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ABSTRACT 

A family of facilitative glucose transporters (GLUTs) is involved in regulating tissue-specific glucose 

uptake and metabolism in the liver, skeletal muscle, and adipose tissue to ensure homeostatic control 

of blood glucose levels. Reduced glucose transport activity results in aberrant use of energy substrates 

and is associated with insulin resistance and type 2 diabetes. It is well established that GLUT2, the 

main regulator of hepatic hexose flux, and GLUT4, the workhorse in insulin- and contraction-

stimulated glucose uptake in skeletal muscle, are critical contributors in the control of whole-body 

glycemia. However, the molecular mechanism how insulin controls glucose transport across 

membranes and its relation to impaired glycemic control in type 2 diabetes remains not sufficiently 

understood. An array of circulating metabolites and hormone-like molecules and potential 

supplementary glucose transporters play roles in fine-tuning glucose flux between the different organs 

in response to an altered energy demand. 

Keywords:Crosstalk .Exercise . Insulin resistance .NAFLD . Type 2 diabetes. 

INTRODUCTION 

The primary energy source for the majority of bodily tissues is glucose. As a result, a 

sophisticated regulatory system comprising numerous tissues is responsible for maintaining 

whole-body glucose homeostasis. Distribution of dietary components according to the 

distinct needs of each organ is ensured by inter-organ crosstalk via a variety of circulating 

substances such hormones and neuropeptides [84]. Glucose transporters (GLUTs) from the 

SLC2A gene family, sodium-glucose symporters (SGLTs), and SWEETs are the three kinds 
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of eukaryotic sugar transporters currently known [32]. Absorption, distribution, and 

excretion/recovery are just a few of the crucial processes that the wide family of GLUTs, 

evolutionary conserved facilitative glucose transporters, is engaged in when handling glucose 

and other hexoses. After the glucose is absorbed from the intestine, consumption of 

carbohydrates causes an instantaneous rise in blood glucose levels. Pancreatic beta cells 

directly react to the increased blood glucose levels by secreting more insulin as a result of a 

GLUT2-dependent mechanism. Due to the acute translocation of GLUT4 transporter vesicles 

to the plasma membrane and the suppression of hepatic gluconeogenesis, insulin binding to 

its receptors results in increased glucose transfer into skeletal muscle, adipose tissue, and the 

heart. Together, the two regulatory processes cause the bloodstream to be cleared of glucose. 

Insulin resistance is a condition in which peripheral tissues are comparatively unable to 

respond appropriately to rising insulin levels in the blood, leading to persistently high blood 

glucose levels. Type 2 diabetes mellitus, a significant health burden on contemporary society, 

is known to be characterised by a progressive rise in peripheral insulin resistance, followed 

by beta cell death and, as a result, hypoinsulinemia. This state of hyperglycemia is known to 

be a hallmark of type 2 diabetes mellitus. Although the pathogenesis of this metabolic 

condition is not fully understood, there is compelling evidence that various GLUT family 

members play a critical role in the onset and progression of insulin resistance and type 2 

diabetes. 

The function of the GLUT family in the liver, muscles, and adipose tissue is highlighted in 

this article, as well as how specifically GLUTs contribute to systemic glucose homeostasis 

and energy metabolism in both a healthy and diabetic condition. On the structure-function 

relationship of GLUTs [32, 93], insulin signalling [83], and the control of the insulin- and 

contractionresponsive GLUT4 trafficking, several recent studies offer excellent and complete 

overviews. 

The liver 

The liver is the main organ for glucose storageand essential for the regulation of 

glucosehomeostasis. 

By making it easier for the activity of numerous glycogen production enzymes, such as 

phosphofructokinase and glycogen synthase, to be suppressed, glycogenolysis can be 

prevented [173]. Although the precise mechanisms underlying insulin's direct role in 
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regulating hepatic gluconeogenesis remain unknown, various indirect regulatory pathways 

have been shown to exist. There are numerous mechanisms and various different organs 

involved in the indirect control of insulin on HGP. Reduced levels of circulating free fatty 

acids and glycerol are the outcome of insulin-mediated suppression of lipolysis in adipose 

tissue. In addition, insulin prevents pancreatic alpha cells from producing glucagon. In the 

postprandial state, these procedurestherefore result in decreased hepatic glucose output, 

sustaining normoglycemia [33]. 

Liver insulin resistance is a major feature of type 2 diabetes pathophysiology 

Reduced insulin-stimulated signal transduction pathways for hepatic glucose synthesis, 

including insulin receptors and downstream mediators, have been described as the hallmark 

of hepatic insulin resistance. It is known that a number of variables can lead to the 

development of insulin resistance in the liver. For instance, type 2 diabetes incidence and the 

advancement of hepatic insulin resistance are both substantially correlated with infections 

with the hepatitis C virus (HCV). According to the mechanism, the HCV core protein causes 

an increase in inflammatory indicators such tumour necrosis factor (TNF-), which finally 

results in less insulin signalling activation downstream [36]. Additionally, HCV core protein 

promotes lipid accumulation and hepatic steatosis by impairing mitochondrial activity and 

endoplasmic reticulum (ER) function in hepatocytes. 

Several members of the GLUT family are relevant in liver metabolism 

In the liver, almost all GLUTs' gene expression has been verified. However, GLUT1, 

GLUT2, GLUT5, GLUT8, and GLUT9 are highly prevalent in this tissue. 

 GLUT1: marker for oncogenic and metabolic diseases in the liver. 

 GLUT2: major glucose transporter required for glucose sensing and hepatic glucose 

output. 

 GLUT5: main mammalian fructose transporter. 

 GLUT8: intracellular hexose transporter regulating hepaticoxidative metabolism. 

 GLUT9: a high-capacity uric acid transporter compensatingfor GLUT2. 

 GLUT10: high hepatic expression levels but so far enigmaticfunction. 

Glucose transporters with minor expression levels or absentin the liver: GLUT3, GLUT4, 

GLUT6, GLUT7, GLUT11, GLUT12,and GLUT13 (HMIT) 
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Skeletal muscle and adipose tissue 

Skeletal muscle is the main tissue controlling postprandial glucose disposal: Skeletal 

muscle plays a critical role in maintaining blood glucose homeostasis. In actuality, after a 

meal, skeletal muscle serves as the primary glucose sink. Approximately 75% of the glucose 

that is removed from the body once it has been infused into it goes through the muscle, and 

this process is severely hampered in an insulin-resistant state [47, 48]. Exercise increases 

muscle insulin sensitivity, and insulin and exercise work together to improve skeletal muscle 

glucose clearance [46]. Blood glucose levels have been demonstrated to decrease with both 

aerobic and resistance exercise training, which is at least partially attributable to enhanced 

glucose transport activity and glucose metabolism in skeletal muscle. Although the 

mechanism underlying the health benefits of exercise is not fully known, it probably involves 

changes in the metabolic and signal transduction pathways in numerous organs. 

Adipose tissue regulates systemic glucose metabolism: Adipose tissue is a highly dynamic 

organ with a high capacity \sfor remodelling to meet the demands of changing nutritional 

\sconditions. Additionally, adipose tissue is a significant endocrine organ that produces vital 

hormones and elements that regulate the entire body's metabolism, systemic insulin 

sensitivity, and homeostasis of energy. Both the lack and excess of adipose tissue may lead to 

serious abnormalities of glucose homeostasis and diabetes. White adipose tissue harbours 

mature \sadipose cells and progenitor cells, but also other cell types \srelated to its 

innervation and vascularization. The fact that it comprises a variety of immune cell types, 

which are essential for adipocyte function and can dynamically adapt to changes in fat depot 

size, is most crucial. Adipose cells from diverse \sorigins, e.g., from subcutaneous or visceral 

depots, exhibit distinct metabolic characteristics and growth dynamics [82]. In \srodents, but 

also in humans, the brown adipose tissue is specialised to disperse energy as heat. As a result 

of these \sstructural intricacies, studies on glucose transport in adipose cells usually focus on 

a narrow subset of conditions \srelevant in adipocyte biology. The equilibrium of glucose and 

lipids is mostly regulated by adipose tissue, and the metabolism of both substances is 

interwoven. The contribution \sof adipose cells to glucose elimination is substantially smaller 

compared \sto skeletal muscle [47, 48]. However, research utilising transgenic and knockout 

mice with excess or defective glucose transporters have shown the crucial part adipose tissue 

plays in maintaining glucose homeostasis. 
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Multiple GLUT isoforms are expressed in skeletal muscle and adipocytes:Skeletal 

muscle has a profound capacity for taking up glucosefrom the extracellular medium. While 

samples from humanand rodent skeletal muscle tissue have been found to expressmultiple 

glucose transporters belonging to both gene families,GLUTs and SGLTs, the corresponding 

copy numbers of therespective messenger RNAs (mRNAs) differed over 3 ordersof 

magnitude. 

 GLUT1: major glucose transporter regulating basal glucose transport into skeletal 

muscle and adipocytes. 

 GLUT3: contributor to basal glucose uptake in skeletal muscle. 

 GLUT4: the workhorse for insulin- and contraction-responsive glucose transports in 

skeletal muscle and adipocytes. 

 GLUT8: intracellular transporter with links to developmental insulin signaling and 

autophagy. 

 GLUT8: intracellular transporter with links to developmental insulin signaling and 

autophagy. 

 GLUT10: enigmatic glucose transporter also expressed in skeletal muscle and adipose 

tissue. 

 GLUT11: fructose transporter specific for muscular tissues. 

 GLUT12: compensatory glucose transporter upon GLUT4 deficiency in skeletal 

muscle. 

 Glucose transporters with minor abundance or absent in skeletal muscle and 

adipocytes: GLUT2, GLUT5, GLUT6, GLUT7, GLUT9, and GLUT13 (HMIT) 

In skeletal muscle and adipose cells, RabGAPs relayinsulin/contraction signaling to the 

GLUT4translocation machinery.  

TBC1D1 and TBC1D4 are associated with metabolic traits and diseases 

Mutations in TBC1D1 have been linked to features related to obesity in mice [29, 55, 88] and 

humans. Additionally, TBC1D4 mutations have been associated to human insulin resistance 

[40]. The Greenlandic Inuit group has a widespread loss-of-function mutation in TBC1D4 

(p.Arg684Ter), and homozygous bearers of the mutant allele exhibit markedly delayed 

postprandial disposal of glucose and a more than 10-fold increased risk of developing type 2 
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diabetes. In actuality, TBC1D4 (p.Arg684Ter) seems to be the primary genetic contributor to 

type 2 diabetes in both Canadian and Greenlandic Inuit. 

Physical exercise improves glycemic control through enhancing glucose transport 

Exercise training increased skeletal muscle GLUT4 protein levels, which in turn boosted 

whole-body insulin-mediated glucose clearance in obese type 2 diabetes patients. 

Additionally, it has been demonstrated that increased GLUT4 translocation to the cell 

surface, which is independent of insulin signalling, is what causes the increased muscle 

insulin sensitivity of glucose transport during exercise [87]. The primary function of GLUT4 

in this tissue was demonstrated to significantly boost glucose transport in skeletal muscle of 

wild-type mice but not in GLUT4 mutant animals during exercise and contraction. 

Role of glucose transporters in intra-organ crosstalk 

Homozygous global knockout mice with a lower abundance of GLUT4 in skeletal muscle 

and adipose tissue showed a more severe metabolic phenotype than heterozygous global 

knockout mice. This was linked to compensating mechanisms, which although still unclear, 

may enable survival. But conditional GLUT4 deletion in either adipose or skeletal muscle 

leads to systemic insulin resistance and has significant metabolic impacts on other tissues. 

While adipose-specific GLUT4 deletion causes insulin resistance in the liver and skeletal 

muscle, muscle-specific GLUT4 deficit reduced insulin sensitivity in adipose tissue and the 

liver [268]. It should be mentioned that compared to skeletal muscle, adipose cells contribute 

much less to the body's overall ability to dispose of glucose. 

In muscle-specific GLUT4 mutant animals, overexpression of GLUT4 in adipose tissue 

(driven by the aP2 promoter) reversed whole-body insulin resistance without restoring 

glucose transport in skeletal muscle [25]. 

The etiology of insulin resistance is unknown 

Skeletal muscle and adipose tissue have reduced insulin-stimulated glucose uptake as a result 

of type 2 diabetes and insulin resistance. Since GLUT4 translocation is necessary for 

maintaining glycemic homeostasis, overexpression of GLUT4 but not GLUT1 in skeletal 

muscle normalises insulin sensitivity and glucose tolerance in mice. The molecular causes of 

the decreased insulin activity are not entirely understood, yet. It has been proposed that 

changes in lipid metabolism and the production of harmful metabolites, such as DAGs , 
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ceramides [31], and ROS, as well as inflammation, block the phosphorylation of the insulin 

receptor (IR), insulin receptor substrate 1 (IRS1), and downstream effectors, thereby 

inhibiting insulin signalling towards GLUT4. However, this idea has lately been called into 

question because experimental insulin resistance can happen without changes to IR and IRS1 

signalling [65].Together, insulin resistance and diabetes are linked to significant changes in 

cellular glucose transport, but it is yet unknown what causes the decreased insulin-stimulated 

glucose transport and what effects it has on the aetiology of the illness. 

CONCLUSION 

In the liver, skeletal muscle, and adipose tissue, numerous distinct GLUT isoforms have been 

effectively discovered in earlier studies. There is still a lot to learn, as evidenced by the high 

level of substrate variety, intricate expressional control, and varied activity patterns of the 

isoforms. Future research may be particularly interesting in the impact of various lifestyle 

factors, such as high-fructose diets and exercise, on GLUT function in energy metabolism. 

For insulin-regulated glucose transport in adipose cells and for insulin- and contraction-

stimulated glucose uptake in skeletal muscle, GLUT4 continues to be the workhorse. The 

idea that defective GLUT4 translocation plays a significant role in the genesis of insulin 

resistance and type 2 diabetes has been confirmed by a number of research.This process' 

mechanical structure is incredibly intricate, and it's going to be a hot issue for years to 

come.To balance glucose uptake and substrate metabolism in insulin-sensitive tissues in 

response to various physiological cues and/or increasing energy demand, other non-classical 

GLUTs, such as GLUT12, may also play a role in addition to GLUT4. In addition, additional 

GLUTs, such GLUT8, may offer inducible glucose transport capability throughout various 

stages of cellular development, which may help to cause the emergence of insulin resistance 

in adolescence. As demonstrated by the uric acid transporter GLUT9, other glucose 

transporters, including GLUT6, GLUT10, and GLUT11, may not even be significant for 

hexose transfer. An essential part of the fight against metabolic illnesses will be 

comprehending the intricate connections between these metabolic networks and organ 

crosstalk. 
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