous values or exhibit patterns over time. 

 

4. Seasonality: Many time series exhibit regular patterns or variations that repeat at fixed 

intervals, known as seasonality. For example, retail sales may have higher values during holiday 

seasons. 

 

5. Trend: Time series data often shows a long-term trend or systematic changes over time. 

Trends can be increasing (upward trend), decreasing (downward trend), or exhibit more complex 

patterns. 

 

6. Randomness: Time series data can also contain random or unpredictable fluctuations, known 

as noise or random variations. These random components make it challenging to accurately 

forecast future values. 

 

Analyzing time series data involves various techniques and methods, including trend analysis, 

seasonality detection, forecasting, and modeling. Time series analysis aims to understand and 
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extract useful information from the data, uncover underlying patterns, and make predictions 

about future behavior based on historical observations. 

 

Box-Jenkins Methodology 

Box-Jenkins, also known as the Box-Jenkins methodology or Box-Jenkins approach, is a widely 

used and powerful technique for time series analysis and forecasting. It was developed by 

George Box and Gwilym Jenkins in the 1970s and has become a standard approach in the field 

of time series modeling. The Box-Jenkins methodology consists of three main steps: model 

identification, model estimation, and model diagnostic checking. 

 

1. Model Identification: 

The first step in the Box-Jenkins approach is to identify an appropriate model that best represents 

the underlying structure of the time series. This involves determining the orders of autoregressive 

(AR), differencing (I), and moving average (MA) components, denoted as (p, d, q), respectively. 

Model identification is typically done through the analysis of autocorrelation function (ACF) and 

partial autocorrelation function (PACF) plots, which help identify the significant lags and the 

presence of autoregressive and moving average patterns. 

 

2. Model Estimation: 

Once the model has been identified, the next step is to estimate the model parameters using a 

suitable estimation method. Maximum likelihood estimation (MLE) is commonly used for 

estimating the parameters of the ARMA model. The estimation process involves finding the 

values of the AR and MA coefficients that maximize the likelihood function based on the 

available data. 

 

3. Model Diagnostic Checking: 

After estimating the model, it is important to assess the adequacy of the model by conducting 

diagnostic checks. This involves analyzing the residuals (the differences between the observed 

values and the values predicted by the model) to ensure they meet certain assumptions, such as 

being normally distributed and exhibiting no significant autocorrelation. Various statistical tests 

and plots, such as ACF of residuals and Ljung-Box test, are employed to assess the model's 

goodness of fit. 

 

If the diagnostic checks reveal that the model assumptions are not adequately met, further 

iterations of model identification, estimation, and diagnostic checking may be performed to 

refine the model until a satisfactory fit is achieved. 

 

The Box-Jenkins methodology is known for its flexibility and versatility, allowing for the 

modeling of complex time series patterns. It has been successfully applied in various fields for 

forecasting, analyzing, and modeling time series data. 
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ARIMA 

The ARIMA (Autoregressive Integrated Moving Average) model is a widely used time series 

forecasting method. It combines autoregressive (AR), differencing (I), and moving average (MA) 

components to capture the underlying patterns and dependencies in a time series. Here's the 

mathematical description of an ARIMA (p, d, q) model: 

 

Let Y_t be the observed value of the time series at time t. 

 

1. Autoregressive (AR) component: 

The autoregressive part models the relationship between the current observation and a linear 

combination of past observations. 

 

AR(p) component: 

𝑌𝑡= c + φ₁ 𝑌𝑡−1+ φ₂ 𝑌𝑡−2 + ... + φp𝑌𝑡−𝑝 + 𝜀𝑡 

 

Here, c is a constant term, φ₁ , φ₂ , ..., 𝜑𝑝are the autoregressive coefficients, 𝜀𝑡 is the error term 

assumed to be white noise with zero mean and constant variance. 

 

2. Differencing (I) component: 

The differencing part helps in removing trend or seasonality from the time series data. It 

calculates the difference between consecutive observations to achieve stationarity. 

 

I(d) component: 

𝑌′𝑡= 𝑌𝑡- 𝑌𝑡−𝑑 

 

Here, 𝑌′𝑡 is the differenced series, 𝑌𝑡 is the original series, and d represents the order of 

differencing. 

 

3. Moving Average (MA) component: 

The moving average part models the dependency between the current observation and a linear 

combination of past error terms. 

 

MA(q) component: 

𝑌𝑡= µ+ φ₁ 𝜀𝑡−1+ φ₂ 𝜀𝑡−2 + ... + φq𝜀𝑡−𝑝  

 

Here, μ is the mean of the time series, θ₁ , θ₂ , ..., θq are the moving average coefficients, and 

𝜀𝑡−1, 𝜀𝑡−2, ..., 𝜀𝑡−𝑝  are the lagged error terms. 

 

Combining all three components, the ARIMA(p, d, q) model can be written as: 

𝑌′𝑡= c + φ₁ 𝑌′𝑡−1+ φ₂ 𝑌′𝑡−2 + ... + φp𝑌′𝑡−𝑝 + φ₁ 𝜀𝑡−1+ φ₂ 𝜀𝑡−2 + ... + φq𝜀𝑡−𝑝+𝜀𝑡 
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Here, 𝑌′𝑡 represents the differenced series after applying the autoregressive and moving average 

components, 𝜀𝑡 and  is the error term in the model. 

 

The parameters p, d, and q are determined based on the characteristics of the time series data and 

are typically estimated using methods like autocorrelation function (ACF) and partial 

autocorrelation function (PACF) analysis. 

 

ACF and PACF  

ACF (Autocorrelation Function) and PACF (Partial Autocorrelation Function) are statistical 

tools used to analyze and identify the correlation structure within a time series. Both ACF and 

PACF provide insights into the relationship between an observation and its lagged values. Here's 

the mathematical description of ACF and PACF: 

 

1. Autocorrelation Function (ACF): 

The ACF measures the correlation between an observation and its lagged values at different time 

lags. 

 

ACF at lag k, denoted as ρ(k), is defined as: 

 

ρ(k) = Corr(𝑌𝑡, 𝑌𝑡−𝑘) 

 

Here, 𝑌𝑡 and 𝑌𝑡−𝑘 are the values of the time series at time t and t-k, respectively. Corr represents 

the correlation coefficient between the two variables. 

 

The ACF provides a measure of the linear relationship between the current observation and its 

lagged values. It quantifies the extent to which the values in the time series are correlated with 

each other over different lags. The ACF plot displays the correlation coefficients for various lags, 

which helps in understanding the presence of autocorrelation in the data. 

 

2. Partial Autocorrelation Function (PACF): 

The PACF measures the correlation between an observation and its lagged values, accounting for 

the intermediate correlations through the removal of the effects of shorter lags. 

 

PACF at lag k, denoted as φ(k,k), is defined as: 

 

φ(k,k) = Corr(𝑌𝑡, 𝑌𝑡−𝑘 | 𝑌𝑡−1, 𝑌𝑡−2, ..., 𝑌𝑡−𝑘+1) 

 

Here, 𝑌𝑡, 𝑌𝑡−𝑘, and 𝑌𝑡−1, 𝑌𝑡−2, ..., 𝑌𝑡−𝑘+1 represent the values of the time series at the respective 

time points. 

 

The PACF helps in identifying the direct relationship between the current observation and its 

lagged values, after accounting for the intermediate correlations. It provides insights into the 
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unique contribution of each lag to the current observation, which is useful for determining the 

appropriate lag order in autoregressive models. 

 

Both ACF and PACF are commonly used in time series analysis to identify the order of 

autoregressive (AR) and moving average (MA) components in models like ARIMA and to 

understand the correlation structure of the time series data. 

 

ARMA  

ARMA (Autoregressive Moving Average) is a popular time series model that combines 

autoregressive (AR) and moving average (MA) components to capture the underlying patterns 

and dependencies in a time series. The ARMA model is characterized by two parameters, p and 

q, representing the orders of the AR and MA components, respectively. Here's the mathematical 

description of an ARMA(p, q) model: 

 

Let Y_t be the observed value of the time series at time t. 

 

1. Autoregressive (AR) component: 

The autoregressive part models the relationship between the current observation and a linear 

combination of past observations. 

 

AR(p) component: 

𝑌𝑡= c + φ₁ 𝑌𝑡−1+ φ₂ 𝑌𝑡−2 + ... + φp𝑌𝑡−𝑝 + 𝜀𝑡 

 

Here, c is a constant term, φ₁ , φ₂ , ..., φp are the autoregressive coefficients, εt is the error term 

assumed to be white noise with zero mean and constant variance. 

 

2. Moving Average (MA) component: 

The moving average part models the dependency between the current observation and a linear 

combination of past error terms. 

 

MA(q) component: 

𝑌𝑡= µ+ φ₁ 𝜀𝑡−1+ φ₂ 𝜀𝑡−2 + ... + φq𝜀𝑡−𝑝+𝜀𝑡 

 

Here, μ is the mean of the time series, θ₁ , θ₂ , ..., θq are the moving average coefficients, ε{t-1}, 

ε{t-2}, ..., ε{t-q} are the lagged error terms, and ε_t is the error term assumed to be white noise 

with zero mean and constant variance. 

 

Combining the AR and MA components, the ARMA(p, q) model can be written as: 

𝑌𝑡= c + φ₁ 𝑌𝑡−1+ φ₂ 𝑌𝑡−2 + ... + φp𝑌𝑡−𝑝 + φ₁ 𝜀𝑡−1+ φ₂ 𝜀𝑡−2 + ... + φq𝜀𝑡−𝑝+𝜀𝑡 

 

AIC, AICC, BIC  
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AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), and AICC 

(Corrected Akaike Information Criterion) are statistical measures used for model selection and 

comparison in the context of time series analysis and other statistical modeling. They provide a 

quantitative assessment of the goodness of fit of different models and help in selecting the most 

appropriate model based on their respective criteria. Here's the mathematical description of AIC, 

BIC, and AICC: 

 

1. Akaike Information Criterion (AIC): 

AIC is a measure of the relative quality of a statistical model. It balances the trade-off between 

goodness of fit and model complexity, penalizing models with a larger number of parameters. 

 

AIC for a model with parameter p and log-likelihood value L is calculated as: 

 

AIC = -2 * L + 2 * p 

 

Here, a lower AIC value indicates a better model fit. The term -2 * L represents the maximized 

log-likelihood of the model, and 2 * p is the penalty term that accounts for the number of 

parameters in the model. 

 

2. Bayesian Information Criterion (BIC): 

BIC is a criterion similar to AIC but places a stronger penalty on the number of parameters. It 

incorporates a prior belief that simpler models are more likely to be true. 

 

BIC for a model with parameter p and log-likelihood value L is calculated as: 

 

BIC = -2 * L + p * log(n) 

 

Here, n represents the sample size. BIC penalizes models with a larger number of parameters 

more strongly than AIC, making it more suitable for model selection when the sample size is 

relatively small. 

 

3. Corrected Akaike Information Criterion (AICC): 

AICC is a modification of AIC that adjusts for small sample sizes. It takes into account both the 

model complexity and the sample size to provide a more accurate measure of model fit. 

 

AICC for a model with parameter p, log-likelihood value L, and sample size n is calculated as: 

 

AICC = AIC + (2 * p * (p + 1)) / (n - p - 1) 

 

The additional term in AICC accounts for the correction based on the number of parameters and 

the sample size. AICC is particularly useful when the sample size is small and provides a more 

reliable measure of model fit compared to AIC. 
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RESULT: 
The following graph shows data on the number of telephones per 100 people from 2004 to 2021. 

2006 to 2008 marked the beginning of an upward trend in that graph, which will continue until 

2021. 

 
Finding the AR and MA polynomial order for Tamil Nadu Telephone per 100 population by 

comparing stationary and non-stationary data. Plotting the autocorrelation functions allowed for 

the determination of the proper order of autoregressive and moving average polynomials, as well 

as the values of p and q. The fact that virtually all of the autocorrelations lag, or (n/4th), are 

considerably different from zero demonstrates that the data are not stable. With non-stationary 

data series pertaining to Tamil Nadu. It was found that the ACF plot in figure was not steady in 

its behavior. On the other hand, PACF's figure reveals a substantial spike at lag 1, which 

suggests that the series may have an autoregressive component of order one. 

 

In order to turn non-stationary data series for Tamil Nadu into stationary data series, the initial 

step was to differentiate the original data series. When we make use of the auto arima function, it 

displays a number of possible arima models and automatically converts data into the stationary 

format. This format was sufficient for obtaining a suitable stationary series in Tamil Nadu. The 

autocorrelations of Telephone series now validates the non-stationary behaviors of telephone 

usage. 
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Modelling Components  

Several alternative ARIMA models, each with a unique combination of lags of moving average 

and autoregressive orders, were utilized in the fitting process for the population projection of 

Tamil Nadu Telephone 100. During the identification step, the ARIMA(2,2,2), ARIMA(0,2,0), 

ARIMA(1,2,0), ARIMA(0,2,1), ARIMA(1,2,2), ARIMA(0,2,2), and ARIMA(1,2,2) models 

were all taken into consideration. The ARIMA estimate was calculated using a method known as 

non-linear least squares (NLS). For the sake of achieving this goal, the author Marquardt 1913 

utilized an approach to parameter estimation under ARIMA that is rather popular. The calculated 

parameters for the provisional ARIMA models are presented in the table. 

   

ARIMA MODELS   Estimate Value 

ARIMA(2,2,2)   131.7182 

ARIMA(0,2,0)   126.6666 

ARIMA(1,2,0)   127.0533 

ARIMA(0,2,1)   126.1863 

ARIMA(1,2,1)   127.7301 

ARIMA(0,2,2)   127.7919 

ARIMA(1,2,2)   129.7755 

 

 The table that follows presents many ARIMA models for the Telephone Industry in Tamil Nadu, 

with ARIMA proving to be the most accurate (0,2,1) model. Mainly due to the fact that the 

estimate value is lower than that predicted by other models. The Auto.arima() method is 

responsible for managing the process of automatically include a constant. When d is more than 

one, the constant is never included; however, when d is less than zero or equal to one, it is 

always included if the AIC value is improved by its presence. After then, we made our 

predictions for the post-sample era in Tamil Nadu using these models, which lasted from 2004 to 

2021. 

The below table shows the coefficients of ARIMA Models(0,2,1) and value of AIC, AICc, BIC:  
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Coefficients         MA1 

Standard error      -0.4749 

                              0.2873 

𝜎2=127.4, log likelihood =-61.09, AIC =126.19, AICc=127.11, BIC=127.73.  

 

Diagnostic Screening  

The model was analyzed by looking at the residuals to discover if there were any systematic 

patterns that could be removed to improve the selected ARIMA models. If there were any, they 

were looked for and deleted. After conducting tests using a number of different combinations of 

delays for the autoregressive and moving average, it was determined that the ARIMA (0,2,1) was 

the most accurate model for estimating the number of telephones in use by each population in 

Tamil Nadu.  

 

The fitted model(0,2,1)  

 

LJung-Box Q Statistic 

Model X
2
 df Sig 

ARIMA(0,2,1) 2.2662 5 0.8662 

   

     

 

Residual ACFs and PACFs plot of Tamil Nadu based on ARIMA model  

 
From 2022 to 2026, the forecast year and value for telephone per 100 population in Tamil 

Nadu 

 

Year Forecast 

Value 

Lo(95) Hi(95) 

2022 102.54152 80.419087 124.6640 

2023 96.86304 56.518176 137.2079 

2024 91.18456 30.482027 151.8871 
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2025 85.50608 2.256155 168.7560 

2026 79.82760 -28.037340 187.6925 

 
CONCLUSION:  
In conclusion, our research into the patterns and possible future scenarios in Tamil Nadu's 

telecommunications industry using the ARIMA model (0,2,1) for the number of telephone 

connections per 100 population from 2004 to 2021 has been quite fruitful. 

 

There is a discernible trend in the number of telephone connections over the years, as shown by 

the statistics. There was an ongoing rising trend after 2005, suggesting that more people were 

using and having access to telephones. Increased mobile penetration and the general acceptance 

of communications services are likely causes of this expansion. 

 

But starting in 2016, we saw a decline in the number of telephone connections per 100 people. 

This drop might be due to a number of variables, including but not limited to market saturation, 

changes in customer behavior, or changes in communication preferences. 

 

The ARIMA model's projection for the next five years of Tamil Nadu's telephone connections 

per 100 people confirms the downward trend shown since 2016. This research demonstrates the 

need of keeping tabs on and analyzing people's communication habits in order to meet their ever-

evolving demands and preferences. This knowledge may be used by policymakers, telecom 

firms, and other interested parties to develop policies that boost development and sustainability 

in the industry while keeping up with the evolving needs of the digital sphere. 

 

We used the ARIMA (0,2,1) model based on our study to project the number of telephone 

connections for the next five years (2022-2026). This model includes a single lag of the moving 

average component and takes into account twice-differenced data to ensure stationarity. 
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The ARIMA model predicts that the number of telephone connections per 100 people will 

continue to decline during the next few years. As an early warning of future issues, and as a 

prerequisite for the formulation of strategic plans to manage the diminishing demand for 

telephone services, this projection is important for stakeholders in the telecommunication sector, 

government agencies, and service providers. 

 

The declining rate of new phone lines installed might reflect a general trend away from using 

landlines or the advent of more sophisticated means of communication that have supplanted 

them. The results show how crucial it is for the telecom sector to develop and change with the 

times. 
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