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Abstract  

Since the introduction of the lasso in regression, various sparse methods have been 

developed in an unsupervised context like sparse principal component analysis (s-PCA), sparse 

canonical correlation analysis (s-CCA) and sparse singular value decomposition (s-SVD). 

These sparse methods combine feature selection and dimension reduction. One advantage of 

s-PCA is to simplify the interpretation of the (pseudo) principal components since each one is 

expressed as a linear combination of a small number of variables. The disadvantages lie on the 

one hand in the difficulty of choosing the number of non-zero coefficients in the absence of a 

well established criterion and on the other hand in the loss of orthogonality for the components 

and/or the loadings.  

Keywords: sparse methods, correspondence analysis, textual data, sparse correspondence 

analysis. 

1.1 Introduction  

When the number of columns (or rows) in a contingency table is very high, as in textual 

data (rows = documents, columns = terms), the interpretation of CA is difficult. Hence the idea 
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of a sparse version of CA need to be considered, where the factor scores are sparse, i.e. contain 

many zero coecients. CA of a contingency table is a double weighted PCA of rows and columns 

proles with the chi-square distance, or a weighted SVD. CA is also a canonical correlation 

analysis (CCA) between the two groups of indicator variables of the row and column categories 

and lastly CA is a particular Multiple Correspondence Analysis (MCA) with p = 2 variables. 

Therefore applying sparse versions of PCA, SVD, and CCA leads to sparse versions of CA but 

sparse CA cannot be a particular case of sparse Multiple Correspondence Analysis as it will be 

shown later. As CA treats symmetrically rows and columns, it is natural to develop what we 

call a double sparse CA where both rows and columns weights include many zeros. However, 

when one is not interested in sparsifying both rows and columns, a column sparse only CA 

comes down to a sparse PCA of the row prole matrix with weighted rows and chi-square metric: 

only columns loadings are sparse. This could be the case in some documentsterms analysis 

where one looks for components which are explained each by a small number of words, while 

one keeps all the documents. Since there are several versions of sparse PCA, CCA, and SVD 

with dierent properties, a choice should be done. Like in other sparse methods some properties 

may be lost such as orthogonality and barycentric relations in CA. The rest of the paper is 

organized as follows. Section 2 gives a reminder on CA. The various sparse versions of PCA, 

CCA, MCA, SVD as well as general related issues are presented in section 3 and their main 

properties are compared. The proposed sparse CA method is detailed in section 4 together with 

a toy example. Applications of sparse CA to textual data are presented in section 5. Conclusion 

and perspectives for future work are given in section 6.  

A detailed presentation can be found in correspondence analysis (MCA). Saporta 

(2014) propose an historical sketch. One can also refer to the comprehensive book of Beh & 

Lombardo (2014). 
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Notations are as follows: bold uppercase letters like X denote matrices, bold lowercase 

letters like 𝐱 denote vectors. Italic lower case letters denote scalars or elements. In PCA 𝑛 is 

the number of observations, 𝑝 the number of centered variables, 𝐯 a norm 1 eigenvector of 

principal coefficients or a right singular vector of 𝐗, 𝐳 a principal component such as 𝐳 = 𝐗𝐯, 𝐮 

a left singular vector of 𝐗, 𝚺 the variance covariance matrix associated to 𝐗 : Σ =
1

𝑛
X′X where 

superscript ' denotes matrix transposition. In correspondence analysis principal components 

(rows and columns coordinates) will be denoted 𝐚 and 𝐛. The operation transforming a vector 

into a diagonal matrix is denoted diag. The symbol ∝ menns proportional to. 

2.1 CA standard equations 

Given two categorical variables with 𝐼 and 𝐽 categories, the contingency table N is first 

transformed into the frequency table 𝐏 = N/𝑛, where 𝑛 is the total of the 𝐼 × 𝐽 elements of 𝐍. 

Let 𝐫 and 𝐜 be the vectors containing respectively the rows and columns totals of P( sum = 1), 

in other terms the marginal probabilities 𝑝𝑖 and 𝑝𝑗 – D𝑟 and D𝑐 are the associated diagonal 

matrices D𝑟 = diag⁡(𝐫) and D𝑐 = diag⁡(𝐜). 𝐃𝑟
−1𝐏 is the matrix of row profiles (row conditional 

distributions) and D𝑐
−1P′ is the transposed matrix of the column profiles. 

The row coordinates (principal component or row scores) are the eigenvectors a of 

D𝑟
−1PD𝑐

−1P′ with sealing a′D𝑟a = 𝜆, while the column coordinates are the eigenvectors 𝐛 of 

𝐃𝑐
−1𝐏′𝐃𝑟

−1𝐏 with the same eigenvalue D𝑟
−1PD𝑐

−1P′a = 𝜆a D𝑐
−1P′D𝑟

−1 Pb = 𝜆b 

Equations (1) and (2) have a trivial extraneous solution 𝜆 = 1 which has to, be discarded. The 

number of components is min(𝐼 − 1, 𝐽 − 1). 

Note that equations (1) and (2) are not solved independently, which could lead to 

undesired reversions of principal axis. The so-called transition formulas link a and b for a given 

eigenvalue  : 
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e-ISSN 2320 –7876 www.ijfans.org 

Vol.11, Iss.9, Dec 2022 

© 2012 IJFANS. All Rights Reserved 
Research Paper 

 

 

 
 
 
 
 

749 
 

𝐚 =
1

√𝜆
𝐃𝑟
−1𝐏𝐛⁡ and ⁡𝐛 =

1

√𝜆
𝐃𝑐
−1𝐏𝐚

′ 

Vectors a and b contains rows and columns coordinates on a common direction. This 

allows simultaneous mappings of the 𝐼 + 𝐽 categories of both nominal variables, which is one 

of the major attractions of CA. We use here the so-called symmetric map (Greenacre, 2010). 

Transition formulas (3) are often interpreted as (pseudo) barycentric properties: the coordinate 

of a row (a column) is proportional to the weighted mean of the coordinates of all columns 

(rows), with weights equal to the conditional frequencies of the columns (rows) given that row 

(column). 

3.1 Sparse PCA 

Due to its two main properties: maximal variance and orthogonality of the components, 

PCA is widely and sucoessfully used in many applications. However, when the number of 

variables is large the interpretation of the principal components may become difficult, since 

ench component is a linear combination of all variables. When the number of variables is much 

larger than the number of observations, an other less known problem occurs: inconsistency 

which means that the sample principal components may not converge towards the population 

principal components (Hall et al., 2005). Sparse PCA where components would be linear 

combinations of a small number of variables is thus appealing, but there is no unique definition 

of sparse PCA. There is a trade-off between sparsity and variance: a large mumber of zeros 

makes the interpretation easier but leads to a poor approximation, 𝑐𝑓 later part 3.5.1 

Over the past fifteen years, a large number of variants of sparse PCA has been proposed. 

In their review paper Shen Ning-min & Li Jing (2015) count about twenty algorithms that they 

divide into 3 classes related to different viewpoints on PCA: 

• data-variance-maximization 

• minimal-reconstruction-error 
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• probabilistic modeling viewpoint 

The sparse PCA variants are mostly based on the first two classes. 

a. Since the principal components are the linear combination of the input variables with 

maximal variance, a first set of methods consist in imposing sparsity constraints to the 

maximisation problem : max(𝐯′𝚺𝐯). 

b. The second viewpoint starts from finding a low rank 𝑘 approximation of X denoted X̂𝑘 

that minimizes the total squared reconstruction error ∥∥𝐗 − 𝐗̂𝑘∥∥
2
 which is the Frobenius norm 

of the difference between both matrices. The Eckart-Young theorem states that 𝐗̂𝑘 is obtained 

by the truncated singular value decomposition (SVD) of X of order  : 

𝐗𝑘̂ = ∑  

𝑘

𝑗=1

𝛼𝑗𝐮𝑗𝐯𝑗
′ 

Sparse SVD has been proposed with sparsity constraints on both 𝐮 and v, or v alone. 

3.1.1 PCA with additional L1 constraints 

a. Using L1 constraints is one of the simplest ways to obtain sparse weights. SC oT L 

ASS (Joliffe 𝑒𝑡 al., 2003) which stands for Simplified Component Technique for Least 

Absolute Shrinkage and Selection is considered as the first true algorithmie method to achieve 

sparsity. It consists in adding the extra constraint ∥ 𝐯 ∥1⩽ 𝜏 where ∥ 𝐯 ∥1= ∑𝑗=1
𝑝  |𝑣𝑗| to the 

classical maximization of the variance: max𝐯′𝚺𝐯 with ∥ 𝐯 ∥2= 𝐯′𝐯 = 1. It is necessary that 

1 < 𝜏 < √𝑝 since if 𝜏 ⩾ √𝑝 we have usual PCA, and if 𝜏 = 1 there is only one non zero 

weight. SCoTLASS is a non convex and computationally costly algorithm which generally 

prevents to test many values of the sparsification (or tuning) parameter 𝜏. 

b. Zou & Hastie (2006) proposed SPCA, a more efficient algorithm based upon a ridge 

regression property of PCA: they observe that each PC being a linear combination of the 𝑝 
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variables, its weights can be recovered by a ridge regression of the principal component onto 

the 𝑝 variables: a principal component z and the associated weight vector 𝛽 are the solution of 

𝛽ridge = arg⁡m ⁡
𝛽

[∥ 𝐳 − 𝐗𝛽 ∥2+ 𝜆 ∥ 𝛽 ∥2] 

Sparse weights are produced by adding a L1 constraint: 

𝛽̂ = arg⁡m ⁡
𝛽

[∥ 𝐳 − 𝐗𝛽 ∥2+ 𝜆 ∥ 𝛽 ∥2+ 𝜆1 ∥ 𝛽 ∥1] 

𝜆1 is the sparsity parameter, the larger it is, the more weights are null. The solution in obtained 

by iterating elastic net and SVD. In their applications, it was found that SPCA account for a 

larger amount of variance with a much sparser structure than the SCoTLASS. 

3.1.2 PR specification of the number of zeros 

Prespecifying the number of zeros for the first component it is equivalent to use a L0 

norm constraint. Adachi & Trendafilov (2015) proposed a method called unpenalized sparse 

loading PCA (USLPCA) in which the total number of nonzero loadings (the cardinality of the 

losding matrix) for a set of 𝑘 components is pre-specified, without using penalty functions. In 

their approach, note that they sparsify the loading matrix 𝐀 instead of the weight matrix V. See 

later part 3.5.4 

𝟑. 𝟐 Sparse MCA 

In MCA since the columns of X represent categories of nominal variables, Bernard et 

al., (2012) proposed to globally select the variables, ie blocks of X and not separate columns or 

categories. Their penalty approach relies 

upon a modification of equation (8) similar to the sparse-group lasso of Simon 𝑒𝑡 al. (2013) 

𝛽̂𝐺𝐿 = arg⁡m ⁡
𝛽

[
∥
∥
∥
∥
∥
z −∑  

𝐽

𝑗=1

 𝐗𝑗𝛽𝑗
∥
∥
∥
∥
∥
2

+ 𝜆∑  

𝐽

𝑗=1

 √𝑝𝑗∥∥𝛽𝑗∥∥1] 

The algorithm consists in alternating sparse-group lasso and SVD until convergence. 
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Mori et al. (2016) proposed a different method based upon the prespecifying sparsity approach 

of USLPCA. 

It is important to note that one cannot derive a sparse CA from a sparse MCA: CA is 

equivalent to a MCA with only 2 blocks, and sparse MCA selects entire blocks of indicator 

variables. Selecting a block, ie discarding one of the 2 categorical variables, does not make 

sense here. 

3.3 Sparse canonical correlation analysis 

As noticed in section 2.4, a canonical correlation analysis between indicator matrices 

𝐗1 and 𝐗2 corresponding to the variables categories will give the same results as the CA of the 

contingency matrix N. However, in high dimensional data, when the variables outnumber the 

sample size or when the variables are highly correlated classical CCA is no longer appropriate. 

Like in high dimensional PCA, the main drawbacks are the unstability of the estimates and the 

lack of interpretability of the combinations based on a large number of original variables. In 

the CA context this may happen in case of large number of categories for one or both variables 

under study. For example in text mining one variable may represent categories of documents 

or authors and the other variable columns correspond to the terms of these documents. To 

overcome these traditional CCA limitations, sparse versions of CCA have been developped by 

several authors. They all improve the interpretability of canonical variables by restricting the 

linear combinations to small subsets of variables. 

Wilms & Croux (2015) present a short review of the main existing methods before 

proposing their own sparse CCA method. As for sparse PCA, the sparse CCA methods can be 

grouped into two main families: one based on SVD and one in the regression framework. 

Parkhomenko et al. (2009) consider singular value decomposition to derive sparse singular 

vectors through an efficient iterative algorithm that alternately approximates the left and right 

singular vectors of the SVD using iterative soft-thresholding for feature selection. Their sparse 
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CCA (SCCA) method seeks sparsity in both sets of variables simultaneously. It incorporates 

variable selection and produces linear combinations of small subsets of variables from each 

group of measurements with maximal correlation. 

A similar approach was taken by Witten et al. (2009) who apply a penalized matrix 

decomposition to the cross-product matrix 𝐗1
′𝐗2 

In the general case, a limitation of these approaches is that they require the variables 

within each of the two datasets to be uncorrelated to guaranteed sparsity in the canonical 

vectors. But, in the particular case of correspondence analysis, where the variables are the 

categories indicators, the previous limitation is naturally satisfied since within each set, the 

indicator variables are orthogonal and consequently the matrices 𝐗1
′𝐗1 and X2

′ X2 are diagonal 

and regular. 

Wilms & Croux (2015) consider the CCA problem from a predictive point of view and 

reformulate it into a regression framework. They induce sparsity in the canonical vectors by 

combining an alternating penalized regression approach with a lasso penalty. 

3.4 Sparse SVD 

The Penalized Matrix Decomposition (PMD) approach by Witten et al.(2009) solves 

the following optimization problem for the first pair of left and right singular vectors: 

m ⁡𝐮′𝐗𝐯 with ∥ 𝐮 ∥2=∥ 𝐯 ∥2= 1 and 𝑃1(𝐮) ⩽ 𝑐1𝑃2(𝐯) ⩽ 𝑐2 

where 𝑃1 and 𝑃2 are convex penalty functions such as, eg., the LASSO 𝑃1(𝐮) = ∑𝑖=1
𝑛  |𝑢𝑖| and 

𝑃2(𝐯) = ∑𝑗=1
𝑝  |𝑣𝑗| or the fused LASSO constraints with 𝑐1 and 𝑐2 being positive constants. 

Note that max𝐮′𝐗𝐯 is equivalent to min∥𝐗 − 𝐮𝐯′∥2 with the same constraints. 

Following Witten et al. ∑𝑖=1
𝑛  |𝑢𝑖| and ∑𝑗=1

𝑝  |𝑣𝑗| will be denoted sumabsu and sumabsv 

respectively. sumabsu (resp sumabv) must be between 1 and the square root of the number of 

rows (resp. columns) of X. The smaller it is, the sparser 𝐮 (resp  ) will be. The pseudo singular 

http://www.ijfans.org/


e-ISSN 2320 –7876 www.ijfans.org 

Vol.11, Iss.9, Dec 2022 

© 2012 IJFANS. All Rights Reserved 
Research Paper 

 

 

 
 
 
 
 

754 
 

value 𝛼 is then equal to 𝐮′𝐗𝐯 When sumabsu is large, ie when there is no penalty on 𝐮, PMD 

is equivalent to the sparse PCA of X with the SCoTLASS criterium but with a different 

algorithm. sPCA-rSVD which stands for sparse PCA via a onesided regularized SVD (Shen & 

Huang, 2008) is also a special case of PMD since its criterium is min𝐮,𝐯  [∥𝐗 − 𝐮𝐯′∥2 + 𝑃𝜆(𝐯)] 

with ∥ 𝐮 ∥= 1 and 𝑃𝜆 a penalty function which is usually the lasso or L1 penalty. 

If one looks for a similar degree of sparsity on 𝐮 and 𝐯, Witten et al. suggest to use a 

unique parameter denoted sum abs such that: sum abs u = √𝑛 sumabs and sumabsv = √𝑝 sum 

abs. 

Conclusion: 

We have proposed a sparse version of correspondence analysis that highlights the most 

important categories that determine the underlying axes of dependence between two categorical 

variables. We believe that this method is particularly well suited to the case where at least one 

(if not both) variables has a high number of categories as we have illustrated on textual data. 

The method is flexible and allows different levels of sparsity for rows and columns. A simple 

and efficient deflation technique 𝑝𝑃𝑀𝐷⁡has been proposed. As with other sparse methods, 

however, the search for solutions is carried out at the cost of losing properties characteristic of 

correspondence analysis: orthogonality, barycentric relations.  
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