ISSN PRINT 23191775 Online 23207876

Rudin-Keisler Order on Tensor Product of Ultrafilters

Gopal Adak

Department of Mathematics, St. Paul's Cathedral Mission College
33/1, Raja Rammohan Roy Sarani, Kolkata-700009, India.
e-mail: adakgostpaul@gmail.com

Abstract

Tensor product is a useful tool to identify an ultrafilter of the Cartesian product of two discrete semigroups which was first introduced by S Kochen in his paper [10].

In this paper we show that binary compositions of any two ultrafilters in the Stone - $\tilde{\text { Cech }}$ compactification of a discrete semigroup are bounded above with respect to Rudin-Keisler ordering by tensor product of them. Also we have established that Rudin-Keisler ordering is preserved under some special type of homomorphisms on the Stone - C̃ech compactification β S. AMS Mathematics Subject Classification (2010) : 54D35, 54D80, 20 M 15. Key Words: Tensor product, ultrafilter, Rudin-Keisler ordering, Stone - C̃ech compactification.

1 INTRODUCTION

Given a nonempty set X, a family \mathfrak{F} of subsets of X will be a filter on X if (i) $\varnothing \notin \mathfrak{F}$, (ii) $A \cap B \in \mathfrak{F}$
when $A, B \in \mathfrak{F}$ and (iii) if $A \in \mathscr{F}$ and $A \subseteq B$ then $B \in \mathscr{F}$.
A filter \mathfrak{U} is called an ultrafilter on X if \mathfrak{U} is not properly contained in any filter. An ultrafilter \mathfrak{U} which contains a singletone set $\left\{\mathrm{x}_{0}\right\}$ as a member is called a principal ultrafilter. We denote this ultrafilter by x_{0}. For a principal ultrafilter, $\bigcap_{U \in \mathfrak{U}} U=$ a singletone set. For further studies on ultrafilters, we refer [7]. A compactification of a space X is a compact Hausdorff space Y such that there is a topological embedding $\mathrm{e}: \mathrm{X} \rightarrow \mathrm{Y}$ with $\mathrm{e}(\mathrm{X})$ dense in Y . Whereas the Stone - C̃ech compactification of a Tychonoff space X is a compactification βX having the property that: if $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a continuous function on any compact Hausdorff space Y then there is a unique continuous function $\tilde{\mathrm{f}}: \beta \mathrm{X} \rightarrow \mathrm{Y}$ with $\left.\tilde{\mathrm{f}}\right|_{\mathrm{X}}=\mathrm{f}$.

The Stone - Cech compactification of a Tychonoff space X taking maximal Z-ideals of X as points has been studied in [8] which is equivalent for a discrete space X by taking all its ultrafilters. For a discrete semigroup (S, \cdot) its Stone - Cech compactification β S consisting of all ultrafilters of S is topologized by taking the collection $\{\widehat{A}: A \subseteq S\}$ as a base for the topology on βS, where $\widehat{A}=\{p \in \beta S: A \in p\}$. The above mentioned base is also a base for the closed sets in β. Thus the Stone - Cech compactification _S of a discrete semigroup S is a zero- dimensional

ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 6, August 2022
space. We can identify each element $s \in S$ with a principal ultrafilter, so that $S \subseteq \beta S$. Then the semigroup operation \cdot on S can be extended to a binary operation on βS as follows:
for $s \in S, q \in \beta S, s \cdot q=\widetilde{\lambda_{s}}(q)$, where $\widetilde{\lambda_{s}}: \beta S \rightarrow \beta S$ is the continuous extension of $\lambda_{s}: S \rightarrow$ $S(\subseteq \beta S)$ defined by $\lambda_{s}(x)=s \cdot x$.

Now for $\mathrm{p}, \mathrm{q} \in \beta \mathrm{S}, \mathrm{p} \cdot \mathrm{q}=\widetilde{\rho_{\mathrm{q}}}(\mathrm{p})$, where $\widetilde{\rho_{q}}: \beta \mathrm{S} \rightarrow \beta \mathrm{S}$ is the continuous extension of $\rho_{\mathrm{q}}: \mathrm{S} \rightarrow$ βS defined by $\rho_{q}(x)=x \cdot q$ and $(\beta S, \cdot)$ is also a semigroup.
Also it is a compact right topological (follows form [4]) semigroup. From Ellis theorem ([4], theorem 2.5), it is clear that (S, \cdot)contains an idempotent element.

2 HOMOMORPHISMS ON INVERSE SEMIGROUP

Definition 2.1. Suppose (S, \cdot) is a discrete inverse semigroup, $A \subseteq S$ and $p \in \beta S$.We define $A^{-1}=\left\{x^{\prime}: x \in A\right\}$, and $p^{\prime}=\left\{A^{-1} \subseteq S: A \in p\right\}$.
Obviously $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$ and $\left(\mathrm{p}^{\prime}\right)^{\prime}=\mathrm{p}$.
Proposition 2.2. $p \in \beta S$ if and only if $p^{\prime} \in \beta S$.
Proof. Suppose $p \in \beta S$. Clearly then $\emptyset \notin p^{\prime}$. Now if $A, B \in p^{\prime}$ then $A^{-1}, B^{-1} \in p$. p being an ultrafilter, $A^{-1} \cap B^{-1} \in p$. Then $A \cap B=\left(A^{-1} \cap B^{-1}\right)^{-1} \in p^{\prime}$. Again if $A \in p^{\prime}$ and $A \subseteq B$ then
$A^{-1} \subseteq B^{-1}$ implies $B^{-1} \in p$ implies $B \in p^{\prime}$. So p^{\prime} is a filter on S. Suppose \mathfrak{F} be a filter such that $\mathrm{p}^{\prime} \subseteq \mathfrak{F}$. Then $\mathrm{p}=\left(\mathrm{p}^{\prime}\right)^{\prime} \subseteq \mathfrak{F}^{\prime}$. Since p is an ultrafilter, $\mathfrak{F}^{\prime}=\mathrm{p}$ and hence $\mathrm{p}^{\prime}=\mathfrak{F}$. The converse follows from $\left(\mathrm{p}^{\prime}\right)^{\prime}=\mathrm{p}$.
Notation: For a subset A of a semigroup (S, \cdot) if $s \in S$ then
(a) $s^{-1} A=\{t \in S: s \cdot t \in A\}$ and
(b) $\mathrm{As}^{-1}=\{t \in S: t \cdot s \in A\}$.

The following theorem follows from the continuity of $\widetilde{\lambda_{s}}$ and $\widetilde{\rho_{q}}$.
Theorem 2.3. [4] For a discrete semigroup ($S, \cdot \cdot$) if $x \in S, p, q \in \beta S$ then
(a) $x \cdot p=\left\{A \subseteq S: x^{-1} A \in p\right\}$
(b) $\mathrm{p} \cdot \mathrm{q}=\left\{\mathrm{A} \subseteq \mathrm{S}:\left\{\mathrm{x} \in \mathrm{S}: \mathrm{x}^{-1} \mathrm{~A} \in \mathrm{q}\right\} \in \mathrm{p}\right\}$.

Definition 2.4. Suppose (X, τ) be a topological space and S be a discrete space. For $p \in \beta S$, we say that $\lim _{s \rightarrow p}\left(\mathrm{x}_{\mathrm{s}}\right)=\mathrm{x}$ if for any $\mathrm{x} \in \mathrm{U} \in \tau$, the $\operatorname{set}\left\{\mathrm{s} \in \mathrm{S}: \mathrm{x}_{\mathrm{s}} \in \mathrm{U}\right\} \in \mathrm{p}$.
Clearly, for any $p \in \beta S, \lim _{s \rightarrow p}(s)=p$.
Theorem 2.5. If \tilde{f} is the continuous extension of a map $f: S \rightarrow T$ (where S is a discrete semigroup and T is a compact Hausdorff right topological semigroup $)$, then $\tilde{f}(p)=\lim _{s \rightarrow p} f(s)$.
Theorem 2.6. For an inverse semigroup (S, •) the mapping $\gamma: \beta S \rightarrow \beta S$ defined by $\gamma(\mathrm{p})=\mathrm{p}^{\prime}$ is

ISSN PRINT 23191775 Online 23207876

a homeomorphism.
Proof : Clearly γ is a bijective mapping. As $\gamma=\left(\gamma^{-1}\right)^{-1}$, to prove the theorem it is enough to show
that γ is continuous. Suppose \widehat{A} be a basic open set containing $\gamma(p)=p^{\prime}$. Then $A \in p^{\prime}$, implies $\mathrm{A}^{-1} \in \mathrm{p}$, implies $\mathrm{p} \in\left(\widehat{\left(\mathrm{A}^{-1}\right)}\right.$. It can be easily verified that $\gamma\left(\widehat{\left(\mathrm{A}^{-1}\right)}\right)=(\gamma(\mathrm{A}))^{-1}$. As every element of S
is a principal ultrafilter in $\beta S, \gamma$ is the continuous extension of the map $x \rightarrow x^{\prime}$ in S.
Theorem 2.7. For a commutative inverse semigroup (S, \cdot) if $a \in S, p, q \in \beta S$ then
(a) $(\mathrm{a} \cdot \mathrm{p})^{\prime}=\mathrm{a}^{\prime} \cdot \mathrm{p}^{\prime}$
(b) $(\mathrm{p} \cdot \mathrm{q})^{\prime}=\mathrm{p}^{\prime} \cdot \mathrm{q}^{\prime}$.
(c) p is an idempotent if and only if p^{\prime} is an idempotent.

Proof. (a) For any $a \in S$ and for any $x \in S$ we see that $\gamma\left(\left(\lambda_{a}\right)(x)\right)=\left(\lambda_{a}(x)\right)^{\prime}=(a \cdot x)^{\prime}=$ $(\mathrm{x} \cdot \mathrm{a})^{\prime}=\mathrm{a}^{\prime} \cdot \mathrm{x}^{\prime}=\lambda_{\mathrm{a}}^{\prime}(\gamma(\mathrm{x}))$. So $\gamma \circ \lambda_{\mathrm{a}}$ and $\lambda_{\mathrm{a}}^{\prime} \circ \gamma$ are two continuous functions agreeing in S , a dense subspace of the Hausdorff space β. Therefore $\gamma \circ \lambda_{a}=\lambda_{a}^{\prime} \circ \gamma$ on β. Thus $(a \cdot p)^{\prime}=a^{\prime}$. p^{\prime}.
(b) For any $q \in \beta S$ and for any $x \in S$ we see that $\left(\gamma \circ \rho_{q}\right)(x)=\left(\rho_{q}(x)\right)^{\prime}=\gamma(x \cdot q)=$ $(\mathrm{x} \cdot \mathrm{q})^{\prime}=\mathrm{x}^{\prime} \cdot \mathrm{q}^{\prime}($ from $(\mathrm{a}))=\rho_{\mathrm{q}^{\prime}}(\gamma(\mathrm{x}))=\rho_{\mathrm{q}^{\prime}} \circ \gamma(\mathrm{x})$. By similar arguments $\gamma \circ \rho_{\mathrm{q}}=\rho_{\mathrm{q}^{\prime}} \circ \gamma \circ$ on β S.
Thus $(p \cdot q)^{\prime}=p^{\prime} \cdot q^{\prime}$.
(c) Follows directly from (b).

From the theorem 2.6 and 2.7 we arrive at the conclusion stated in the following corollary,
Corollary 2.8. The mapping γ is a topological isomorphism on $\beta \mathrm{S}$ when S is a commutative inverse semigroup.

3. Tensor Product and Rudin-Keisler order

Definition 3.1 Suppose G and G_{1} are two discrete groups and $p \in \beta G, q \in \beta G_{1}$. The tensor product of p and q is defined by $\mathrm{p} \otimes \mathrm{q}=\left\{\mathrm{U} \subseteq \mathrm{G} \times \mathrm{G}_{1}:\left\{\mathrm{a} \in \mathrm{G}:\left\{\mathrm{b} \in \mathrm{G}_{1}:(\mathrm{a}, \mathrm{b}) \in \mathrm{U}\right\} \in \mathrm{q}\right\} \in \mathrm{p}\right\}$.

Clearly, $\mathrm{p} \otimes \mathrm{q}$ is an ultrafilter of $\mathrm{G} \times \mathrm{G}_{1}$. From the definition, it is clear that, a subset $\mathrm{U}(\subseteq \mathrm{G} \times$ $\left.G_{1}\right) \in p \otimes q$ if and only if U contains a set of the form $\left\{(a, b): a \in A\right.$ and $\left.b \in B_{a}\right\}$, where $A \in$ p and $B_{a} \in q$ for each $a \in A$. Also if $a \in \beta G, b \in \beta G_{1}$ are principal ultrafilters, then $a \otimes b$ is also the principal ultrafilter (a, b).

ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 6, August 2022

If $\phi: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}$ is any bijection, then we can consider $\mathrm{p} \otimes \mathrm{q}$ as the ultrafilter of G identified by $\tilde{\phi}(p \otimes q)$, where $\tilde{\phi}: \beta(G \times G) \rightarrow \beta G$ is the continuous extension of ϕ. Clearly for any $a, b \in G$, $\mathrm{a} \otimes \mathrm{b}$ will then be identified by the principal ultrafilter $\phi(\mathrm{a}, \mathrm{b})$.

Theorem 3.2 [8] For any two discrete semigroups S and T, if $p \in \beta S, q \in \beta T$, then $p \otimes q=$ $\lim _{s \rightarrow p} \lim _{t \rightarrow q}(\mathrm{~s}, \mathrm{t})$

Proposition 3.3 Suppose G and G_{1} are two discrete groups and $\pi_{G}, \pi_{\mathrm{G}_{1}}$ are projection mappings from $G \times G_{1} \rightarrow G$ and $G \times G_{1} \rightarrow G_{1}$ respectively. For $a \in G, b \in G_{1}, p, r \in \beta G, q, s \in \beta G_{1}$,
(a) $\widetilde{\pi_{\mathrm{G}}}(\mathrm{p} \otimes \mathrm{q})=\mathrm{p}$ and $\widetilde{\pi_{\mathrm{G}_{1}}}(\mathrm{p} \otimes \mathrm{q})=\mathrm{q}$.
(b) $\mathrm{p} \otimes \mathrm{q}=\mathrm{r} \otimes \mathrm{s}$ if and only if $\mathrm{p}=\mathrm{r}$ and $\mathrm{q}=\mathrm{s}$.
(c) $\mathrm{a} \otimes \mathrm{b}+\mathrm{r} \otimes \mathrm{s}=(\mathrm{a}+\mathrm{r}) \otimes(\mathrm{b}+\mathrm{s})$.

Proof. (a) For any $\quad a \in G, b \in G_{1}, \quad \widetilde{\pi}_{G}(p \otimes q)=\pi_{G}\left(\lim _{(a, b) \rightarrow(p, q)}(a, b)\right)=$ $\lim _{(a, b) \rightarrow(p, q)} \pi_{G}(a, b)=\lim _{a \rightarrow p} \lim _{b \rightarrow q}(a)=p$. Similarly, we can show that $\widetilde{\pi}_{\mathrm{G}_{1}}(\mathrm{p} \otimes \mathrm{q})=\mathrm{q}$.
(b) If $\mathrm{p}=\mathrm{r}$ and $\mathrm{q}=\mathrm{s}$, then obviously, $\mathrm{p} \otimes \mathrm{q}=\mathrm{r} \otimes \mathrm{s}$. Conversely, if $\mathrm{p} \otimes \mathrm{q}=\mathrm{r} \otimes \mathrm{s}$ then from $(a), p=\widetilde{\pi_{\mathrm{G}}}(\mathrm{p} \otimes \mathrm{q})=\widetilde{\pi_{\mathrm{G}}}(\mathrm{r} \otimes \mathrm{s})=\mathrm{r}$ and $\mathrm{q}=\widetilde{\pi_{\mathrm{G}_{1}}}(\mathrm{p} \otimes \mathrm{q})=\widetilde{\pi_{\mathrm{G}_{1}}}(\mathrm{r} \otimes \mathrm{s})=\mathrm{s}$.
(c) From theorem 3.2, $a \otimes b+r \otimes s$
$=(\mathrm{a}, \mathrm{b})+\lim _{\mathrm{c} \rightarrow \mathrm{r}} \lim _{\mathrm{d} \rightarrow \mathrm{s}}(\mathrm{c}, \mathrm{d})\left(\right.$ where $\left.\mathrm{c} \in \mathrm{G}, \mathrm{d} \in \mathrm{G}_{1}\right)$
$\left.=\lim _{\mathrm{c} \rightarrow \mathrm{r}} \lim _{\mathrm{d} \rightarrow \mathrm{s}}(\mathrm{a}, \mathrm{b})+(\mathrm{c}, \mathrm{d})\right)$
$=\lim _{\mathrm{c} \rightarrow \mathrm{r}} \lim _{\mathrm{d} \rightarrow \mathrm{s}}(\mathrm{a}+\mathrm{c}, \mathrm{b}+\mathrm{d})$
$=(\mathrm{a}+\mathrm{r}) \otimes(\mathrm{b}+\mathrm{s})$.
Theorem 3.4 [9] Let $(S,+$) and $(T,+)$ be semigroups, let $p, r \in \beta S$, and let $q, w \in \beta T$. If $u \in$ $\beta S, v \in \beta T$, and $(p \otimes q)+(r \otimes w)=u \otimes v$, then $u=p+r$ and $v=q+w$.

Theorem 3.5 If $\mathrm{p} \otimes \mathrm{q}$ is an idempotent in $\beta\left(\mathrm{G} \times \mathrm{G}_{1}\right)$ then p and q are idempotents in βG and βG_{1} respectively.
Proof $\mathrm{p} \otimes \mathrm{q}$ is an idempotent in $\beta \mathrm{G} \times \beta \mathrm{G}_{1} \Rightarrow(\mathrm{p} \otimes \mathrm{q})+(\mathrm{p} \otimes \mathrm{q})=\mathrm{p} \otimes \mathrm{q}$. From theorem 3.4, this implies $\mathrm{p}+\mathrm{p}=\mathrm{p}$ and $\mathrm{q}+\mathrm{q}=\mathrm{q}$. Then p and q are idempotents in $\beta \mathrm{G}$ and $\beta \mathrm{G}_{1}$ respectively.

Theorem 3.6 [9] Let ($\mathrm{S},+$) and ($\mathrm{T},+$) be infinite semigroups and assume that $\mathrm{w}, \mathrm{z} \in \beta \mathrm{T}$ and $\mathrm{Q}=\{\mathrm{t} \in \mathrm{T}: \mathrm{t}+\mathrm{w}=\mathrm{z}\}$ is infinite. Let $\mathrm{q} \in \mathrm{Q}^{*}$ and let $\mathrm{p}, \mathrm{r} \in \beta S$. Then $(\mathrm{p} \otimes \mathrm{q})+(\mathrm{r} \otimes$ $w)=(p+r) \otimes(q+w)$.

From Theorem 3.4 and 3.6, we can say that

ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -l) Journal Volume 11, Iss 6, August 2022

Theorem 3.7 Let $(S,+)$ and $(T,+)$ be infinite semigroups and for any $w, z \in \beta T$ the set $\{t \in$ $\mathrm{T}: \mathrm{t}+\mathrm{w}=\mathrm{z}\}$ is infinite. Then for $\in \mathrm{S}^{*}, \mathrm{q} \in \mathrm{T}^{*}, \mathrm{p} \otimes \mathrm{q}$ is an idempotent in $(\mathrm{S} \times \mathrm{T})^{*}$ if and only if p and q are idempotents.

Remark 3.8 From proposition 3.3 (a) it is clear that an ultrafilter $p \otimes q$ of $G \times G_{1}$ is a principal ultrafilter if and only if both p and q are principal ultrafilters of G and G_{1} respectively.

Theorem 3.9 [8] Let S and T be arbitrary discrete spaces and let $f: S \rightarrow S \subseteq \beta S$ and $g: T \rightarrow$ $T \subseteq \beta T$ be arbitrary maps. Define $h: S \times T \rightarrow S \times T \subseteq \beta(S \times T)$ by $h(s, t)=$ $(f(s), g(t))$. Then for every $p \in \beta S$ and $q \in \beta T, \tilde{h}(p \otimes q)=\tilde{f}(p) \otimes \tilde{g}(q)$. Furthermore, \tilde{h} is injective if f and g are injective, and \tilde{h} is surjective if f and g are surjective. If S and T are semigroups and f and g are homomorphisms, then \tilde{h} is also a homomorphism.

Theorem 3.10 For each $\mathrm{a} \in \mathrm{S}$, the mapping $\lambda_{\mathrm{a}}: \beta \mathrm{T} \rightarrow \beta(\mathrm{S} \times \mathrm{T})$ defined by $\lambda_{\mathrm{a}}(\mathrm{q})=\mathrm{a} \otimes \mathrm{q}$ is an open continuous homomorphism.
Proof : For any $\mathrm{q} \in \beta$, suppose $\widehat{\mathrm{L}}$ be a basic open set containing $\lambda_{\mathrm{a}}(\mathrm{q})=\mathrm{a} \otimes \mathrm{q}$. Then $\mathrm{L} \in \mathrm{a} \otimes$ q, which implies L contains a set of the form $\left\{(s, t): s \in A\right.$ and $\left.t \in B_{s}\right\}$, where $A \in a$ and $B_{s} \in q$ for each $s \in A$. Suppose $B=B_{a}$. Then \widehat{B} is an open set in β Tcontaining q and $\forall r \in \widehat{B}, B \in r$ which implies $\mathrm{L} \in \mathrm{a} \otimes \mathrm{r}$, ie $\mathrm{a} \otimes \mathrm{r} \in \widehat{\mathrm{L}}$. Thus $\lambda_{\mathrm{a}}(\widehat{\mathrm{B}}) \subseteq \widehat{\mathrm{L}}$ which implies that λ_{a} is a continuous homomorphism.
To prove that λ_{a} is an open mapping, suppose \widehat{B} be a basic open set in βT. Then $B \subseteq T$. Now if $1 \in \lambda_{\mathrm{a}}(\widehat{\mathrm{B}})$
then $1=a \otimes q$, for some $q \in \widehat{B}$. Clearly then $1 \in\left\{\overline{a\} \times B} \subseteq \lambda_{a}(\widehat{B})\right.$: indeed, $\{a\} \times B \in$ m implies for every $U(\subseteq S \times T) \in m, B \cap\{t \in T:(a, t) \in U\} \neq \square$. Therefore, $\{t \in T:(a, t) \in$ $\mathrm{U}\} \in \mathrm{n}$ for some $\mathrm{n} \in \widehat{\mathrm{B}}$. This implies
$\{s \in S:\{t \in T:(s, t) \in U\} \in n\} \in a$, which implies $U \in a \otimes n$ and so $m=a \otimes n$. Thus $\{\mathrm{a}\} \times \mathrm{B} \subseteq \lambda_{\mathrm{a}}(\widehat{\mathrm{B}})$. Consequently, λ_{a} is an open mapping.

The Rudin-Keisler order on the Stone - $\widetilde{\text { Cech compactification of a discrete semigroup is an }}$ important tool in analyzing spaces of ultrafilters. It shows how one ultrafilter can be essentially different from another.
Definition 3.11 [4] Let (S, \cdot) be a discrete semigroup. For $\mathrm{p}, \mathrm{q} \in \beta$, the Rudin-Keisler order $\leq_{R K}$
is defined by $\mathrm{p} \leq_{R K} q$ if there is a function $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{S}$ for which $\tilde{f}(\mathrm{q})=\mathrm{p}$.

ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 6, August 2022

For $\mathrm{p}, \mathrm{q} \in \beta$, if $\mathrm{p} \leq_{R K} \mathrm{q}$ and $\mathrm{q} \leq_{R K} \mathrm{p}$ then we write $\mathrm{p} \approx_{R K} \mathrm{q}$. Also if $\mathrm{p} \leq_{R K} \mathrm{q}$ and $\mathrm{q} \not_{R K} \mathrm{p}$ then we write $\mathrm{p}<_{\text {RK }} \mathrm{q}$.

Theorem 3.12 Let S be a discrete semigroup and $p \in \beta S$. Then $p \leq_{R K} q$ for every $q \in \beta S$ if and only if $p \in S$.
Proof. Suppose $p \leq_{R K} q$ for every $q \in \beta S$, then for each $q \in \beta S$, there is a function $f_{q}: S \rightarrow S$ such that $\widetilde{f_{q}}(q)=p$. Since $\widetilde{f_{q}}: \beta S \rightarrow \beta S$ is the continuous extension of f_{q}, for any $q \in S, \widetilde{f}_{q}(q)=$ $f_{q}(q) \in S$ implies that $p \in S$. Conversely, if $p \in S$, then the mapping $f: S \rightarrow S$ defined by $f(s)=$ $p \forall s \in S$ is a continuous mapping and its continuous extension $\tilde{f}: \beta S \rightarrow \beta$ (being unique) must be the constant function. Therefore $\tilde{\mathrm{f}}(\mathrm{q})=\mathrm{p} \forall \mathrm{q} \in \beta$, which implies that $\mathrm{p} \leq_{\mathrm{RK}} \mathrm{q}$ for every $q \in \beta S$.

For further study, we use the following result from [4].
Theorem 3.13 For a discrete space S and $p, q \in \beta S$ the following statements are equivalent.
(a) $\mathrm{p} \approx_{R K} \mathrm{q}$.
(b) $p \leq_{R K} q$ and if $f: S \rightarrow S$ with $\tilde{f}(q)=p$, there exists some $Q \in q$ such that $f_{Q Q}$ is injective.
(c) There exists $f: S \rightarrow S$ and $Q \in q$ such that $\tilde{f}(q)=p$ and $f_{\mid Q}$ is injective.
(d) There is a bijection $g: S \rightarrow S$ such that $\tilde{\mathrm{g}}(\mathrm{q})=\mathrm{p}$.

For any bijective mapping $\phi: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}$, and for any $\mathrm{p}, \mathrm{q} \in \beta \mathrm{G}$ as we can consider $\mathrm{p} \otimes \mathrm{q}$ as an element of $\beta \mathrm{G}, \otimes$ can be treated as a binary operation on $\beta \mathrm{G}$. However in the following theorem we see that all the tensor product of $p, q \in \beta G$ irrespective of the bijective mappings $\phi: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}$, are Rudin-Keisler equivalent.
Theorem 3.14 Suppose $\phi: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}$ and $\psi: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}$ be two bijective mappings and $\mathrm{p}, \mathrm{q} \in$ β G. Then $\mathrm{p} \otimes_{\phi} \mathrm{q} \approx_{R K} \mathrm{p} \otimes_{\psi} \mathrm{q}$, where \otimes_{ϕ} and \otimes_{ψ} are the binary operations by the tensor product under the maps ϕ and ψ respectively.
Proof: Here $p \otimes_{\phi} q=\tilde{\phi}(p \otimes q)=\lim _{a \rightarrow p} \lim _{b \rightarrow q} \phi(a, b)$ and $p \otimes_{\psi} q=\widetilde{\psi}(p \otimes q)=\lim _{a \rightarrow p} \lim _{b \rightarrow q} \psi(a, b)$. Suppose $\mathrm{f}=\psi \circ(\phi)^{-1}$. Then $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}$ is a bijective mapping. Now $\tilde{\mathrm{f}}\left(\mathrm{p} \otimes_{\phi} \mathrm{q}\right)=$ $\tilde{f}\left(\lim _{a \rightarrow p} \lim _{b \rightarrow q} \phi(a, b)\right)=\lim _{a \rightarrow p} \lim _{b \rightarrow q} f(\phi(a, b))=$ $\lim _{a \rightarrow p} \lim _{b \rightarrow q} \psi(a, b)=\widetilde{\psi}(p \otimes q)=p \otimes_{\psi} q$. Therefore from theorem 3.13, $p \otimes_{\phi} q \approx_{R K} p \otimes_{\psi} q$.

From the proposition 3.3 (a) we see that if $\pi_{1}: \begin{aligned} & \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G} \\ & (\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{x}\end{aligned}$ and $\pi_{2}: \begin{aligned} & \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G} \\ & (\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{y}\end{aligned}$ be two projection mappings then $\widetilde{\pi_{1}}(\mathrm{p} \otimes \mathrm{q})=\mathrm{p}$ and $\widetilde{\pi_{2}}(\mathrm{p} \otimes \mathrm{q})=\mathrm{q}$. Therefore:

ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -l) Journal Volume 11, Iss 6, August 2022

Theorem 3.15 For any discrete space G , if $\mathrm{p}, \mathrm{q} \in \beta \mathrm{G}$, then $\mathrm{p} \leq_{\mathrm{RK}} \mathrm{p} \otimes \mathrm{q}$ and $\mathrm{q} \leq_{\mathrm{RK}} \mathrm{p} \otimes \mathrm{q}$.

From theorem 3.13, theorem 3.14 and 3.15 we get the following result:
Corollary 3.16 For any discrete space G , if $\mathrm{p}, \mathrm{q} \in \mathrm{G}^{*}$, then $\mathrm{p}<_{R K} \mathrm{p} \otimes \mathrm{q}$ and $\mathrm{q}<_{R K} \mathrm{p} \otimes \mathrm{q}$.

From the following theorem [4], we shall show that $\mathrm{p} \otimes \mathrm{q}$ is an upper bound of the set of all binary compositions of p and q.
Theorem 3.17[4] Suppose G be a discrete space and \circ be a binary operation on G. For $a, b, p, q \in$ βG, if $a \leq_{R K} p, b \leq_{R K} q$, then $a \circ b \leq_{R K} p \otimes q$.

Corollary 3.18 Suppose G be a discrete space and \circ be a binary operation on G. For $p, q \in \beta G$, $\mathrm{p} \circ \mathrm{q} \leq_{\text {RK }} \mathrm{p} \otimes \mathrm{q}$.
Proof: The proof follows from theorem 3.17 by taking $\mathrm{a}=\mathrm{p}$ and $\mathrm{b}=\mathrm{q}$.

Corollary 3.19 Suppose G be a discrete space and $p, q, r, s \in \beta G$. If $p \leq_{R K} r, q \leq_{R K} s$, then $p \otimes$ $\mathrm{q} \leq_{\mathrm{RK}} \mathrm{r} \otimes \mathrm{s}$.
Proof: The proof follows from theorem 3.17 by considering the binary operation o as the tensor product \otimes.

Corollary 3.20 Suppose G be a discrete space and $p, q, r, s \in \beta G$. If $p \approx_{R K} r, q \approx_{R K} s$, then $p \otimes$ $\mathrm{q} \approx_{\mathrm{RK}} \mathrm{r} \otimes \mathrm{s}$.
Proof: The proof follows from corollary 3.19.

4. Homomorphism on $\square \square$ preserving Rudin-Keisler order

In this section we discuss about the continuous homomorphisms on the Stone - $\widetilde{\text { Cech }}$ compactification βS which preserve the Rudin-Keisler oreder of ultrafilters.
We also note that any homomorphism $\phi: S \rightarrow S$ with $\phi(S) \subseteq \Lambda(\beta S)$ has a unique continuous extension $\tilde{\phi}: \beta S \rightarrow \beta S$ which is also a homomorphism.

Theorem 4.1 For a discrete commutative semigroup S, if $\phi: S \rightarrow S$ is a homomorphism and $p, q \in$ βS, then if $p \leq_{R K} q$ then $\tilde{\phi}(p) \leq_{R K} q$.
Proof: Since $p \leq_{R K} q$, there is a mapping $f: S \rightarrow S$ such that $\tilde{f}(q)=p$. Now $\phi \circ f$ is a continuous mapping from S to S and $\widetilde{\phi \circ} \mathrm{f}(\mathrm{s})=(\phi \circ \mathrm{f})(\mathrm{s})=(\phi \circ \tilde{\mathrm{f}})(\mathrm{s}) \forall \mathrm{s} \in \mathrm{S}$. Therefore $\widetilde{\phi} \circ \mathrm{f}=\tilde{\phi} \circ \tilde{\mathrm{f}}$, which implies $\widetilde{\phi \circ} \mathrm{f}(\mathrm{q})=(\tilde{\phi} \circ \tilde{\mathrm{f}})(\mathrm{q})=\tilde{\phi}(\mathrm{p})$. Consequently $\tilde{\phi}(\mathrm{p}) \leq_{R K} \mathrm{q}$.

ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 6, August 2022

Corollary 4.2 For a discrete commutative semigroup S, if $\phi: S \rightarrow S$ is a homomorphism and $p, q \in \beta S$, then if $p \approx_{R K} q$ then $\tilde{\phi}(p) \leq_{R K} q$ and $\tilde{\phi}(q) \leq_{R K} p$.

For every s $\in S$, using the continuity of the map $\tilde{\lambda_{\mathrm{s}}}: \beta \mathrm{S} \rightarrow \beta \mathrm{S}$ we can prove the following result:
Corollary 4.3 For a discrete commutative semigroup S, if $p \approx_{R K} q$ for $p, q \in \beta S$, then $s+$ $\mathrm{p} \leq_{R K} \mathrm{q}$ and $\mathrm{s}+\mathrm{q} \leq_{R K} \mathrm{p}$ for every $\mathrm{s} \in \mathrm{S}$.

Definition 4.4 For a discrete semigroup S, a homomorphism $\phi: S \rightarrow S$ is said to commute with bijections if for every bijective mapping $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{S}, \tilde{\phi} \circ \tilde{\mathrm{f}}=\tilde{\mathrm{f}} \circ \tilde{\phi}$.

Theorem 4.5 For a discrete commutative semigroup S, if $\phi: S \rightarrow S$ is a homomorphism which commutes with bijections and $p, q \in \beta S$, then if $p \approx_{R K} q$ then $\tilde{\phi}(p) \approx_{R K} \tilde{\phi}(q)$.
Proof: Since $p \approx_{R K} q$, by theorem 3.13 there is a bijective mapping $g: S \rightarrow S$ such that $\tilde{g}(q)=p$. Now $\mathrm{g} \circ \phi$ is a continuous mapping from S to S and $\widetilde{\mathrm{g} \circ \phi}(\mathrm{s})=(\mathrm{g} \circ \phi)(\mathrm{s})=(\mathrm{g} \circ \tilde{\phi})(\mathrm{s}) \forall \mathrm{s} \in \mathrm{S}$. Therefore $\widetilde{g \circ \phi}=\tilde{g} \circ \tilde{\phi}$, which implies $\widetilde{g \circ \phi}(q)=(\tilde{g} \circ \tilde{\phi})(q)=(\tilde{\phi} \circ \tilde{g})(q)=\tilde{\phi}(p)$. This implies $\tilde{\phi}(\mathrm{p}) \leq_{\mathrm{RK}} \tilde{\phi}(\mathrm{q})$. Interchanging p and q and using the theorem 3.13 we can prove that $\tilde{\phi}(q) \leq_{R K} \tilde{\phi}(p)$. Consequently $\tilde{\phi}(p) \approx_{R K} \tilde{\phi}(q)$

REFERENCES

[1] Clifford, A. H., Preston, G. B., The Algebraic Theory of Semigroup, Vol. I, Math. Surveys, 7, Amer. Math. Soc., (1961).
[2] Berglund, J. F., Hindman, N.,Filters and the weak almost periodic compactification of a discrete semigroup, Trans. American Mathematical Society, Volume lin84, Number 1, 1984.
[3] Ellis, R., A note on the continuity of the inverse, Proc. Amer. Math. Soc., Vol. 8 (1957), 37lin -373.
[4] Hindmann, N., Straus, D., Algebra in Stone - $\widetilde{\text { Cech compactification, Wiley, New York, } 1999 . ~}$
[5] Warner, S., Topological rings, North Holland mathematical Studies 178, Elsevier Science Publishers B.V, 1993.
[6] Howie, J. M., An Introduction to Semigroup Theory, London, New York, 1976.
[7] W. Comfort and S. Negrepontis, the theory of ultrafilters, Springer-Verlag, Berlin, 1974.
[8] L. Gillman and M. Jerison, Rings of continuous functions, van Nostrand, Princeton, 1960.
[9] N. Hindman, D. Strauss, Algebraic products of tensor products, Semigroup Forum, 103 (2021), 888-898.
[10] S. Kochen, Ultraproducts in the theory of models, Ann. of Math. 74 (1961), 221-261.

