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ABSTRACT 

          Tensor product is a useful tool to identify an ultrafilter of the Cartesian product of two 

discrete semigroups which was first introduced  by S Kochen in his paper [10].  

          In this paper we show that binary compositions of any two ultrafilters in the Stone - C̃ech 

compactification of a discrete semigroup are bounded above with respect to Rudin-Keisler 

ordering by tensor product of them. Also we have established that Rudin-Keisler ordering is 

preserved under some special type of homomorphisms on the Stone - C̃ech compactification βS. 
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1 INTRODUCTION 

        Given a nonempty set X, a family 𝔉 of subsets of X will be a filter on X if (i) ∅ ∉  𝔉, (ii) 

A ∩ B ∈ 𝔉 

when  A, B ∈ 𝔉  and (iii) if A ∈ 𝔉 and A ⊆  B then B ∈ 𝔉.  

        A filter 𝔘 is called an ultrafilter on X if 𝔘 is not properly contained in any filter. An 

ultrafilter 𝔘 which contains a singletone set {x0} as a member is called a principal ultrafilter. We 

denote this ultrafilter by x0. For a principal ultrafilter, ⋂  U ∈ 𝔘  U = a singletone set. For further 

studies on ultrafilters, we refer [7]. A compactification of a space X is a compact Hausdorff space 

Y such that there is a topological embedding e ∶  X →  Y with e(X) dense in Y. Whereas the Stone 

- C̃ech compactification of a Tychonoff space X is a compactification βX having the property that: 

if f: X →  Y is a continuous function on any compact Hausdorff space Y then there is a unique 

continuous function   f̃: βX →  Y with  f̃|X  =  f.  

        The Stone - C̃ech compactification of a Tychonoff space X taking maximal Z-ideals of X as 

points has been studied in [8] which is equivalent for a discrete space X by taking all its 

ultrafilters. For a discrete semigroup (S, ⋅) its Stone - C̃ech compactification βS consisting of all 

ultrafilters of S is topologized by taking the collection {Â  ∶  A ⊆ S} as a base for the topology on 

βS, where Â = {p ∈ βS ∶  A ∈ p}. The above mentioned base is also a base for the closed sets in 

βS. Thus the Stone - C̃ech compactification _S of a discrete semigroup S is a zero- dimensional 
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space. We can identify each element s ∈  S with a principal ultrafilter, so that S ⊆ βS. Then the 

semigroup operation ⋅  on S can be extended to a binary operation on βS as follows: 

     for  s ∈ S, q ∈ βS, s ⋅  q = λs̃(q), where λs̃ ∶ βS → βS is the continuous extension of λs ∶  S →

 S(⊆ βS) defined by λs(x) =  s ⋅  x.  

     Now for  p, q ∈ βS, p ⋅ q = ρ
q̃

(p), where ρ
q̃

: βS → βS is the continuous extension of ρ
q

∶  S →

βS defined by ρ
q

(x) =  x ⋅  q and (βS, ⋅) is also a semigroup.  

Also it is a compact right topological (follows form [4]) semigroup. From Ellis theorem ( [4], 

theorem 2.5), it is clear that (S, ⋅)contains an idempotent element. 

          

2 HOMOMORPHISMS ON INVERSE SEMIGROUP 

Definition 2.1. Suppose (S, ⋅) is a discrete inverse semigroup, A ⊆  S and p ∈ βS.We define 

A−1  = {x′ ∶  x ∈ A}, and p′ = {A−1 ⊆  S ∶  A ∈  p}. 

Obviously (A−1)−1  =  A and (p′)′ =  p. 

Proposition 2.2. p ∈ βS if and only if p′ ∈ βS. 

Proof. Suppose p ∈ βS. Clearly then ∅ ∉ p′. Now if A, B ∈  p′ then A−1, B−1 ∈  p.  p being an 

ultrafilter, A−1 ∩ B−1 ∈  p. Then A ∩  B =  (A−1 ∩  B−1)−1 ∈  p′. Again if A ∈  p′ and A ⊆ B 

then 

A−1 ⊆  B−1 implies B−1 ∈  p implies B ∈  p′. So p′ is a filter on S. Suppose 𝔉 be a filter such that 

p′ ⊆  𝔉. Then p =  (p′)′ ⊆  𝔉′. Since p is an ultrafilter, 𝔉′ = p and hence p′ = 𝔉. The converse 

follows from (p′)′  = p. 

Notation: For a subset A of a semigroup (S, ⋅) if s ∈  S then 

(a) s−1A = {t ∈  S ∶  s ⋅ t ∈  A} and 

(b) As−1  = {t ∈  S ∶  t ⋅  s ∈  A}. 

The following theorem follows from the continuity of  λs̃ and  ρ
q̃

. 

Theorem 2.3. [4] For a discrete semigroup (S, ⋅) if x ∈  S, p, q ∈ βS then 

(a) x ⋅  p = {A ⊆  S ∶  x−1A ∈  p} 

(b) p ⋅  q = {A ⊆  S ∶ {x ∈  S ∶  x−1A ∈  q} ∈  p}. 

Definition 2.4. Suppose (X, τ ) be a topological space and S be a discrete space. For p ∈ βS, we 

say that lim
s→p

(xs)  =  x  if for any x ∈  U ∈ τ , the set {s ∈  S ∶  xs ∈  U} ∈  p. 

Clearly, for any p ∈ βS,  lim
s→p

(s)  =  p. 

Theorem 2.5. If f̃ is the continuous extension of a map f ∶  S →  T (where S is a discrete 

semigroup 

and T is a compact Hausdorff right topological semigroup), then f̃ (p) = lim
s→p

 f(s). 

Theorem 2.6. For an inverse semigroup (S, ⋅) the mapping  γ: βS → βS defined by γ(p)  =  p′ is 
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a homeomorphism. 

Proof : Clearly γ is a bijective mapping. As  γ = (γ−1)−1 , to prove the theorem it is enough to 

show 

that γ is continuous. Suppose  Â be a basic open set containing γ(p)  =  p′. Then A ∈  p′, implies 

A−1 ∈  p, implies p ∈ (A−1)̂. It can be easily verified that γ((A−1)̂) =  ( γ(A))
−1

. As every 

element of S 

is a principal ultrafilter in βS, γ  is the continuous extension of the map x →  x′ in S. 

Theorem 2.7. For a commutative inverse semigroup (S, ⋅) if a ∈  S, p, q ∈ βS then 

(a) (a ⋅   p)′ = a′ ⋅   p′ 

(b) (p ⋅   q)′ = p′ ⋅   q′. 

(c) p is an idempotent if and only if p′ is an idempotent. 

Proof. (a) For any a ∈  S and for any x ∈  S we see that γ(( λa)(x))  =  (λa(x))′ =  (a ⋅ x)′ = 

(x ⋅  a)′ =  a′ ⋅  x′ = λa
′ (γ(x)). So  γ ∘ λa and λa

′ ∘ γ  are two continuous functions agreeing in S, a 

dense subspace of the Hausdorff space βS. Therefore γ ∘ λa  =  λa
′ ∘ γ on βS. Thus (a ⋅  p)′ =  a′ ⋅

 p′. 

(b) For any q ∈ βS and for any x ∈  S we see that (γ ∘  ρ
q
) (x) =  (ρ

q
(x))

′

= γ(x ⋅  q) =

 (x ⋅  q)′ =  x′ ⋅  q′(from (a)) = ρ
q′(γ(x)) = ρ

q′ ∘ γ(x). By similar arguments  γ ∘  ρ
q

 =  ρ
q′ ∘ γ on 

βS.  

Thus (p ⋅ q)′ =  p′ ⋅ q′. 

(c) Follows directly from (b). 

From the theorem 2.6 and 2.7 we arrive at the conclusion stated in the following corollary, 

Corollary 2.8. The mapping γ is a topological isomorphism on βS when S is a commutative 

inverse semigroup. 

 

3. Tensor Product and Rudin-Keisler order   

          

Definition 3.1 Suppose G  and G1 are two discrete groups and   p ∈ βG, q ∈ βG1. The tensor 

product of   p and q  is defined by  

p ⊗ q = {U ⊆ G × G1 ∶ {a ∈ G: {b ∈ G1: (a, b) ∈ U} ∈ q} ∈ p}.  

 

Clearly, p ⊗ q is an ultrafilter of G × G1. From the definition, it is clear that, a subset U(⊆ G ×

G1) ∈ p ⊗ q  if and only if U contains a set of the form {(a, b): a ∈ A and b ∈ Ba}, where A ∈

p and Ba ∈ q for each a ∈ A. Also if a ∈ βG, b ∈ βG1are principal ultrafilters, then a ⊗ b is also 

the principal ultrafilter (a, b). 
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     If ϕ: G × G → G is any bijection, then we can consider p ⊗ q as the ultrafilter of G identified 

by ϕ̃(p ⊗ q), where ϕ̃: β(G × G) → βG is the continuous extension of ϕ.Clearly for any a, b ∈ G, 

a ⊗ b will then be identified by the principal ultrafilter ϕ(a, b). 

 

Theorem 3.2 [8] For any two discrete semigroups S and T, if p ∈ βS, q ∈ βT, then p ⊗  q =

 lims→p  limt→q (s, t)  

 

Proposition 3.3 Suppose G  and G1 are two discrete groups and πG, πG1
are projection mappings 

from  G × G1 → G and G × G1 → G1 respectively. For a ∈ G, b ∈ G1, p, r ∈ βG, q, s ∈ βG1, 

(a)  πG̃(p ⊗  q) = p and  πG1̃
(p ⊗  q) = q. 

(b) p ⊗  q = r ⊗  s if and only if  p =  r  and  q =   s . 

(c) a ⊗  b + r ⊗  s = (a + r) ⊗ (b + s). 

Proof. (a) For any a ∈ G, b ∈ G1, πG̃(p ⊗  q) = πG (lim(a,b)→(p,q)(a, b)) =

lim(a,b)→(p,q)  πG (a, b) = lima→p  limb→q(a) = p  . Similarly, we can show that πG1̃
(p ⊗  q) = q. 

(b) If  p =  r  and  q =   s, then obviously, p ⊗  q = r ⊗  s. Conversely, if p ⊗  q = r ⊗  s then 

from (a), p = πG̃(p ⊗  q) = πG̃(r ⊗  s) = r and q = πG1̃
(p ⊗  q) = πG1̃

(r ⊗  s) = s. 

(c) From theorem 3.2, a ⊗  b + r ⊗  s 

=  (a, b) +  limc→r  limd→s (c, d) (where  c ∈ G, d ∈ G1) 

= limc→r  limd→s(a, b) + (c, d))  

= limc→r  limd→s(a + c, b + d)  

= (a + r) ⊗ (b + s). 

 

Theorem 3.4 [9] Let (S, +) and (T, +) be semigroups, let p, r ∈ βS, and let q, w ∈ βT. If u ∈

βS, v ∈ βT, and (p ⊗  q) +  (r ⊗  w)  =  u ⊗  v, then u =  p + r and v =  q + w. 

 

Theorem 3.5 If  p ⊗  q is an idempotent in β(G × G1) then  p and q are idempotents in 

βG and βG1 respectively. 

Proof p ⊗  q is an idempotent in βG × βG1 ⟹ (p ⊗  q) +  (p ⊗  q) =  p ⊗  q. From theorem 

3.4, this implies p + p = p and q + q = q . Then  p and q are idempotents in βG and βG1 

respectively. 

 

Theorem 3.6 [9] Let (S, +)and (T, +) be infinite semigroups and assume that w, z ∈ βT and 

Q = {t ∈  T ∶  t + w =  z} is infinite. Let q ∈  Q∗
 and let  p, r ∈ βS. Then (p ⊗  q) +  (r ⊗

 w)  =  (p + r) ⊗ (q + w). 

  

From Theorem 3.4 and 3.6, we can say that  
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Theorem 3.7  Let (S, +)and (T, +) be infinite semigroups and for any  w, z ∈ βT the set {t ∈

 T ∶  t + w =  z} is infinite. Then for  ∈  S∗
 , q ∈  T∗  , p ⊗  q is an idempotent in (S × T)∗  if 

and only if p and q are idempotents. 

 

Remark 3.8 From proposition 3.3 (a) it is clear that an ultrafilter p ⊗  q of G × G1 is a principal 

ultrafilter if and only if both p and q  are principal ultrafilters of G and G1respectively.  

 

Theorem 3.9 [8] Let S and T be arbitrary discrete spaces and let f ∶  S →  S ⊆  βS and g ∶  T →

 T ⊆  βT be arbitrary maps. Define  h ∶  S ×  T →  S ×  T ⊆  β(S ×  T) by h(s, t)  =

 (f(s), g(t)). Then for every p ∈  βS and q ∈  βT, h̃ (p ⊗  q)  =  f̃(p)  ⊗ g̃ (q). Furthermore, h̃ is 

injective if f and g are injective, and h̃ is surjective if f and g are surjective. If S and T are 

semigroups and f and g are homomorphisms, then h̃ is also a homomorphism. 

 

Theorem 3.10 For each a ∈ S, the mapping λa: βT → β(S × T) defined by λa(q) = a ⊗  q is an 

open continuous homomorphism. 

Proof : For any q ∈ βT, suppose L̂ be a basic open set containing λa(q) = a ⊗  q. Then L ∈ a ⊗

 q, which implies L contains a set of the form {(s, t): s ∈ A and t ∈ Bs}, where A ∈ a and Bs ∈ q 

for each s ∈ A. . Suppose B =  Ba. Then B̂  is an open set in βTcontaining q and ∀ r ∈ B̂,  B ∈ r  

which implies L ∈ a ⊗  r, ie  a ⊗  r ∈  L̂ . Thus λa(B̂) ⊆  L̂ which implies that λa is a continuous 

homomorphism. 

To prove that λa is an open mapping, suppose B̂   be a basic open set in βT. Then B ⊆ T. Now  if 

l ∈ λa(B̂) 

then  l =  a ⊗  q , for some q ∈ B̂. Clearly then l ∈ {a} × B̂ ⊆ λa(B̂) : indeed, {a} × B ∈

m  implies for every U(⊆ S × T) ∈ m, B ∩ {t ∈ T: (a, t) ∈ U } ≠ ∅. Therefore, {t ∈ T: (a, t) ∈

U } ∈ n for some n ∈ B̂. This implies  

{s ∈ S: {t ∈ T: (s, t) ∈ U } ∈ n} ∈ a, which implies U ∈ a ⊗  n and so m =  a ⊗  n . Thus 

{a} × B̂ ⊆ λa(B̂). Consequently, λa is an open mapping.  

 

     The Rudin-Keisler order on the Stone - C̃ech compactification of a discrete semigroup is an 

important tool in analyzing spaces of ultrafilters. It shows how one ultrafilter can be essentially 

different from another. 

Definition 3.11 [4] Let (S, ⋅) be a discrete semigroup. For p, q ∈ βS, the Rudin-Keisler order 

≤RK 

is defined by p ≤RK  q if there is a function f ∶  S → S for which  f̃(q)  =  p. 
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For  p, q ∈ βS , if p ≤RK  q  and q ≤RK  p then we write p ≈RK  q. Also if p ≤RK  q and q ≰RK  p 

then we write p <RK  q. 

    

Theorem 3.12 Let S be a discrete semigroup and p ∈ βS. Then p ≤RK  q for every q ∈ βS if and 

only if  p ∈ S. 

Proof. Suppose p ≤RK  q for every q ∈ βS, then for each q ∈ βS, there is a function fq ∶  S → S 

such that fq̃(q)  =  p. Since fq̃: βS → βS is the continuous extension of fq, for any q ∈ S, fq̃(q) =

fq(q) ∈ S implies that p ∈ S. Conversely, if p ∈ S, then the mapping f: S → S defined by f(s) =

p  ∀ s ∈ S is a continuous mapping and its continuous extension  f̃: βS → βS (being unique) must 

be the constant function. Therefore   f̃(q) = p ∀ q ∈ βS, which implies that  p ≤RK  q for every 

q ∈ βS. 

 

          For further study, we use the following result from [4]. 

Theorem 3.13 For a discrete space S and p, q ∈ βS the following statements are equivalent. 

(a) p ≈RK  q. 

(b) p ≤RK  q and if f: S → S with  f̃(q) = p, there exists some  Q ∈ q such that  f|Q  is injective. 

(c) There exists f: S → S and Q ∈ q such that f̃(q) = p and  f|Q  is injective. 

(d) There is a bijection g: S → S such that g̃(q) = p. 

 

       For any bijective mapping ϕ: G × G → G, and for any p , q ∈ βG as we can consider p ⊗  q 

as an element of βG, ⊗ can be treated as a binary operation on βG. However in the following 

theorem we see that all the tensor product of p , q ∈ βG irrespective of the bijective mappings  

ϕ: G × G → G, are Rudin-Keisler equivalent. 

 Theorem 3.14 Suppose ϕ: G × G → G and ψ: G × G → G be two bijective mappings and p , q ∈

βG. Then p ⊗ϕ  q ≈RK p ⊗ψ  q, where ⊗ϕ and ⊗ψ are the binary operations by the tensor 

product under the maps ϕ and ψ respectively. 

Proof: Here p ⊗ϕ  q = ϕ̃(p ⊗ q) = lim
a→p

lim
b→q

ϕ(a, b) and p ⊗ψ  q = ψ̃(p ⊗ q) = lim
a→p

lim
b→q

ψ(a, b) . 

Suppose f = ψ ∘ (ϕ)−1 . Then f: G → G is a bijective mapping. Now f̃(p ⊗ϕ q) =

f̃ (lim
a→p

lim
b→q

ϕ(a, b)) =  lim
a→p

lim
b→q

f(ϕ(a, b)) = 

 lim
a→p

lim
b→q

ψ(a, b) = ψ̃(p ⊗ q) =  p ⊗ψ  q. Therefore from theorem 3.13, p ⊗ϕ  q ≈RK p ⊗ψ  q. 

 

From the proposition 3.3 (a) we see that if  π1: 
G × G → G
(x, y) → x

 and π2: 
G × G → G
(x, y) → y

 be two projection 

mappings then  π1̃(p ⊗  q) = p and π2̃(p ⊗  q) = q. Therefore: 
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 Theorem 3.15 For any discrete space G, if p, q ∈ βG, then  p ≤RK  p ⊗  q and q ≤RK  p ⊗  q. 

 

        From theorem 3.13, theorem 3.14 and 3.15 we get the following result: 

Corollary 3.16 For any discrete space G, if p, q ∈ G
∗
, then  p <RK  p ⊗  q and q <RK  p ⊗  q. 

       

       From the following theorem [4], we shall show that p ⊗  q is an upper bound of the set of all 

binary compositions of p and q.  

Theorem 3.17[4] Suppose G be a discrete space and ∘ be a binary operation on  G. For a, b , p, q ∈

βG, if a ≤RK p, b ≤RK  q, then a ∘ b ≤RK p ⊗  q. 

 

Corollary 3.18 Suppose G be a discrete space and ∘ be a binary operation on  G. For p, q ∈ βG, 

p ∘ q ≤RK p ⊗  q. 

Proof: The proof follows from theorem 3.17 by taking a = p and b= q. 

 

 Corollary 3.19 Suppose G be a discrete space and p, q , r, s ∈ βG. If p ≤RK r, q ≤RK  s, then p ⊗

q ≤RK r ⊗  s. 

Proof: The proof follows from theorem 3.17 by considering  the binary operation ∘

as the tensor product ⊗. 

 

Corollary 3.20 Suppose G be a discrete space and p, q , r, s ∈ βG. If p ≈RK r, q ≈RK  s, then p ⊗

q ≈RK r ⊗  s. 

Proof: The proof follows from corollary 3.19. 

 

4. Homomorphism on 𝛃𝛃 preserving Rudin-Keisler order 

           

            In this section we discuss about the continuous homomorphisms on the Stone - C̃ech 

compactification βS which preserve the Rudin-Keisler oreder of ultrafilters. 

We also note that any homomorphism ϕ: S → S with ϕ(S) ⊆ Λ(βS) has a unique continuous 

extension  ϕ̃: βS → βS which is also a homomorphism. 

 

Theorem 4.1 For a discrete commutative semigroup S, if ϕ: S → S is a homomorphism and p, q ∈

βS, then if p ≤RK q then ϕ̃(p) ≤RK q. 

Proof: Since p ≤RK q, there is a mapping f: S → S such that f̃(q) = p. Now ϕ ∘ f is a continuous 

mapping from S to S and   ϕ ∘ f̃ (s) = (ϕ ∘ f)(s) = (ϕ ∘ f̃)(s)  ∀ s ∈ S. Therefore ϕ ∘ f̃ =  ϕ̃ ∘ f̃, 

which implies ϕ ∘ f̃ (q) = (ϕ̃ ∘ f̃)(q) =  ϕ̃(p). Consequently ϕ̃(p) ≤RK q. 
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Corollary 4.2 For a discrete commutative semigroup S, if  ϕ: S → S  is a homomorphism and 

p, q ∈ βS, then if p ≈RK q then ϕ̃(p) ≤RK q and ϕ̃(q) ≤RK p. 

 

For every s ∈ S, using the continuity of the map  λs̃: βS → βS we can prove the following result: 

Corollary 4.3 For a discrete commutative semigroup S, if p ≈RK q  for  p, q ∈ βS, then  s +

p ≤RK q and s + q ≤RK p for every s ∈ S. 

 

Definition 4.4 For a discrete semigroup S, a homomorphism ϕ: S → S is said to commute with 

bijections if for every bijective mapping f: S → S, ϕ̃ ∘ f̃ =  f̃ ∘ ϕ̃.  

 

Theorem 4.5 For a discrete commutative semigroup S, if  ϕ: S → S  is a homomorphism which 

commutes with bijections and p, q ∈ βS, then if p ≈RK q then ϕ̃(p) ≈RK ϕ̃(q). 

Proof: Since p ≈RK q, by theorem 3.13 there is a bijective mapping g: S → S such that g̃(q) = p. 

Now g ∘ ϕ is a continuous mapping from S to S and   g ∘ ϕ̃(s) = (g ∘ ϕ)(s) = (g ∘ ϕ̃)(s)  ∀ s ∈ S. 

Therefore g ∘ ϕ̃ =  g̃ ∘ ϕ̃, which implies g ∘ ϕ̃(q) = (g̃ ∘ ϕ̃)(q) = (ϕ̃ ∘ g̃)(q) = ϕ̃(p). This implies  

ϕ̃(p) ≤RK ϕ̃(q). Interchanging p and q and using the theorem 3.13 we can prove that 

ϕ̃(q) ≤RK ϕ̃(p). Consequently ϕ̃(p) ≈RK ϕ̃(q) 
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