
IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 

Research paper               © 2012 IJFANS. All Rights Reserved, UGC CARE Listed ( Group -I) Journal Volume 11,  Iss 5, 2022 

618  

 
 
 

Reviewing the Application of Basis Function Methods in Numerical Solutions for 

Nonlinear Partial Differential Equations 

Name - Gosavi Ganesh Vishnu 

Guide Name - Dr Shoyeb Ali Sayyed    

Department of Mathematics   

Malwanchal University, Indore 

 

 

Abstract 

Numerical solutions for nonlinear partial differential equations (PDEs) play a crucial role in a 

wide range of scientific and engineering fields. The complexity of nonlinear PDEs often 

prohibits the use of analytical techniques, necessitating the development of robust and 

efficient numerical methods. Among these, basis function methods have garnered 

considerable attention due to their versatility and effectiveness in handling nonlinear 

problems. This review aims to provide a comprehensive overview of the application of basis 

function methods in solving nonlinear PDEs. The review begins by introducing the 

fundamental concepts of nonlinear PDEs and their significance in modeling real-world 

phenomena. It then delves into the theoretical underpinnings of basis function methods, 

including finite element methods (FEM), finite difference methods (FDM), and spectral 

methods. The inherent adaptability of basis function methods makes them well-suited for 

tackling the challenges posed by nonlinearities in PDEs. Subsequently, the review highlights 

key advancements and innovations in the field, showcasing exemplary studies where basis 

function methods have been successfully employed. It explores various strategies for 

handling nonlinearity, such as Newton's method, Picard iteration, and implicit-explicit 

schemes. The efficacy of these methods in capturing intricate nonlinear behaviors is 

discussed, along with their limitations and potential areas for improvement. 

Introduction 

Nonlinear partial differential equations (PDEs) constitute a fundamental mathematical 

framework for modeling a wide spectrum of physical, biological, and engineering 

phenomena. Unlike their linear counterparts, nonlinear PDEs describe intricate behaviors that 

often defy closed-form analytical solutions. As a consequence, researchers and practitioners 

have turned to numerical methods as indispensable tools for unraveling the complexities 
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embedded within these equations. Among the various numerical approaches, basis function 

methods have emerged as a versatile and robust means to tackle the challenges posed by 

nonlinearities in PDEs. The allure of basis function methods lies in their capacity to 

approximate complex functions using a set of basis functions defined over a discretized 

domain. This flexibility allows these methods to be tailored to various geometries and 

boundary conditions, enabling accurate representation of intricate nonlinear behaviors. 

Through this approach, the continuum nature of the PDEs is transformed into a discrete 

system of equations, paving the way for efficient computational solutions. This introduction 

aims to establish the foundational motivation for exploring basis function methods in the 

context of solving nonlinear PDEs. We will begin by providing an overview of the 

significance of nonlinear PDEs across different scientific disciplines, emphasizing their role 

in modeling dynamic and nonlinear processes. Next, we will outline the limitations of 

analytical techniques when dealing with nonlinearities, underscoring the necessity for 

numerical methods. The concept of basis functions will then be introduced, elucidating their 

role in discretizing the PDEs and constructing numerical approximations. we will delve into 

the theoretical underpinnings of basis function methods, elucidating the key concepts behind 

finite element methods (FEM), finite difference methods (FDM), and spectral methods. We 

will explore how these methods adapt to nonlinear scenarios, often necessitating iterative 

techniques and adaptive strategies to ensure convergence and accuracy. 

Need of the Study 

The study on the application of basis function methods in numerical solutions for nonlinear 

partial differential equations is essential due to their wide relevance across scientific and 

engineering disciplines. Nonlinear PDEs appear in various real-world phenomena, including 

fluid dynamics, heat transfer, and material science. Traditional analytical solutions are often 

infeasible, necessitating numerical methods. Basis function methods, such as finite element, 

finite difference, and spectral methods, offer efficient and accurate ways to approximate 

solutions. They enable the discretization of continuous domains, transforming PDEs into 

systems of algebraic equations. These methods also facilitate handling intricate boundary 

conditions and complex geometries. Understanding the effectiveness and limitations of basis 

function methods is crucial for optimizing computational resources and accuracy. The study 

will explore the stability, convergence, and computational efficiency of these methods when 

applied to nonlinear problems. Successful implementation can enhance simulations, aiding in 

predictive modeling, optimization, and design in diverse fields. 
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Partial Differential Equations (PDEs) are mathematical equations that involve partial 

derivatives of unknown functions with respect to multiple independent variables. They are 

used to describe a wide range of physical phenomena in fields such as physics, engineering, 

and mathematics. Here's a general form of a partial differential equation: 

 

For example, a commonly encountered partial differential equation is the heat equation: 

 

 

This equation describes how temperature (μ) changes over time (t) in a given material, where  

α is the thermal diffusivity. 

Another example is the nonlinear Schrödinger equation: 

 

This equation is fundamental in quantum mechanics and describes the behaviour of a 

quantum wave function (ψ) under certain conditions. 

These equations illustrate the diversity of PDEs and their applications across different fields. 

Solving PDEs is a complex task that often requires numerical methods and advanced 

mathematical techniques. 

 

 

Partial Differential Equations (PDEs) 

Partial Differential Equations (PDEs) are mathematical equations that involve partial 

derivatives of an unknown function with respect to multiple independent variables. They 

arise in many areas of science and engineering, describing a wide range of physical 

phenomena and processes. Some common types of PDEs include: 

The Heat Equation: 
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∂u/∂t = α ∇²u 

The Wave Equation: 

∂²u/∂t² = c² ∇²u 

The Laplace's Equation: 

∇²u = 0 

The Poisson's Equation: 

∇²u = f 

The Burgers' Equation: 

∂u/∂t + u ∂u/∂x = ν ∇²u 

 

The Navier-Stokes Equation: 

∂u/∂t + u ∇u = -1/ρ ∇P + ν ∇²u 

The Schrödinger Equation: 

i∂ψ/∂t = -ħ/2m ∇²ψ + Vψ 

The Maxwell's Equations: 

∇ · E = ρ/ε₀  

∇ · B = 0 

∇ × E = -∂B/∂t 

∇ × B = μ₀ J + μ₀ ε₀  ∂E/∂t 

These equations, along with their boundary and initial conditions, govern the behavior of 

various physical quantities such as temperature, pressure, displacement, electric and magnetic 

fields, probability amplitudes, and fluid flow. Solving PDEs analytically is often challenging 

or impossible, necessitating the development of numerical methods to obtain approximate 

solutions. 

Numerical techniques for solving PDEs include finite difference methods, finite element 

methods, spectral methods, and the use of basis functions. These methods discretize the 
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domain and transform the PDE into a system of algebraic equations that can be solved 

numerically. They play a crucial role in scientific simulations, engineering design, 

optimization, and understanding complex physical phenomena. 

Literature Review 

Sarra, S. A., & Kansa, E. J. (2009). Multiquadric radial basis function (RBF) approximation 

methods have emerged as powerful techniques for the numerical solution of partial 

differential equations (PDEs). This abstract explores the application of multiquadric RBFs in 

approximating the solutions of PDEs, highlighting their advantages and capabilities. The 

multiquadric RBF is a popular choice due to its flexibility, high accuracy, and ability to 

handle complex geometries. It is based on the interpolation of scattered data using a weighted 

sum of multiquadric functions, which allows for the representation of smooth and non-

smooth solutions. The method utilizes the global nature of RBFs, eliminating the need for 

meshing and enabling efficient computations in both one and higher dimensions. By 

employing multiquadric RBF approximation, PDEs can be transformed into a system of 

algebraic equations, which can then be solved numerically. This approach offers several 

benefits, such as adaptability to irregular and unstructured grids, easy incorporation of 

boundary conditions, and the ability to handle both linear and nonlinear PDEs. multiquadric 

RBF approximation methods exhibit excellent convergence properties and stability, ensuring 

accurate solutions even in the presence of steep gradients or singularities. They have been 

successfully applied to a wide range of PDEs, including diffusion, convection, reaction-

diffusion, and fluid flow problems. 

Bhatia, G. S., & Arora, G. (2016). Radial basis function (RBF) methods have gained 

significant attention as powerful numerical techniques for solving partial differential 

equations (PDEs). This abstract provides a comprehensive review of RBF methods for PDEs, 

focusing on their theoretical foundations, computational aspects, and applications. RBF 

methods utilize a set of basis functions that depend solely on the radial distance from a center 

point. These basis functions possess attractive properties such as global support and 

smoothness, making them well-suited for approximating solutions of PDEs. This review 

explores various types of RBFs, including Gaussian, multiquadric, and inverse multiquadric 

functions, and their respective advantages and limitations. Theoretical foundations of RBF 

methods, including interpolation theory, collocation, and Galerkin approaches, are discussed 

in detail. The mathematical formulation of RBF-based PDE solvers, such as the 

transformation of PDEs into systems of algebraic equations, is presented, along with 
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discussions on stability and convergence analysis. Computational aspects of RBF methods, 

including meshless nature, treatment of boundary conditions, and the use of efficient 

algorithms for solving large linear systems, are examined.  

Dehghan, M., & Shirzadi, M. (2015). The numerical solution of stochastic elliptic partial 

differential equations (SPDEs) poses significant challenges due to the inherent randomness in 

the coefficients or boundary conditions. This abstract presents an investigation of the 

meshless method of radial basis functions (RBFs) for efficiently solving SPDEs, with an 

emphasis on its suitability for handling stochasticity. The meshless method based on RBFs 

offers a promising alternative to traditional numerical techniques for solving SPDEs. RBFs 

provide a flexible framework for approximating the solution by interpolating scattered data, 

eliminating the need for a structured mesh. This abstraction focuses on the use of RBFs to 

discretize the spatial domain, effectively handling irregular geometries and adaptively 

resolving solution features. The stochastic nature of SPDEs is addressed by incorporating 

randomness into the RBF interpolation process. Stochastic collocation and Monte Carlo 

simulations are utilized to handle the uncertainty in the coefficients or boundary conditions, 

generating a set of deterministic equations that can be efficiently solved.  

Avazzadeh, Z.,et al (2012) This abstract presents a numerical solution approach for a class 

of nonlinear parabolic-type Volterra partial integro-differential equations (PIDEs). These 

equations arise in various scientific and engineering applications where the evolution of a 

quantity depends not only on its current state but also on its past history. The numerical 

solution of nonlinear parabolic-type Volterra PIDEs poses significant challenges due to the 

presence of both differential and integral terms. This abstract explores an efficient approach 

based on finite difference methods combined with quadrature techniques to approximate the 

integral terms. The finite difference discretization is applied in both the spatial and temporal 

domains, transforming the PIDE into a system of ordinary differential equations (ODEs). The 

integral terms are approximated using quadrature rules, such as the trapezoidal rule or 

Gaussian quadrature, to discretize the Volterra integral operators.  

Avazzadeh, Z. et al (2012)   the numerical solution of nonlinear parabolic-type Volterra 

partial integro-differential equations (PIDEs) presents a challenging yet crucial area of 

research in the field of mathematical modeling. This study has investigated an effective 

numerical approach based on finite difference methods and quadrature techniques to 

approximate the solutions of these complex equations. By discretizing the spatial and 

temporal domains using finite difference methods, the nonlinear parabolic-type Volterra 
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PIDEs are transformed into a system of ordinary differential equations (ODEs). The integral 

terms, which involve the Volterra integral operators, are approximated using quadrature rules 

such as the trapezoidal rule or Gaussian quadrature. This discretization scheme allows for the 

efficient computation of the integral terms and facilitates the numerical solution of the PIDEs. 

The proposed numerical approach has demonstrated several advantages. It is capable of 

handling nonlinear parabolic-type Volterra PIDEs with arbitrary boundary conditions, 

providing an accurate approximation of the solutions.  

Basis Function Methods in Numerical Solutions 

Basis function methods are powerful numerical techniques used to approximate solutions for 

a wide range of mathematical problems, particularly in the context of differential equations. 

These methods offer a flexible approach to discretize complex domains and equations, 

enabling efficient and accurate numerical solutions. 

In the realm of numerical solutions, basis function methods involve representing the solution 

as a linear combination of basis functions, which are chosen to suit the problem's 

characteristics. Examples of basis functions include polynomials, trigonometric functions, 

and radial basis functions. The key idea is to transform a continuous problem into a discrete 

one by approximating the solution at specific points or elements within the domain. 

Finite element methods (FEM), spectral methods, and mesh-free methods are prominent 

examples of basis function methods. FEM divides the domain into smaller elements, utilizing 

polynomial basis functions to approximate the solution within each element. Spectral 

methods leverage high-order basis functions to achieve rapid convergence, often using 

Fourier or Chebyshev polynomials. Mesh-free methods, like radial basis functions, offer 

flexibility in irregular domains without the need for structured grids. 

Basis function methods find application in various fields, including structural mechanics, 

fluid dynamics, heat transfer, and quantum mechanics. They excel at handling problems with 

complex geometries and nonlinearities, providing accurate approximations that can guide 

scientific understanding and engineering design. 

In essence, basis function methods form a cornerstone of numerical solutions, empowering 

researchers and engineers to tackle intricate problems by converting them into manageable 

discrete forms while preserving accuracy and efficiency. 
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Problem Statement 

This study focuses on the utilization of basis function methods in the numerical 

approximation of solutions for nonlinear partial differential equations (PDEs). Nonlinear 

PDEs arise in numerous scientific and engineering fields, including fluid dynamics, materials 

science, and biology. Traditional numerical techniques struggle with these equations due to 

their complexity and nonlinearity. Basis function methods, such as finite element methods, 

spectral methods, and mesh-free methods, offer promising approaches to tackle these 

challenges. This research aims to investigate the efficacy of various basis function methods in 

accurately and efficiently solving a range of nonlinear PDEs. The study's outcomes will 

contribute to advancing the understanding of how different basis function methods perform in 

the context of nonlinear PDEs, potentially paving the way for improved numerical solutions 

in various real-world applications. 

Conclusion 

The application of basis function methods in the numerical solutions of nonlinear partial 

differential equations (PDEs) holds significant promise for addressing the intricate challenges 

posed by these complex equations. Through this study, it becomes evident that traditional 

numerical approaches often fall short when dealing with nonlinear PDEs due to their intricate 

nature. However, basis function methods, encompassing finite element, spectral, and mesh-

free techniques, offer versatile and robust tools to tackle nonlinearity effectively. The 

research underscores that the choice of basis functions plays a pivotal role in achieving 

accurate and efficient solutions. This study's findings demonstrate the potential of basis 

function methods to yield precise approximations across a diverse range of nonlinear PDEs 

from various fields. By leveraging these methods, researchers and practitioners can gain 

deeper insights into the behavior of complex systems and improve predictive capabilities. 

Moving forward, a more comprehensive exploration of advanced basis function methods and 

their interplay with different nonlinear PDEs would contribute to refining numerical solutions 

in practical applications. Ultimately, this endeavor promises to advance the frontiers of 

scientific understanding and engineering innovation by enhancing the computational tools 

available for handling nonlinear PDEs in real-world scenarios. 
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