THE CONNECTED EDGE FIXING EDGE-TO-EDGE GEODETIC NUMBER OF A GRAPH

L.Merlin Sheela, Research Scholar, Register number: 18233232092003, Department of

Mathematics, St. Jude's College, Thoothoor - 629 165, Tamil Nadu, India
${ }^{1}$ sheelagodwin@ gmail.com
M. Antony, Department of Mathematics, St. Jude's College, Thoothoor - 629 165, Tamil Nadu, India, Affiliated to ManonmaniamSundaranar University, Abishekapatti, Tirunelveli - 627012

Abstract

In this article, we introduce the concept of the connected edge fixing edge-to-edge geodetic number $\mathrm{g}_{\text {cefee }}$ (G)for an edge eof a graph G. The connected edge fixing edge-to-edge geodetic number of certain classes of graphs including path, cycles, trees, complete graphs are studied. Connected graphs of size q with $\mathrm{g}_{\text {cefee }}(\mathrm{G})=\mathrm{q}-1$ are characterized. It is shown that for a positive integers r , dand ℓ with $\mathrm{r}<d<2 r$, there exists a connected graph G with $\operatorname{rad}(\mathrm{G})=\mathrm{r}$, $\operatorname{diam}(\mathrm{G})=\mathrm{d}$ and $\mathrm{g}_{\text {cefee }}(\mathrm{G})=$ ℓ or $\ell-1$ for some $\mathrm{e} \in \mathrm{E}(\mathrm{G})$.

KEYWORDS: connected edge fixing edge-to-edge geodetic number, connected edge-to-edge geodetic number, edge-to-edge geodetic number, distance,edge-to-edge distance.

1. INTRODUCTION

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. We consider connected graphs with at least three vertices. For basic definitions and terminologies we refer to [1]. If $e=\{u, v\}$ is an edge of a graph G, we write $e=u v$, we say that e joins the vertices u and v; uand vare adjacent vertices; u andv are incident with e. The degree of a vertex v in a graph G is the number of edges of Gincident with v and is denoted by $\operatorname{deg}_{G}(\mathrm{v})$ or $\operatorname{deg}(\mathrm{v})$.A vertex v is an extreme vertex of G if the sub-graph induced by its neighbors is complete. An edge e is an extreme edge of a graph G if at least one end of e is an extreme vertex of G. For vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u-v$ path in G. An $u-$ vpath of length $d(u, v)$ is called an $u-$ vgeodesic.The eccentricity $e(u)$ of a vertex u is defined by $e(v)=\max \{d(u, v): u \in V\}$.Each vertex in V at which the eccentricity function is minimized is called a central vertex of G and the set of all central vertices of G is called the center of G and is denoted by $\mathrm{Z}(\mathrm{G})$.The radius r and diameter d of G are defined by $r=\min \{e(v): v \in V\}$ and $d=\max \{e(v): v \in V\}$ respectively. This gives rise the concept of the geodetic number and the edge geodetic number of a graph [2-13]. For subsets A and B of $V(G)$, the distance $d(A, B)$ is defined as $d(A, B)=\min \{d(x, y): x \in A, y \in B\}$. An $u-v$ path of length $d(A, B)$ is called an $A-$ Bgeodesic joining the sets A, B where $u \in A$ and $v \in B$. A set $S \subseteq E$ is called an edge-to-edge geodetic set of G if every edge of G is an element of Sor lies on a geodesic joining a pair of edges of S. The edge-to-edge geodetic number $g_{e e}(G)$ of G is the minimum cardinality of its edge-to- edge geodetic sets and any edge-to- edge geodetic set of cardinality $\mathrm{g}_{\mathrm{ee}}(\mathrm{G})$ is said to be a $\mathrm{g}_{\mathrm{e}}{ }^{-s e t}$ of G . The edge-to-edge geodetic number of a graph was studied in[1].

The following theorems are used in sequel.
Theorem 1.1. [1] If v is an extreme vertex of a connected graph G, then every edge-to-edge geodetic set contains at least one extreme edge is incident with v.
Theorem 1.2. [1] For any non-trivial tree T with k end vertices, $g_{e e}(T)=k$.
II. Connected Edge Fixing Edge-to-Edge Geodetic Number of a graph

Definition 2.1. Let ebe an edge of a connected graphG. A set $M(e) \subseteq E(G)-\{e\}$ is called a connected edge fixing edge-to-edge geodetic set of e of a graph G, if every edge of Glies on ane- fgeodesic, where $f \in M(e)$. The connected edge fixing edge-to-edge geodetic number $g_{\text {cefee }}(G)$ of G is the minimum cardinality of its connected edge fixing edge-to-edge geodetic sets and any
connected edge fixing edge-to-edge geodetic set of cardinality $g_{c e f e e}(G)$ is a $g_{c e f e e}$-set of G.
Example 2.2. For the graph G given in Figure 2.1, the connected edge fixing edge-to-edge geodetic sets of each edge of G is given in the following Table I.

Table: I

Fixing	Minimum connected edge fixing Edge (e)	$g_{\text {cefee }}(G)$
$v_{1} v_{2}$	$\left\{v_{4} v_{5}, v_{5} v_{6}\right\}$	2
$v_{2} v_{3}$	$\left\{v_{1} v_{2}, v_{2} v_{7}, v_{6} v_{7}, v_{5} v_{6}\right\}$	4
$v_{3} v_{4}$	$\left\{v_{1} v_{2}, v_{6} v_{7}, v_{2} v_{7}\right\}$	3
$v_{4} v_{5}$	$\left\{v_{1} v_{2}, v_{2} v_{7}\right\}$	2
$v_{5} v_{6}$	$\left\{v_{1} v_{2}, v_{2} v_{3}\right\}$	2
$v_{6} v_{7}$	$\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}\right\}$	3
$v_{2} v_{7}$	$\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{5}\right\}$	4

Remark 2.3. Edge e for a connected graph G does not belong to any connected edge fixing edge-toedge geodetic set $M(e)$. Moreover, the connected edge-fixing edge-to-edge geodetic set of an edge e is not unique.
Theorem 2.4. Let v be the most extreme vertex and e the edge of a connected graph G such that v is not incident with e.Then, irrespective of whether e is an extreme edge or not, every connected edge fixing edge-to-edge geodetic set of e of G contains at least one extreme edge that is incident with v.
Proof: $\operatorname{Let} M(e)$ be any connected edge fixing edge-to-edge geodetic set of e of G, and lete $e_{1}, e_{2}, \cdots, e_{l}$ be the edges incident with v. We claim $e_{i} \in M(e)$ for some $i(1 \leq i \leq l)$. Suppose that $e_{i} \notin M(e)$ for all $i(1 \leq i \leq l)$.The vertex v is lying on the connected edge-to-edge geodetic path connecting a vertex, say x, incident with e and $y \in V, M(e)$, since $M(e)$ is a connected edge fixing edge-to-edge geodetic set of e of G. v is not an extreme vertex of G since it is an internal vertex of a connected edge-to-edge geodetic path, $x-y$, which is a contradiction.Hence $e_{i} \in M(e)$ for some $i(1 \leq i \leq$ k).

Corollary: 2.5. Let e be an edge of G such that e is not an end edge of G.Then, every end edge of G other than e is a part of every connected edge that fixes the edge-to-edge geodetic seteof G.
Proof: This follows from Theorem 2.4.
Theorem: 2.6. Let $M(e)$ be a connected edge fixing edge-to-edge geodetic set of G and let G be a connected graph. Let f be a cut-edge of G, which is not an end edge of G and let G_{1} and G_{2} be the two components of $G-\{f\}$.
(i)

$$
\text { If } \quad e=f \text {,then }
$$

an element of $M(e)$ is contained in each of the two components of $G-\{f\}$.
(ii)

If $\quad e \neq f$, then
$M(e)$ contains at least one edge of components of $G-\{f\}$ where e does not lie.
Proof: Let $f=u v$.Let G_{1} and G_{2} be the two component of $G-\{f\}$ such that $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. Lete $=f$. Assume that $M(e)$ does not contain any element of G_{1}. Then $M(e) \subseteq E\left(G_{2}\right)$. Suppose h is an edge of $E\left(G_{1}\right)$. Then hmust lie on ane-f' geodetic path $P: v, v_{1}, v_{2}, \ldots, v_{l}, v, u, u_{1}, u_{2}, \ldots, u_{s}, u, v$, v_{1}, v_{2}, \ldots, v Where $v_{1}, v_{2}, \ldots, v_{l} \in V\left(G_{2}\right), u_{1}, u_{2}, \ldots, u_{s} \in V\left(G_{1}\right)$,
Where v^{\prime} is an end of $f^{\prime} \in M(e)$. Hence v lies twice in P, which is a contradiction to P a geodetic path.By using a similar justification, we may demonstrate that if $e \neq f$, then $M(e)$ contains at least one edge of $G-\{f\}$ components where e does not lie.
Theorem: 2.7. Let $M(e)$ be a minimum connected edge fixing edge-to-edge geodetic set of an edge e of G and G be a connected graph and f be a cut-edge.
(i)If $e=f$ is an end-edge of G then $e \notin M(e)$.
(ii) If f is not an end-edge of G then $e \in M(e)$.

Proof: Let $M(e)$ represent a minimum connected edge fixing edge-to-edge geodetic set for an edgee $=u v$ of G. Let $f=u^{\prime} v^{\prime}$ be an edge G_{1} contains an edge $x y$ and G_{2} contains an edge $x^{\prime} y^{\prime}$ where $x y, x^{\prime} y^{\prime} \in M(e)$. Since $G[M(e)]$ is connected, $f \in M(e)$.
Theorem: 2.8. For any non-trivial tree T with kend edges, $g_{\text {cefee }}(T)=$ $\begin{cases}k & \text { if } e \text { is an internal edge of } T \\ k-1 & \text { if } e \text { is an }\end{cases}$
$\{k-1 \quad$ if e is an end edge of T
Proof: This follows from Corollary 2.5 and Theorem 2.7.
Corollary: 2.9. For a star $G=K_{1, q}, g_{\text {cefee }}(G)=q-1$ for any edge e of G.
Theorem: 2.10. For a positive integerr, d and $\ell>d-r+2$ and $l \geq d$ with $\mathrm{r} \leq \mathrm{d} \leq 2 r$, there exists a connected graph G with $\operatorname{rad}(G)=r, \operatorname{diam}(G)=d$ and $g_{\text {cefee }}(G)=\ell$.
Proof: If $l=2$, consider G to be any path with at least three vertices. Let $l \geq 3$ and let $P_{d-r+1}: u_{0}, u_{1}, u_{2}, \ldots . u_{d-r}$ be a path of length $d-r+1 . C_{2 r}: v_{1}, v_{2}, \ldots . v_{2 r}, v_{1}$ be a cycle of length $2 r$. By locating v_{1} in $C_{2 r}$ and u_{0} in P_{d-r+1}, we may construct the graph H from $C_{2 r}$ and u_{0} in P_{d-r+1}. In order to create the graph G, join each vertex $w_{i}(1 \leq r \leq l-d+r-2)$ to the vertex u_{d-r+1}, add $(l-d+r-2)$ new vertices $w_{1}, w_{2}, \ldots . . w_{\ell-\mathrm{d}+\mathrm{r}-2}$ to H.By Theorem 2.4 and Corollary $2.5, Z$ is a subset of everyconnected edge fixing the edge-to-edge geodetic set of an edge eof G and so $g_{\text {cefee }}(G) \geq l-1$. It is clear that Z is not an connected edge fixing the edge-to-edge geodetic set of an edge e of G and so $g_{\text {cefee }}(G) \geq l$. Let $S=Z \cup\left\{v_{1} v_{2}\right\}$. Then S is a connected edge fixing the edge-to-edge geodetic set of an edge e of G so that $g_{\text {cefee }}(G)=l$.

3. CONCLUSIONS

With the contribution of the connected edge fixing edge-to-edge geodetic number of a graph, we can introduce the forcing connected edge fixing edge-to-edge geodetic number $f_{g_{\text {cefee }}}(G)$ of an edge e of G.The forcing connected edge fixing edge-to-edge geodetic number of certain graphs can be studied.

4. ACKNOWLEDGMENT

The author would like to express her gratitude to the referees for their valuable comments and suggestions.

REFERENCES

1. M. Antony and A.L. Merlin Sheela, The Edge-to-Edge Geodetic Number Of a Graph, JASC: Journal of Applied Science and Computations, Volume VI, Issue V, (2019), 1954-1962.
2. F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
3. G. Chartrand and P. Zhang,The forcing geodetic number of a graph, Discuss. Math. Graph Theory, 19 (1999), 45-58.
4. G.Chartrand, F. Harary and P. Zhang, Geodetic Sets in Graphs, DiscussionesMathematicae Graph Theory,20(2000), 129 - 138.09), 219-229.
