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ABSTRACT

Tensor product is a useful tool to identify an ultrafilter of the Cartesian product of two
discrete semigroups which was first introduced by S Kochen in his paper [10].

In this paper we show that binary compositions of any two ultrafilters in the Stone - Cech
compactification of a discrete semigroup are bounded above with respect to Rudin-Keisler
ordering by tensor product of them. Also we have established that Rudin-Keisler ordering is
preserved under some special type of homomorphisms on the Stone - Cech compactification pS.
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1 INTRODUCTION

Given a nonempty set X, a family & of subsets of X will be a filter on X if (i) @ ¢ &, (ii)
ANBeg
when A,B€ & and (iii)ifAe Fand A< BthenB € §.

A filter U is called an ultrafilter on X if U is not properly contained in any filter. An
ultrafilter U which contains a singletone set {x,} as a member is called a principal ultrafilter. We
denote this ultrafilter by x,. For a principal ultrafilter, Ny ¢y U = a singletone set. For further
studies on ultrafilters, we refer [7]. A compactification of a space X is a compact Hausdorff space
Y such that there is a topological embedding e : X — Y with e(X) dense in Y. Whereas the Stone
- Cech compactification of a Tychonoff space X is a compactification BX having the property that:
if : X - Y is a continuous function on any compact Hausdorff space Y then there is a unique
continuous function f:pX — Y with fly = f

The Stone - Cech compactification of a Tychonoff space X taking maximal Z-ideals of X as
points has been studied in [8] which is equivalent for a discrete space X by taking all its
ultrafilters. For a discrete semigroup (S, -) its Stone - Cech compactification BS consisting of all
ultrafilters of S is topologized by taking the collection {A : A € S} as a base for the topology on
BS, where A = {p € BS : A € p}. The above mentioned base is also a base for the closed sets in
BS. Thus the Stone - Cech compactification _S of a discrete semigroup S is a zero- dimensional
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space. We can identify each element s € S with a principal ultrafilter, so that S € BS. Then the
semigroup operation - on S can be extended to a binary operation on S as follows:

for s€S, q€BS, s- q =A(q), where g : BS — BS is the continuous extension of A : S —
S(< BS) defined by A;(x) = s - x.

Now for p,q €S, p-q = f);(p), where f»;: BS — BS is the continuous extension of Py S—
BS defined by pq(X) = x- qand (BS, -) is also a semigroup.
Also it is a compact right topological (follows form [4]) semigroup. From Ellis theorem ( [4],
theorem 2.5), it is clear that (S, -)contains an idempotent element.

2 HOMOMORPHISMS ON INVERSE SEMIGROUP
Definition 2.1. Suppose (S, -) is a discrete inverse semigroup, A € S and p € BS.We define
I ={x:x €eA}andp ={A"1c S: A€ p}.
Obviously (A™1)"1 = Aand (p) =
Proposition 2.2. p € BS ifand only if p' € BS.
Proof. Suppose p € BS. Clearly then @ & p’. Now if A, B€ p’then A%, B~ € p. pbeingan
ultrafilter, A”1n B~ € p. Then An B = (A"1n B™1)"t € p. Again if Ae p'and A B
then
A~' € B limplies B~! € p implies B € p’. So p'is a filter on S. Suppose & be a filter such that
c & Thenp = (p) € &' Since p is an ultrafilter, ¥ = p and hence p’ = §. The converse
follows from (p")’ =p.
Notation: For a subset A of a semigroup (S, -) if s € Sthen
(@s'A={teS:s-te A}and
(b)As™t ={te S: t- se A}.
The following theorem follows from the continuity of i and b‘;.
Theorem 2.3. [4] For a discrete semigroup (S, ) ifx € S, p, q € BS then
@x-p={Ac S: x A€ p}
(p-q={Ac S:{xe S: x A€ g} € p}.
Definition 2.4. Suppose (X, t) be a topological space and S be a discrete space. For p € BS, we
say that £i£rg(xs) = x ifforanyx € Uer,theset{se S: x;, € U} € p.

Clearly, for any p € BS, lim(s) =
S—-p

Theorem 2.5. If f is the continuous extension of a map f: S— T (where S is a discrete
semigroup

and T is a compact Hausdorff right topological semigroup), then f (p) = lim f(s).
S—=p
Theorem 2.6. For an inverse semigroup (S, -) the mapping vy: BS — BS defined by y(p) = p’is
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a homeomorphism.

Proof : Clearly v is a bijective mapping. As y = (y"1)~1, to prove the theorem it is enough to
show

that y is continuous. Suppose A be a basic open set containing y(p) = p’. Then A € p’, implies
A1 € p, implies p € (AT). It can be easily verified that y((A-T)) = (y(A))_l. As every
element of S

is a principal ultrafilter in BS, y is the continuous extension of the map x — x’ in S.

Theorem 2.7. For a commutative inverse semigroup (S, -)ifa € S, p, q € BS then

(@@- p)=a-p

L) Q' =p- q.

(c) p is an idempotent if and only if p’ is an idempotent.

Proof. (a) Forany a € S and forany x € S we see that y((A,) (%)) = (X)) = (a-x)' =
(x-a) = a - x =Ax(y(x)).S0 yoi, and A, oy are two continuous functions agreeing in S, a
dense subspace of the Hausdorff space BS. Therefore yo A, = A, oy onBS. Thus (a- p) =

!

p-
(b) For any q€BS and for any x € S we see that (yo pq) x) = (pq(x)) =y(x-q =

(x-q = x - q(from(a)) = qu(y(x)) = p °¥(x). By similar arguments yo p_ = p_oyon
BS.

Thus (p-q)' = p - q’.

(c) Follows directly from (b).

From the theorem 2.6 and 2.7 we arrive at the conclusion stated in the following corollary,
Corollary 2.8. The mapping vy is a topological isomorphism on BS when S is a commutative
inverse semigroup.

3. Tensor Product and Rudin-Keisler order

Definition 3.1 Suppose G and G, are two discrete groups and p € BG, q € BG;. The tensor
product of pand q is defined by
p®q={UcGXxG,;:{aeG:{beG,:(ab) € U} e q} €p}.

Clearly, p @ q is an ultrafilter of G x G,. From the definition, it is clear that, a subset U(S G X
G) EpQq if and only if U contains a set of the form {(a,b):a € Aand b € B,}, where A €
pand B, € q for each a € A. Also if a € BG, b € BG;are principal ultrafilters, then a @ b is also
the principal ultrafilter (a, b).
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If $: G X G — G is any bijection, then we can consider p @ q as the ultrafilter of G identified
by ¢(p ® q), where ¢: (G x G) — BG is the continuous extension of ¢.Clearly for any a,b € G,
a @ b will then be identified by the principal ultrafilter ¢(a, b).

Theorem 3.2 [8] For any two discrete semigroups S and T, if p € S, q€ BT, thenp ® q =
lims_)p limt_)q (s,t)

Proposition 3.3 Suppose G and G, are two discrete groups and ng, mg,are projection mappings
from G X G; —» G and G X G; — G respectively. Fora € G,b € G, p, r € BG, q, s € PGy,

(@) 6(p ® q) =pand 7ig,(p ® q) = q.

b)p ® q=r Q sifandonlyif p=rand q= s.

C©a@b+r@s=(G+1r)Q (b+5s).

Proof. @) For any a€ G,beG, To(p & q =mng (lim(a,b)_)(p,q) (a, b)) =
limg, p)»pq T (@ b) = lim,,, lim,_,(a) = p . Similarly, we can show that g5, (p ® q) =

(b) If p=r and q= s, thenobviously,p ® q=r & s. Conversely, ifp ® q=r ® s then
from(@),p=7(p ® @ =7 @ s) =randq=17G, (p ® q =175, T & s) =s.

(c) Fromtheorem3.2,a @ b+r @ s

= (a,b) + lim.,, limy_ (c,d) (where ¢ € G,d € G,)

= lim,_,, limy_(a,b) + (¢, d))

= lim,_,, limg_(a+¢c,b+d)

=(@+1r)Q (b+ys).

Theorem 3.4 [9] Let (S,+) and (T,+) be semigroups, let p, r € S, and let g, w € BT. If u €
BS,vePT,and (p & @)+ *® W) = u ® v,thenu = p+randv = q+ w.

Theorem 35 If p® q is an idempotent in B(G x G;) then pandq are idempotents in
BG and BG; respectively.

Proof p® qisanidempotentin BGXPG;, = pR® )+ P® q = p® q. From theorem
3.4, this implies p+p=pandq+q=q. Then pandq are idempotents in PG and BG,
respectively.

Theorem 3.6 [9] Let (S,+)and (T,+) be infinite semigroups and assume that w, z € BT and
Q={te T:t+w = z}is infinite. Let q € Q" and let p, r €PS. Then (p & Q)+ (* ®
w) = (p+1® (q+w).

From Theorem 3.4 and 3.6, we can say that
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Theorem 3.7 Let (S,+)and (T, +) be infinite semigroups and for any w, z € BT the set {t €
T: t+w = z}is infinite. Then for € S*,q € T , p ® q is an idempotent in (S x T)*
and only if p and q are idempotents.

Remark 3.8 From proposition 3.3 (a) it is clear that an ultrafilter p ® q of G X G, is a principal
ultrafilter if and only if both p and q are principal ultrafilters of G and G, respectively.

Theorem 3.9 [8] Let S and T be arbitrary discrete spacesand letf: S - S € fSandg: T -
T € BT be arbitrary maps. Define h: S X T > SXTCBS X T) by h(st) =
(f(s), g(t)). Then foreveryp € pSandq € BT, h(p ® q) = f(p) ® & (q). Furthermore, h is
injective if f and g are injective, and h is surjective if f and g are surjective. If S and T are
semigroups and f and g are homomorphisms, then h is also a homomorphism.

Theorem 3.10 For each a € S, the mapping A,: BT = B(S x T) defined by A,(q) =a & q is an
open continuous homomorphism.

Proof : For any q € BT, suppose L be a basic open set containing 1,(q) =a ® q. ThenL€a ®
q, which implies L contains a set of the form {(s,t):s € A and t € B,}, where A € aand B, € q
for each s € A. . Suppose B = B,. Then B is an open set in BTcontaining qand Vr € B, BEr
which impliessL €a ® r,ie a ® r € L. Thus A,(B) € L which implies that A, is a continuous
homomorphism.

To prove that X, is an open mapping, suppose B  be a basic open set in T. Then B € T. Now if
1 €2,(B)

then 1= a ® q, for some q€B. Clearly then 1€ {a} x B c,(B): indeed, {a}xB€
m implies for every U(SSXT)em, Bn{te T:(at) € U} =+ 1. Therefore, {t € T:(at) €
U } € n for some n € B. This implies

{seS:{teT:(s,t) eU}en}ea, which implies Uea @ nand so m=a @ n. Thus
{a} x B € A,(B). Consequently, A, is an open mapping.

The Rudin-Keisler order on the Stone - Cech compactification of a discrete semigroup is an
important tool in analyzing spaces of ultrafilters. It shows how one ultrafilter can be essentially
different from another.

Definition 3.11 [4] Let (S, -) be a discrete semigroup. For p,q € BS, the Rudin-Keisler order
<RK
is defined by p <gx q if there is a function f: S — S for which f(q) =
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For p,q€BS,ifp <gx q and q <gx p thenwe write p =px q. Also if p <gx qand q £rx p
then we write p <gx q.

Theorem 3.12 Let S be a discrete semigroup and p € BS. Then p <gx q for every q € BS if and
onlyif p eS.

Proof. Suppose p <gx q for every q € BS, then for each q € BS, there is a function f, : S — S
such that £,(q) = p. Since f: S — BS is the continuous extension of f,, for any q € S, f,(q) =
f,(q) € S implies that p € S. Conversely, if p € S, then the mapping f: S — S defined by f(s) =
p Vs € S is a continuous mapping and its continuous extension f:pS — BS (being unique) must
be the constant function. Therefore f(q) = p ¥ q € BS, which implies that p <gx q for every
q € BS.

For further study, we use the following result from [4].
Theorem 3.13 For a discrete space S and p, q € BS the following statements are equivalent.
(@p ~rk Q- i
(b) p <gx qandif : S — Swith f(q) = p, there exists some Q € q such that f, is injective.
(c) There exists f: S —» S and Q € q such that f(q) = pand fj, is injective.
(d) There is a bijection g: S — S such that §(q) = p

For any bijective mapping ¢: G X G = G, and for any p,q € BG as we can consider p ® q
as an element of BG, ® can be treated as a binary operation on BG. However in the following
theorem we see that all the tensor product of p,q € BG irrespective of the bijective mappings
¢: G X G - G, are Rudin-Keisler equivalent.

Theorem 3.14 Suppose ¢:G X G - G and y: G X G — G be two bijective mappings and p,q €
BG. Then p ®y q ~rx p ®, q, Where ®, and &, are the binary operations by the tensor
product under the maps ¢ and y respectively.
Proof: Here p ®, q=9¢(p ® q) =lim %)im d(a,b)and p ®, q=TV(p & q) = lim %im v(a,b) .
a=p b—q a=p b—q

Suppose f=wyo (¢)~'. Then £:G-G is a bijective mapping. Now f(p ®,q) =
f(hm lim ¢(a, b)) = hm hm f(¢(a, b)) =

a—p b—q
lim hm\|f(a b) = \|I(p ® q) = p ®, q. Therefore from theorem3.13,p ®, q =rx p ®,, Q.

a—»p

From the proposition 3.3 (a) we see that if m;: (Zxxy()} :S nd m,: (éxxyc)} :S be two projection

mappings then T, (p & q) =pand T (p & q) = q. Therefore:
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Theorem 3.15 For any discrete space G, if p,q € BG, then p <gx p ® qandq <px p  q.

From theorem 3.13, theorem 3.14 and 3.15 we get the following result:
Corollary 3.16 For any discrete space G, if p,q € G*,then p <gx p ® qandq <gx p ® q.

From the following theorem [4], we shall show that p &® q is an upper bound of the set of all
binary compositions of p and g.
Theorem 3.17[4] Suppose G be a discrete space and o be a binary operation on G. For a,b,p,q €
BG, ifa <gx p, b<pk q,thenaob <pxp ® q.

Corollary 3.18 Suppose G be a discrete space and o be a binary operation on G. For p,q € BG,

Peq=<prk P ® q.
Proof: The proof follows from theorem 3.17 by taking a = p and b= q.

Corollary 3.19 Suppose G be a discrete space and p,q,r,s € BG. If p <px 1, q <gpk s, thenp ®
qQ<pk I  s.

Proof: The proof follows from theorem 3.17 by considering the binary operation o
as the tensor product .

Corollary 3.20 Suppose G be a discrete space and p,q,r,s € BG. If p =rx 1, q =rx s, then p ®
q=rx I Q s.
Proof: The proof follows from corollary 3.19.

4. Homomorphism on 1] preserving Rudin-Keisler order

In this section we discuss about the continuous homomorphisms on the Stone - Cech
compactification BS which preserve the Rudin-Keisler oreder of ultrafilters.
We also note that any homomorphism ¢:S — S with ¢$(S) < A(BS) has a unique continuous
extension ¢: BS — BS which is also a homomorphism.

Theorem 4.1 For a discrete commutative semigroup S, if ¢: S — S is a homomorphism and p,q €
BS, then if p <gk qthen ¢(p) <gk q.

Proof: Since p <gk q, there is a mapping f: S — S such that f(q) = p. Now ¢ o f is a continuous
mapping from S to S and ¢of(s) = (poH(s) = (poF)(s) Vs € S. Therefore pof= ¢of,
which implies ¢ © f(q) = (¢ o T)(q) = ¢(p). Consequently $(p) <gk q.
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Corollary 4.2 For a discrete commutative semigroup S, if ¢:S — S is a homomorphism and
p.q € BS, then if p ~rx qthen §(p) <gx qand $(q) <gg p-

For every s € S, using the continuity of the map A: BS — BS we can prove the following result:
Corollary 4.3 For a discrete commutative semigroup S, if p =rx q for p,q € BS, then s+
p <rk qand s+ q <gg p foreverys € S.

Definition 4.4 For a discrete semigroup S, a homomorphism ¢:S — S is said to commute with
bijections if for every bijective mapping f:S —» S, §o f= fo ¢.

Theorem 4.5 For a discrete commutative semigroup S, if ¢:S — S is a homomorphism which
commutes with bijections and p, q € BS, then if p =gk qthen ¢(p) ~rk d(q).

Proof: Since p ~yk q, by theorem 3.13 there is a bijective mapping g: S — S such that g(q) = p.
Now g o ¢ is a continuous mapping from Sto Sand go ¢(s) = (go d)(s) = (go )(s) Vs € S.
Therefore go ¢ = & o ¢, which implies go ¢(q) = (8° $)(q) = (¢ 2 &)(q) = ¢(p). This implies
d(p) <k #(q). Interchanging pand qand using the theorem 3.13 we can prove that
¢(q) <gk ¢(p). Consequently ¢(p) ~rx ¢(q)
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