Tulgeity of Restricted Super line Graph of Path graph

Dr. Puli Latha Devi
Government First Grade College, yelahanka, Bangalore-560064

Abstract

Tulgeity $\tau(G)$ is the maximum number of disjoint, point induced, non-acyclic subgraphs contained in G. In this paper we find the formula for tulgeity of the restricted super line graps of path graph is derived.

Key words: Tulgeity, Super line graph.

1. Introduction:

Point partition number [4](Gray Chartrand,1971) of a graph G is the minimum number of subsets into which the point- set of G can be partitioned so that the sub graph induced by each subset has the property P. Dual to this concept of point partition number of a graph is the maximum number of subsets into which the point set of G can be partitioned such that the subgraph induced by each subset does not have the property P. Define the property P such that a graph G has the property P if G contains no subgraph that is homeomorphic from the complete graph K_{3}. This point partition number, and dual point partition number for the property P is referred as point arboricity and tulgeity of G respectively. Equivalently the tulgeity is the maximum number of vertex disjoint cycles in G so that each subgraph is not acyclic..The formula for tulgeity of complete bipartite graph was given in Gray Chartrand.,1968. Akbar Ali.et.al and Paniyappan [3,5] given the tulgeity of line, middle, total graphs of some class of graphs. It is observed that in any graph G , a $K_{1,2}$ [K_{2} in G induces a C_{3} in $L_{2}(G)$ that leads to maximum number of cycles. This made us to work on Tulgeity of restricted superline graphs.
In this paper we find the tulgeity of $L_{2}\left(P_{n}\right)$. For the terminology not given here refer [2]
All graphs considered in this paper are simple graphs. The vertices of $L_{r}(G)$ are the r-element subsets of $E(G)$ and two vertices S and T are adjacent if there exists atleast one pair of edges, one from each of the sets S and T, which are adjacent in G.

2. Main Theorem:

To avoid the complexity in listing the vertices of super line graph, in this chapter we represent the vertex induced by the edges e_{i}, e_{j} in G as $v_{i j}$ instead of $\left\{e_{i} e_{j}\right\}$ in $L_{2}(G)$.
Outline of the proof: Here we derive the formula for tulgeity of superline graph of index 2 in six cases. We covered all the vertices of $R L_{2}(G)$ with $C_{3} s$ whenever $\left.\left\lvert\, \begin{array}{c}E(G) \\ 2\end{array}\right.\right) \mid$ is a multiple of 3. If $\left.\left\lvert\, \begin{array}{c}E(G) \\ 2\end{array}\right.\right)$ is not a multiple of 3 , then we cover $\left.\binom{E(G)}{2}-4 \right\rvert\,$ vertices with $C_{3} s$ and the remaining 4 vertices with C_{4}. Thus we obtain maximum number of induced cyclic subgraphs .

Theorem 2.1: For $n \geq 6$, the tulgeity of Super line graph of index 2 of the path graph
is $\tau\left(L_{2}\left(P_{n}\right)\right)=\left\lfloor\frac{\mid V\left(L_{2}\left(P_{n}\right)\right.}{3}\right\rfloor=\left\lfloor\frac{(n-1)(n-2)}{6}\right\rfloor$
Proof: Let $E\left(P_{n}\right)=\{1,2,3 \ldots . n-1\} \quad$ By definition of $L_{2}(G)$, $V\left(L_{2}\left(P_{n}\right)\right)=\left\{v_{i, j} / i \neq j \& 1 \leq i<j \leq n-1, i, j \in E\left(P_{n}\right)\right\}$.
Thus there are $\frac{(n-1)(n-2)}{2}$ vertices. By division algorithm we express n as $n=6 q+t, 0 \leq t \leq 5$
Since Tulgeity is the maximum number of disjoint cycles and it is possible with a cycle of length 3 , here we partition all vertices into C 3 s when ever $n \equiv 1,2,4,5(\bmod 6)$. In other 2 cases, that is When $n \equiv 0,3(\bmod 6), \mid V\left(l_{2}\left(P_{n}\right) \mid\right.$ is not divisible by 3 . So, it is not possible to partition vertex set of RL2(Pn) into only c3s. Instead the vertex set is partitioned into one c 4 and rest to c 3 s .

UGC CARE Listed (Group -I) Journal

$\tau\left(L_{2}\left(P_{n}\right)\right) \leq\left\lfloor\frac{\mid V\left(R L_{2}\left(P_{n}\right) \mid\right.}{3}\right\rfloor=\left\lfloor\frac{(n-1)(n-2)}{6}\right\rfloor-\cdots-\cdots----1$
Case $(\mathrm{i}): n \equiv o(\bmod 6)$.
In this case $\binom{|E(P n)|}{2}$ is not a multiple of 3. So we partitioned all the vertices with one C_{4} and the remaining vertices with $C_{3} s$.
For $n=6$, partition of vertices of $L_{2}\left(P_{6}\right)$ is given by
$V\left(R L_{2}(G)\right)=\left\{v_{3,4}, v_{1,4}, v_{1,3} ; v_{2,3}, v_{3,5}, v_{2,5}\right\} \cup\left\{v_{1,2}, v_{1,5}, v_{4,5,} v_{2,4,} v_{1,2}\right\}$
Thus $\tau\left(L_{2}\left(P_{6}\right)\right)=\left\lfloor\frac{(6-1)(6-2)}{6}\right\rfloor=3$
For $n=12$, partition of vertices of $L_{2}\left(P_{12}\right)$ is given by

$$
\begin{gathered}
V\left(L_{2}\left(P_{12}\right)\right)=\left\{\begin{array}{l}
v_{1,3}, v_{1,4}, v_{3,4} ; v_{1,7}, v_{1,8}, v_{2,10} ; v_{1,9}, v_{1,10}, v_{2,4} ; v_{2,5}, v_{2,6}, v_{1,11} ; v_{2,7}, v_{2,8}, v_{3,11} ; \\
v_{3,5}, v_{3,6}, v_{2,9} ; v_{3,7}, v_{3,8}, v_{2,3} ; v_{3,9}, v_{3,10}, v_{1,2} ; v_{4,6}, v_{4,7}, v_{5,11} ; v_{5,8}, v_{5,7}, v_{4,10} ; \\
v_{8,9}, v_{8,11}, v_{9,11} ; v_{4,8}, v_{4,9}, v_{4,5} ; v_{6,7}, v_{6,10}, v_{7,10} ; v_{8,10}, v_{6,11}, v_{7,8} ; v_{6,8}, v_{6,9}, v_{1,5} ; \\
v_{5,6}, v_{5,9}, v_{4,11} ; v_{5,10}, v_{7,9}, v_{9,10}
\end{array}\right\} \cup\left\{v_{1,6}, v_{2,11}, v_{10,11}, v_{7,11}, v_{1,6}\right\} \\
\text { Thus } \tau\left(L_{2}\left(P_{12}\right)\right)=\left\lfloor\frac{(12-1)(12-2)}{6}\right\rfloor=18
\end{gathered}
$$

For $n \geq 18$: The set of $C_{3} s$ that contained in $L_{2}\left(P_{n}\right)$ are partitioned as S_{1}, S_{k}, S_{l} are given as follows.
$S_{1}=\left\{v_{1,3}, v_{1,4}, v_{4,3}\right\} \cup\left\{\begin{array}{l}v_{i, i+2}, v_{i, i+3}, v_{i-1, n-1} \\ 2 \leq i \leq n-6 \\ i \neq 2,8,14, \ldots, n-11\end{array}\right\} \cup\left\{\begin{array}{l}v_{i, i+2}, v_{i, i+3}, v_{i-1,4 r+2 j-1} \\ i=2,8,14, \ldots, n-11 \\ 1 \leq j \leq \frac{n-6}{6}\end{array}\right\} \Rightarrow\left|S_{1}\right|=n-6$

For each k , 2 is lessthan or equal to k leq eq $2 \mathrm{q}-2$

$$
\begin{aligned}
& S_{k}=\left\{\begin{array}{l}
v_{i, i+2 k}, v_{i, i+2 k+1}, v_{i+1, n-k} / i \text { isodd, } \\
v_{i, i+2 k}, v_{i, i+2 k+1}, v_{i-1, n-k} / i \text { iseven }
\end{array}\right\}, 1 \leq i \leq n-3 k-3, \Rightarrow\left|S_{k}\right|=n-3 k-3 \\
& \sum_{k=2}^{2 q-2}\left|S_{k}\right|=\sum_{k=2}^{2 q-2}(n-3 k-3) \\
& =(n-9)+(n-12)+(n-15)+\ldots \ldots . .6+3 \\
& =3+6+9+\ldots \ldots .+(n-9) \\
& =\frac{(n-9)(n-6)}{6}
\end{aligned}
$$

Remaining vertices are partitioned as

Vol.11, Iss.7, Dec- 2022

Research Paper

$$
\begin{aligned}
& \left|S_{l}\right|=(n-6)+2+1=n-3
\end{aligned}
$$

Clearly all cycles in the above sets are distinct and hence the total number of disjoint cyclic subgraphs $=$

$$
\left|S_{1}\right|+\sum_{k=2}^{2 r-2}\left|S_{k}\right|+\left|S_{l}\right|=(n-6)+\frac{(n-9)(n-6)}{6}+(n-3)=\frac{n(n-3)}{6}
$$

Thus the vertex set is partitioned into $\left(\frac{n(n-3)}{6}-1\right) C_{3} s$ and a C_{4}
So, $\tau\left(L_{2}\left(P_{n}\right)\right) \geq \frac{n(n-3)}{6} \geq\left\lfloor\frac{(n-1)(n-2)}{6}\right\rfloor$
Case $(\mathrm{ii}): n \equiv 1(\bmod 6), n=6 q+1$.
Here $\left|\binom{|E(P n)|}{2}\right|$ is a multiple of 3 . So, we partition all the vertices into C_{3} s.
For $n=7$, partition of vertices of $R L_{2}\left(P_{7}\right)$ is given by
$V\left(R L_{2}\left(P_{7}\right)\right)=\left\{v_{1,2}, v_{2,4}, v_{2,5} ; v_{1,3}, v_{3,4}, v_{46} ; v_{1,6}, v_{2,6}, v_{4,5} ; v_{1,5}, v_{1,4}, v_{5,6} ; v_{2,3}, v_{3,5}, v_{3,6}\right\}$
Thus $\tau\left(L_{2}\left(P_{7}\right)\right)=\left\lfloor\frac{(7-1)(7-2)}{6}\right\rfloor=5$
For $n=13$, the vertex disjoint $C_{3} s$ are given as
$V\left(L_{2}\left(P_{13}\right)\right)=\left\{\begin{array}{l}v_{1,3}, v_{1,4}, v_{3,4} ; v_{2,4}, v_{2,5}, v_{1,12} ; v_{3,5}, v_{3,6}, v_{2,12} ; v_{4,6}, v_{4,7}, v_{3,12} ; v_{5,7}, v_{5,8}, v_{4,10} ; v_{6,8}, v_{6,9}, v_{5,12} ; v_{7,9}, v_{7,10}, v_{9,10} ; \\ v_{1,5}, v_{1,6}, v_{2,11} ; v_{2,7}, v_{1,11}, v_{2,6} ; v_{12 .}, v_{89}, v_{110} ; v_{4,8}, v_{4,9}, v_{3,11} ; v_{1,7}, v_{1,8}, v_{2,10} ; v_{37}, v_{38}, v_{411} ; v_{2,8}, v_{2,9}, v_{2,3} ; \\ v_{3,9}, v_{3,10}, v_{4,12} ; v_{5,9}, v_{5,10}, v_{5,6} ; v_{4,5}, v_{5,11}, v_{6,7} ; v_{6,10}, v_{6,11}, v_{7,8} ; v_{7,11}, v_{9,12}, v_{10,12} ; v_{8,12}, v_{8,9}, v_{7,12} ; v_{8,10}, v_{8,11}, v_{10,11} ; \\ v_{9,11}, v_{6,12}, v_{11,12}\end{array}\right\}$
Thus $\tau\left(L_{2}\left(P_{13}\right)\right)=22$.
For $n \geq 19$, The cyclic decomposition of $L_{2}\left(P_{n}\right)$ is given as below.

The set of $C_{3} s$ that contained in $R L_{2}\left(P_{n}\right)$ are partitioned as S_{1}, S_{k}, S_{l} and are given as $S_{1}=\left\{v_{1,3}, v_{1,4}, v_{4,3}\right\} \cup\left\{\begin{array}{l}v_{i, i+2}, v_{i, i+3}, v_{i-1, n-1} \\ 2 \leq i \leq n-6 \\ i \neq 5,17,29 \ldots n-8\end{array}\right\} \cup\left\{\begin{array}{l}v_{i, i+2}, v_{i, i+3}, v_{i-1,4 q+2 j} \\ i=5,17,29 \ldots n-8 \\ 1 \leq j \leq q-1\end{array}\right\} \Rightarrow\left|S_{1}\right|=n-6$
For each $\mathrm{k}, 2 \leq k \leq 2 q-1$

$$
\begin{aligned}
S_{k} & =\left\{\begin{array}{l}
v_{i, i+2 k}, v_{i, i+2 k+1}, v_{i+1, n-k} / i \text { isodd }, \\
v_{i, i+2 k}, v_{i, i+2 k+1}, v_{i-1, n-k} / \text { iseven }
\end{array}\right\}, 1 \leq i \leq n-3 k-3, \Rightarrow\left|S_{k}\right|=n-3 k-3 \\
\sum_{k=2}^{2 q-1} \mid & \left|S_{k}\right|=\sum_{k=2}^{2 q-1}(n-3 k-3) \\
& =(n-9)+(n-12)+(n-15)+\ldots \ldots .4+1 \\
& =1+3+6+\ldots \ldots+(n-9) \\
& =\frac{(n-7)(n-8)}{6}
\end{aligned}
$$

The remaining vertices can be decomposed into $C_{3} s$ in the following way.

$$
S_{l}=\left\{\begin{array}{c}
v_{1,2}, v_{1,4 q+1}, v_{1,4 q+2} ; v_{2,3}, v_{2,4 q}, v_{2,4 q+1} ; \\
v_{3,4 q+1}, v_{3,4 q+2}, v_{4, n-1} ; v_{4,5}, v_{6,7}, v_{5,4 q+3} ; \\
v_{5,6}, v_{5,4 q+1}, v_{5,4 q+2} ; v_{6,4 q+2}, v_{7,8}, v_{6,4 q+3} ; v_{7,4 r+3}, v_{7,4 q+4}, v_{8,9} ; v_{8,4 q+2}, v_{8,4 q+3}, v_{9,10} ; \\
v_{9,4 q+3}, v_{9,4 q+4} v_{10, n-1} ; v_{10,11}, v_{12,13}, v_{11,4 q+5} ; \\
v_{11,12}, v_{11,4 q+3}, v_{11,4 q+4} ; v_{12,4 q+4}, v_{12,4 q+5}, v_{13,14} ; v_{13,4 q+5}, v_{13,4 q+6}, v_{14,15} ; v_{14,4 q+4}, v_{14,4 q+5}, v_{15,16} ; \\
v_{15,4 q+5}, v_{15,4 q+6}, v_{16, n-1} ; v_{16,17}, v_{17,4 q+7}, v_{18,19} ; \\
\ldots \ldots
\end{array}\right\}
$$

$$
\cup\left\{v_{n-8, n-4}, v_{n-4, n-3}, v_{n-3, n-1} ; v_{n-5, n-4}, v_{n-5, n-1}, v_{n-6, n-1} ; v_{n-4, n-2}, v_{n-4, n-1}, v_{n-1, n-2} ; v_{n-3, n-2}, v_{n-5, n-3}, v_{n-5, n-2}\right\}
$$

Clearly allC3s in above sets are distinct

disjoint cyclic subgraphs = $\left|S_{1}\right|+\sum_{k=2}^{2 q-1}\left|S_{k}\right|+\left|S_{l}\right|=(n-6)+\frac{(n-7)(n-8)}{6}+(n-3)=(2 n-9)+\frac{(n-7)(n-8)}{6}=\frac{(n-1)(n-2)}{6}$

Thus the vertex set is partitioned into $\frac{(n-1)(n-2)}{6} C_{3} s$
$\tau\left(R L_{2}\left(P_{n}\right)\right) \geq\left\lfloor\frac{(n-1)(n-2)}{6}\right\rfloor$
Case 3: $n \equiv 2(\bmod 6)$,
In this case $\left|\binom{E(G)}{2}\right|$ is multiple of 3 . So we partitioned all the vertices with $\mathrm{C}_{3} \mathrm{~s}$.

Research Paper

UGC CARE Listed (Group -I) Journal

For $n=8, C_{3}$ decomposition is given by

$$
\begin{gathered}
V\left(L_{2}\left(P_{8}\right)\right)=\left\{v_{1,3}, v_{1,4}, v_{3,4} ; v_{1,6}, v_{1,7}, v_{2,3} ; v_{2,4}, v_{2,5}, v_{3,7} ; v_{2,6}, v_{2,7}, v_{1,2} ; v_{5,6}, v_{3,5}, v_{3,6} ; v_{4,5}, v_{5,7}, v_{1,5} ; v_{4,6}, v_{4,7}, v_{6,7}\right\} \\
\tau\left(L_{2}\left(P_{8}\right)\right)=\frac{7.6}{6}=7 C_{3} s
\end{gathered}
$$

For $n=14, C_{3}$ decomposition is given by

$$
\begin{gathered}
V\left(L_{2}\left(P_{14}\right)\right)=\left\{\begin{array}{l}
v_{1,3}, v_{1,4}, v_{3,4} ; v_{1,6}, v_{1,5}, v_{2,10} ; v_{1,7}, v_{1,8}, v_{2,11} ; v_{1,9}, v_{1,10}, v_{1,2} ; v_{2,4}, v_{2,5}, v_{1,13} ; v_{2,6}, v_{2,7}, v_{1,12} ; v_{2,8}, v_{2,9}, v_{1,11} ; \\
v_{3,5}, v_{3,6}, v_{2,13} ; v_{3,7}, v_{3,8}, v_{4,12} ; v_{4,6}, v_{4,7}, v_{3,13} ; v_{4,8}, v_{4,9}, v_{3,12} ; v_{5,7}, v_{5,8}, v_{4,13} ; v_{8,6}, v_{6,9}, v_{5,13} ; v_{7,9}, v_{7,10}, v_{6,13} ; \\
v_{8,10}, v_{8,11}, v_{7,13} ; v_{9,10}, v_{11,13}, v_{9,12} ; v_{9,11}, v_{2,12}, v_{11,12} ; v_{10,12}, v_{10,13}, v_{12,13} ; v_{7,9}, \\
v_{9,13}, v_{10,11}, v_{8,9} ; v_{3,10}, v_{3,11}, v_{2,3} ; v_{4,10}, v_{4,11}, v_{4,5} ; v_{5,11}, v_{5,12}, v_{5,6} ; v_{6,10}, v_{6,11}, v_{6,7} ; \\
v_{7,11}, v_{7,12}, v_{7,8} ; v_{8,12}, v_{8,13}, v_{3,9} ; v_{5,9}, v_{5,10}, v_{6,12} \\
\text { Thus there are } \frac{13 \times 12}{6}=26 C_{3} s .
\end{array}\right\}
\end{gathered}
$$

For $n \geq 20$: In this case the disjoint cycles that contained in $R L_{2}\left(P_{n}\right)$ are partitioned as S_{1}, S_{k}, S_{l} that are given as below.

$$
\begin{aligned}
& S_{1}=\left\{\begin{array}{l}
\left.v_{1,3}, v_{1,4}, v_{3,4}\right\} \cup\left\{v_{i, i+2}, v_{i, i+3}, v_{i-1, n-1}\right\}, 2 \leq i \leq n-6 \Rightarrow\left|S_{1}\right|=n-6 \\
S_{2}
\end{array}\right. \\
&\left.\begin{array}{l}
v_{i, i+4}, v_{i, i+5}, v_{i+1, n-2} / i \text { isodd }, \\
v_{i, i+4}, v_{i, i+5}, v_{i-1, n-2} / i \text { is even } \\
i \neq 2,8,14 \ldots n-18,1 \leq i \leq n-9
\end{array}\right\} \cup\left\{\begin{array}{l}
v_{i, i+4}, v_{i, i+5}, v_{i, 4 q+2 j} \\
1 \leq j \leq q-2 \\
i=2,8,14 \ldots n-18
\end{array}\right\} \Rightarrow\left|S_{2}\right|=n-9 \\
& S_{k}=\left\{\begin{array}{l}
v_{i, i+2 k}, v_{i, i+2 k+1}, v_{i+1, n-k} / i \text { isodd }, \\
v_{i, i+2 k}, v_{i, i+2 k+1}, v_{i-1, n-k} / i \text { is even }
\end{array}\right\}, 1 \leq i \leq n-3 k-3,3 \leq k \leq 2 r-1 \Rightarrow\left|S_{k}\right|=n-3 k-3 \\
& \sum_{k=3}^{2 q-1}\left|S_{k}\right|=\sum_{k=3}^{2 q-1}(n-3 k-3) \\
&=(n-12)+(n-15)+\ldots \ldots .5+2 \\
&=\frac{(n-11)(n-10)}{6}
\end{aligned}
$$

Remaining vertices are partitioned as

$$
\left.\begin{array}{l}
S_{l}=\left\{\begin{array}{c}
v_{1,4 q+1}, v_{1,4 q+2}, v_{2, n-2} ; v_{2,3}, v_{3,4 q+3}, v_{4,5} ; \\
v_{3,4 q+1}, v_{3,4 q+2}, v_{1,2} ; v_{4,4 q+2}, v_{4,4 q+3}, v_{5,6} ; v_{5,4 q+3}, v_{5,4 q+4}, v_{6,7} ; v_{6,4 q+2}, v_{6,4 q+3}, v_{7,8} \\
v_{7,4 q+3}, v_{7,4 q+4}, v_{8, n-2} ; v_{8,9}, v_{10,11}, v_{9,4 q+5} ; \\
v_{9,4 q+3}, v_{9,4 q+4}, v_{9,10} ; v_{10,4 q+4}, v_{10,4 q+5}, v_{11,12} ; v_{11,4 q+5}, v_{11,4 q+6}, v_{12,13} ; v_{12,4 q+4}, v_{12,4 q+5}, v_{13,14} \\
v_{13,4 q+5}, v_{13,4 q+6}, v_{14, n-1} ; v_{14,15}, v_{15,4 q+7}, v_{16,17} ; \\
\ldots \ldots
\end{array}\right. \\
v_{n-13, n-5}, v_{n-13, n-4}, v_{n-12, n-2} ; v_{n-12, n-11}, v_{n-10, n-9}, v_{n-3, n-11} ; \\
v_{n-1, n-5}, v_{n-11, n-4}, v_{n-11, n-10} ; v_{n-10, n-4}, v_{n-10, n-3}, v_{n-9, n-8} ; v_{n-9, n-3}, v_{n-9, n-2}, v_{n-8, n-7} ; v_{n-7, n-3}, v_{n-6, n-2}, v_{n-6, n-7} ; \\
v_{n-8, n-4}, v_{n-8, n-3}, v_{n-7, n-6} ; v_{n-7, n-3}, v_{n-7, n-2}, v_{n-6, n-5}
\end{array}\right\}
$$

Thus $\left|S_{l}\right|=(n-7)+4=n-3$

$\left|S_{1}\right|+\left|S_{2}\right|+\sum_{k=3}^{2 q-1}\left|S_{k}\right|+\left|S_{l}\right|=(n-6)+(n-9)+\frac{(n-11)(n-10)}{6}+(n-3)=(3 n-18)+\frac{(n-11)(n-10)}{6}=\frac{(n-1)(n-2)}{6}$
Thus the vertex set is partitioned into $\frac{(n-1)(n-2)}{6} C_{3} s$
So, $\tau\left(L_{2}\left(P_{n}\right)\right) \geq\left\lfloor\frac{(n-1)(n-2)}{6}\right\rfloor$
Case 4: $\boldsymbol{F o r} \boldsymbol{n} \equiv 3(\boldsymbol{\operatorname { m o d }} \mathbf{6}), \mathrm{n}=9,15,21 \ldots \ldots$
In this case $\left|\binom{E(p n)}{2}\right|$ is not a multiple of 3 . So we partitioned all the vertices with one C_{4} and the remaining vertices with $\mathrm{C}_{3} \mathrm{~s}$.
The distinct cycles of length 3 of $L_{2}\left(P_{9}\right)$ is given by
For $n \geq 15$: The set of $C_{3} s$ that contained in $L_{2}\left(P_{n}\right)$ are partitioned as S_{1}, S_{k}, S_{l} that are given as below.

$$
\begin{aligned}
& V\left(L_{2}\left(P_{9}\right)\right)=\left\{\begin{array}{l}
v_{1,3}, v_{1,4}, v_{28} ; v_{1,5}, v_{1,6}, v_{2,1} ; v_{17}, v_{18}, v_{6,7} ; v_{24}, v_{2,5}, v_{3,8} ; v_{1,5}, v_{3,6}, v_{48} ; \\
v_{4,5}, v_{4,6}, v_{58} ; v_{37}, v_{47}, v_{68} ;
\end{array}\right\} U\left\{v_{26}, v_{23}, v_{27} v_{34}, v_{26}\right\} \\
& S_{1}=\left\{v_{1,3}, v_{1,4}, v_{4,3}\right\} \cup\left\{\begin{array}{l}
v_{i, i+2}, v_{i, i+3}, v_{i-1, n-1} \\
2 \leq i \leq n-6 \\
i \neq 2,7,13 \ldots n-8
\end{array}\right\} \cup\left\{\begin{array}{l}
v_{i, i+2}, v_{i, i+3}, v_{i-1,4 q+2 j} \\
i=2,7,13 \ldots n-8 \\
1 \leq j \leq q
\end{array}\right\} \Rightarrow\left|S_{1}\right|=n-6 \\
& S_{k}=\left\{\begin{array}{l}
v_{i, i+2 k}, v_{i, i+2 k+1}, v_{i+1, n-k} / i \text { isodd }, \\
v_{i, i+2 k}, v_{i, i+2 k+1}, v_{i-1, n-k} / i \text { is even }
\end{array}\right\}, 1 \leq i \leq n-3 k-3,2 \leq k \leq 2 q-1 \Rightarrow\left|S_{k}\right|=n-3 k-3 \\
& \sum_{k=2}^{2 q-1}\left|S_{k}\right|=\sum_{k=2}^{2 q-1}(n-3 k-3) \\
& =(n-9)+(n-12)+(n-15)+\ldots \ldots .3=3+6+\ldots \ldots .+(n-9) \\
& =\frac{(n-9)(n-6)}{6}
\end{aligned}
$$

The remaining vertices can be decomposed into $C_{3} S$ in the following way.

$\cup\left\{v_{n-7, n-8}, v_{n-7, n-3}, v_{n-7, n-2} ; v_{n-3, n-5}, v_{n-5, n-2}, v_{n-3, n-2} ;\right\} U\left\{v_{n-5, n-6}, v_{n-4, n-2}, v_{n-4, n-3} ; v_{n-4, n-1}, v_{n-5, n-6}\right\}$
$\left|S_{l}\right|=(n-6)+2+1=n-3$
Total number of cyclic subgraphs $=\left|S_{1}\right|+\sum_{k=2}^{2 q-1}\left|S_{k}\right|+\left|S_{l}\right|=(n-6)+\frac{(n-9)(n-6)}{6}+(n-3)=\frac{n(n-3)}{6}$
Clearly, all cycles in above sets are distinct and the vertex set is partitioned into $\left(\frac{n(n-3)}{6}-1\right) C_{3} s$ and a C_{4}
$\quad \tau\left(L_{2}\left(P_{n}\right)\right) \geq \frac{n(n-3)}{6} \geq\left\lfloor\frac{(n-1)(n-2)}{6}\right\rfloor$
So,
Case 5: $n \equiv 4(\bmod 6)$
In this case $\left|\binom{E(P n)}{2}\right|$ is multiple of 3 . So we partitioned all the vertices with $\mathrm{C}_{3} \mathrm{~s}$.
For $n=10$, the C_{3} decomposition is given by

$$
V\left(L_{2}\left(P_{10}\right)\right)=\left\{\begin{array}{l}
v_{1,3}, v_{1,4}, v_{3,4} ; v_{1,6}, v_{1,5}, v_{2,9} ; v_{1,7}, v_{1,8}, v_{2,4} ; v_{2,5}, v_{2,6}, v_{1,9} ; v_{2,7}, v_{2,8}, v_{3,5} ; v_{3,6}, v_{3,7}, v_{4,9} ; v_{3,8}, v_{3,9}, v_{1,2} ; \\
v_{4,5}, v_{4,7}, v_{2,3} ; v_{4,6}, v_{5,6}, v_{5,9} ; v_{5,7}, v_{5,8}, v_{7,8} ; v_{6,7}, v_{7,9}, v_{4,8} ; v_{6,8}, v_{6,9}, v_{8,9}
\end{array}\right\}
$$

Thus there are $\frac{9 \times 8}{6}=12 \quad C_{3} s$.
For $n \geq 16$: The set of $C_{3} s$ that contained in $R L_{2}\left(P_{n}\right)$ are partitioned as S_{1}, S_{k}, S_{l} that are given as below.

$$
S_{1}=\left\{v_{1,3}, v_{1,4}, v_{3,4}\right\} \cup\left\{\begin{array}{l}
v_{i, i+2}, v_{i, i+3}, v_{i-1, n-1} \\
i \neq 5,11,17 \ldots n-17 \\
2 \leq i \leq n-6
\end{array}\right\} \cup\left\{\begin{array}{l}
v_{i, i+2}, v_{i, i+3}, v_{i-1,4 q+2 j} \\
i \neq 5,11,17 \ldots n-17 \\
2 \leq j \leq q-1
\end{array}\right\}, \Rightarrow\left|S_{1}\right|=n-6
$$

For each $\mathrm{k}, 2 \leq k \leq 2 q$

$$
S_{k}=\left\{\begin{array}{l}
v_{i, i+2 k}, v_{i, i+2 k+1}, v_{i+1, n-k} / i \text { isodd }, \\
v_{i, i+2 k}, v_{i, i+2 k+1}, v_{i-1, n-k} / i \text { is even }
\end{array}\right\}, 1 \leq i \leq n-3 k-3, \quad \Rightarrow\left|S_{k}\right|=n-3 k-3
$$

$$
\begin{aligned}
\sum_{k=2}^{2 q}\left|S_{k}\right| & =\sum_{k=2}^{2 q}(n-3 k-3) \\
& =(n-9)+(n-12)+\ldots \ldots+1 \\
& =\frac{(n-7)(n-8)}{6}
\end{aligned}
$$

The remaining vertices can be decomposed into $C_{3} s$ in the following way.
$\cup\left\{v_{n-6, n-4}, v_{n-5, n-3}, v_{n-5, n-2} ; v_{n-5, n-3}, v_{n-6, n-1} v_{n-1, n-2} ; v_{n-4, n-2}, v_{n-5, n-4}, v_{n-3, n-2} ; v_{n-3, n-1}, v_{n-4, n-3}, v_{n-4, n-1}\right\}$
All cycles in the above set are distinct and
Total number of cyclic subgraphs =

$$
\begin{aligned}
& \left|S_{1}\right|+\sum_{k=2}^{2 q}\left|S_{k}\right|+\left|S_{l}\right|=(n-6)+\frac{(n-7)(n-8)}{6}+(n-3)=\frac{(n-1)(n-2)}{6} \\
& \tau\left(L_{2}\left(P_{n}\right)\right) \geq\left\lfloor\frac{(n-1)(n-2)}{6}\right\rfloor
\end{aligned}
$$

Case 6: $n \equiv 5(\bmod 6)$
In this case $\left|\binom{E(P n)}{2}\right|$ is multiple of 3 . So we partitioned all the vertices with $\mathrm{C}_{3} \mathrm{~s}$.
For $n=11$, the C_{3} decomposition is given by

$$
V\left(L_{2}\left(P_{n}\right)\right)=\left\{\begin{array}{l}
v_{1,3}, v_{1,4}, v_{3,4} ; v_{1,6}, v_{1,5}, v_{2,9} ; v_{1,7}, v_{1,8}, v_{1,2} ; v_{2,4}, v_{2,5}, v_{1,10} ; v_{2,6}, v_{2,7}, v_{1,9} ; v_{3,5}, v_{3,6}, v_{2,10} ; v_{4,6}, v_{4,7}, v_{3,10} ; v_{5,7}, v_{5,8}, v_{4,10} ; \\
v_{2,8}, v_{2,3}, v_{3,8} ; v_{4,8}, v_{4,9}, v_{4,5} ; v_{5,9}, v_{5,10}, v_{5,6} ; v_{6,8}, v_{6,9}, v_{8,9} ; v_{7,9}, v_{7,10}, v_{9,10} ; v_{7,8}, v_{6,10}, v_{3,9} ; v_{6,7}, v_{3,7}, v_{8,10}
\end{array}\right\}
$$

$$
\text { Thus there are } \frac{9 \times 10}{6}=15 \quad C_{3} s .
$$

For $n \geq 17$: The set of $C_{3} s$ that contained in $L_{2}\left(P_{n}\right)$ are partitioned as S_{1}, S_{k}, S_{l} that are given as below.

$$
\begin{aligned}
& S_{1}=\left\{v_{1,3}, v_{1,4}, v_{3,4}\right\} \cup\left\{v_{i, i+2}, v_{i, i+3}, v_{i-1, n-1}\right\}, 2 \leq i \leq n-6 \Rightarrow\left|S_{1}\right|=n-6 \\
& S_{2}=\left\{\begin{array}{l}
v_{i, i+4}, v_{i, i+5}, v_{i+1, n-2} / i \text { isodd } \\
v_{i, i+4}, v_{i, i+5}, v_{i-1, n-2} / i \text { is even } \\
i \neq 1,7,13 \ldots n-8,1 \leq i \leq n-9
\end{array}\right\} \cup\left\{\begin{array}{l}
v_{i, i+4}, v_{i, i+5}, v_{i, 4 q+2 j} \\
2 \leq j \leq q+1 \\
i=1,7,13 \ldots n-8
\end{array}\right\} \Rightarrow\left|S_{2}\right|=n-9
\end{aligned}
$$

$$
\begin{aligned}
& S_{k}=\left\{\begin{array}{l}
v_{i, i+2 k}, v_{i, i+2 k+1}, v_{i+1, n-k} / \text { i isodd }, \\
v_{i, i+2 k}, v_{i, i+2 k+1}, v_{i-1, n-k} / \text { is isenen }
\end{array}\right\}, 1 \leq i \leq n-3 k-3,3 \leq k \leq 2 q \Rightarrow\left|S_{k}\right|=n-3 k-3 \\
& \sum_{k=3}^{2 q}\left|S_{k}\right|=\sum_{k=3}^{2 q}(n-3 k-3) \\
&=(n-12)+(n-15)+\ldots \ldots . .5+2 \\
&=\frac{(n-11)(n-10)}{6}
\end{aligned}
$$

The remaining vertices can be decomposed into $C_{3} s$ as
$\cup\left\{v_{n-6, n-4}, v_{n-5, n-3}, v_{n-5, n-2} ; v_{n-5, n-3}, v_{n-6, n-1} v_{n-1, n-2} ; v_{n-4, n-2}, v_{n-5, n-4}, v_{n-3, n-2} ; v_{n-3, n-1}, v_{n-4, n-3}, v_{n-4, n-1}\right\}$
Clearly all cycles in ther above sets ate distinct and Total number of cyclic subgraphs =

$$
\begin{aligned}
& \left|S_{1}\right|+\left|S_{2}\right|+\sum_{k=3}^{2 q}\left|S_{k}\right|+\left|S_{l}\right|=(n-6)+(n-9)+\frac{(n-11)(n-10)}{6}+(n-3)=\frac{(n-1)(n-2)}{6} \\
& \quad \text { So, } \tau\left(L_{2}\left(P_{n}\right)\right) \geq \frac{(n-1)(n-2)}{6}
\end{aligned}
$$

Now, by definition $L_{2}\left(P_{n}\right)$ has $\frac{(n-1)(n-2)}{2}$ vertices and hence

$$
\begin{equation*}
\tau\left(L_{2}\left(P_{n}\right)\right) \leq\left\lfloor\frac{(n-1)(n-2)}{6}\right\rfloor \tag{2}
\end{equation*}
$$

Thus in all the above cases, from 1,2 we have $\tau\left(L_{2}\left(P_{n}\right)\right)=\frac{(n-1)(n-2)}{6}$

Conclusion:

In this paper we derived the tulgeity of superline graph of path graph. Further we wish to extend this work to superline graph of wheel graph

References:

[1] J. S. Bagga, L. W. Beineke and B. N. Varma Super Line graphs and their properties Combnatorics; GraphT heory; Algorithms and applications(Beijing; 1993);World Scientific Publishing; New Jersey (1994); 1-6.
[2] Frank Harary, GraphT heory; Narosa Publishing House NewDelhi; (1969)
[3]. S. Panayappan, Akbar Ali M.M .Itextit\{Tulgeity of Line Graphs, Journal of Mathematics Research (2010) , 146-149
[4] Gray Chartrand, Dennis Geller., and Stephen Hedetniemi, Graphs with forbidden subgraphs. Journal of Combinatorial Theory, 10(1971), 12-41.
[5] Akbar Ali and Paniyappan, international journal of math and Combin 2010, vol3,98-110

