## TIME SERIES

GOVINDARAJAN. K<br>Research Scholar<br>M.Phil Mathematics<br>Bharath Institute Of Higher Education And Research<br>Mail Id: balpd6@gmail.com<br>Dr. R. DEEPA<br>Assistant Professor, Department Of Mathematics<br>Bharath Institute Of Higher Education And Research

Address for Correspondence GOVINDARAJAN. K

Research Scholar
M.Phil Mathematics

Bharath Institute Of Higher Education And Research
Mail Id: balpd6@gmail.com


#### Abstract

One important parametric family among the life distributions is the exponential family distributions, which play a central role within the class of all life distributions. Because of their remarkable properties, exponential distributions arise naturally in theoretical settings. It is not surprising, then, that exponential distributions have been overused in applications; but that does not diminish their importance. The importance of exponential distribution is partly due to the fact that several of the most commonly used families of life distributions are parametric extensions of this distribution. Such a parametric extension of a particular family of distributions will helps to capture the skewness and peakedness inherent in the data sets, which enables a more realistic modeling of data arising many different real life situations. Also, exponential distribution, with their constant hazard rates, form a baseline for evaluating other parametric families of distributions. One can see much more about this distribution in Balakrishnan and Basu (1995), Johnson et al. (1994), Mann et al. (1974) and Nelson and Wayne (2004). For characterizations of the exponential distribution, see Galambos and Kotz (1978) and Azlarov and Volodin (1986).


The double exponential distribution (Laplace distribution), which is actually,
sym-metric extension of exponential distribution to real line is a competitive model with the normal distribution. The heavy tail and the over peakedness of Laplace distri- bution than normal found applications in modeling data from various contexts such as finance, engineering, astrophysics, geographical information systems, grain size distribution, stock returns and exchange rate changes, business firm growth, humanheredity, information theory, pattern recognition, image and signal processing etc , see Howard and Vitter (1992), Lau and Post (1992), Nakayama et al. (1993), Rachev and Sengupta (1993), Alliney and Ruzinsky (1994), Wu and Fitzgerald (1995), Theodos- siou (1998), Walker and Jackson (2000), Kozubowski and Podgorski (2001), Linden (2001), Nelson (2002), Bottazzi and Secchi (2003a, b, c), Etzel et al. (2003), Gross and Levine (2003), Binia (2005), Linden (2005), Xi et al. (2005) and Sharma et al.

## Introduction

In this chapter, we discuss some of the recent extensions exponential distribution on real line ( generalizations of Laplace distribution) and related time series models. The Laplace distribution is considered as the one among the important statistical distributions due to its appropriateness in modeling data arising from the variety of real life situations, see Kotz et. al (2001). The density and the characteristic functions
of a Laplace random variable X are respectively,

$$
\begin{align*}
f(x) & =\frac{1}{2 \sigma} e^{-\frac{|x|}{\sigma}}, \sigma>0,-\infty<x<\infty,  \tag{6.1.1}\\
\Psi_{X}(t) & =\frac{1}{1+t^{2} \sigma^{2}} . \tag{6.1.2}
\end{align*}
$$

The Laplace distribution is a symmetric distribution. Recently, it can be seen that the researchers are more interested in the skewed forms of symmetric distributions may be due to the fact that most of the real datasets are not symmetric. Different forms of skewed Laplace distributions can be seen in the literature. Some important skewed forms of Laplace distributions are

- Asymmetric Laplace distributions obtained by the method of inverse scale factors (Skew Laplace type-1 distributions denoted as $S L_{1}$ ).
- Asymmetric Laplace distribution obtained by the method of hidden truncation (Skew Laplace type-2 distribution denoted as $S L_{2}$.)
- Asymmetric Laplace distribution obtained as the convolution of exponential and Laplace random variable (Skew Laplace type -3 distribution denoted as $S L_{3}$.)

Kozubowski and Podgorski(2000) introduced an asymmetric Laplace distribution by the method of inverse scale factors. The characteristic function of asymmetric Laplace distribution with skewness parameter $\kappa$.

Note that when $\mu=0$ that is $\kappa=1$, corresponds to the characteristic function of symmetric Laplace distribution. Such an extension increase the fields of applications of Laplace distribution, see, Kozubowski and Podgorski (2000) and Julia and VivesRego (2005).

Many authors introduced non Gaussian stationary autoregressive processes and continous time Levy processes connected with the Laplace distribution, and pointed out general schemes leading to such models, which show promise in stochastic modeling. Time series models with marginal as Laplace, and $\alpha$ - Laplace distributions can be seen in Jayakumar et al. (1995) and Seetha Lakshmi et al. (2003). Jayakumar and Kuttikrishnan (2007) introduced a time series model with asymmetric Laplace distribution (that is, skew Laplace type-1 distribution), having characteristic function (6.1.3), as marginal distribution.

Although the theory and applications of skew Laplace distributions is well developed and there is considerable literature in recent years, their application in time series modeling is not well developed. In this chapter autoregressive processes $S L_{2}$ and $S L_{3}$ distribution as marginals are developed. In Section 2, we give an overview on $S L_{2}$ distribution. First order autoregressive model with $S L_{2}$ distribution as marginals is introduced in Section 3. Skew Laplace type-3 distribution is discussed in Section 4 and related time series models are discussed in Section 5. The estimation of the parameters involved in the process is also discussed. Section 6 is about generalizations
of the $S L_{3}$ distribution and the corresponding $\mathrm{AR}(1)$ processes.

## Skew Laplace type $2\left(S L_{2}\right)$ distribution

Another asymmetric Laplace distribution is obtained by using Azzalini (1985)'s method of introducing skewness into a symmetric distribution, known as method of hidden truncation, see Arnold and Beaver (2000a). A skewed Laplace probability density, by the method of Azzallini (1985), takes the form

$$
f(x)=\begin{array}{lll}
\frac{1}{1} & e_{2}^{-\left\lvert\, \frac{x}{b}-1\right.} e_{2}^{-(1+\lambda)|x|} \sigma & \text { for } x \geq 0  \tag{6.2.1}\\
\sigma \cdot & \frac{1}{1} e^{\left.-(1+\lambda)| |^{\left.\frac{x}{\sigma} \right\rvert\,} \right\rvert\,} & \text { for } x<0 .
\end{array}
$$

where $\sigma>0$ is the scale parameter and $\lambda \geq 0$ known as skewness parameter sinceit controls skewness. Let us denote the distribution with density function (6.2.1) as $S L_{2}$ (Skew Laplace type 2) distribution. Note that $\lambda=0$ corresponds to the parent symmetric Laplace distribution. The characteristic function of this distribution is given by

$$
\begin{equation*}
\Psi(t)=\frac{t+\left(1+\lambda^{2}\right) i}{(t+i)\left(t^{2}+(1+\lambda)^{2}\right)} \tag{6.2.2}
\end{equation*}
$$

Kozubowski and Nolan (2008) has shown that this distribution with characteristic function (6.2.2) is self decomposable whenever $\lambda$ satisfies the condition $0 \leq \lambda \quad \frac{\sqrt{2} 5-}{5-1}$. Other important basic measures of this distribution are given below

$$
\boldsymbol{E}\left(\boldsymbol{X}^{k}\right)=\sigma^{k} \Gamma(k+1) \begin{align*}
& 1  \tag{6.2.3}\\
& 1_{(1+\lambda)^{k+1}}^{1} \\
& \text { if } \mathrm{k} \text { is even } \\
& \text { if odd }
\end{align*}
$$

In particular,

$$
\begin{gather*}
E(X)=\sigma \quad 1 \quad \frac{1}{(6.2 .4)(1+\lambda)^{2}} \\
V(X)=\frac{\sigma^{2}\left(\lambda^{4}+3 \lambda^{3}+8 \lambda^{2}+8 \lambda+\right.}{+8 \lambda+2)^{3}} \tag{6.2.6}
\end{gather*}
$$

## First order autoregressive process with $S L_{2}$ as marginal distribution.

$$
\begin{equation*}
\Psi_{\epsilon}(t)=\frac{t+\left(1+\lambda^{2}\right) i}{(t+i)\left(t^{2}+(1+\right.} \frac{(\rho t+i)\left(\rho^{2} t^{2}+(1+\lambda)^{2}\right)}{\rho t+\left(1+\lambda^{2}\right) i} \tag{6.3.1}
\end{equation*}
$$

$\lambda)^{2}$ )

$$
\begin{equation*}
=\rho^{2}+\left(1-\rho^{2}\right) \Psi_{E_{m i x}}(t) \tag{6.3.2}
\end{equation*}
$$

where $\Psi_{E_{m i x}}(t)$ is the characteristic function of mixture of exponential random variables and is given by

$$
\begin{equation*}
\Psi_{E_{m i x}}(t)=h_{1} \frac{1}{1+t / \eta_{1}}+g_{1} \frac{1}{1-t / \lambda_{1}}+g_{2} \frac{1}{1-t / \lambda_{2}}+g_{3} \frac{1}{1-t / \lambda_{3}} \tag{6.3.3}
\end{equation*}
$$

 $\frac{-\rho^{2}(1-p)^{2}=}{(1+\rho)(1-\rho p)\left(1-\rho^{2} \rho\right)}$
Therefore innovation sequence $\epsilon_{n}$ is given by

$$
\epsilon_{n}=\begin{array}{lll}
. & \text { with probability } & \rho^{2}  \tag{6.3.4}\\
\square E_{m i x} & \text { with probability } & 1-\rho^{2}
\end{array}
$$

As shown in Kozubowski and Podgorski (2008) the density function corresponding to the characteristic function (6.3.3) is given by

$$
\begin{equation*}
g(x)=h_{1} \eta_{1} e^{\eta 1 x} I_{(-\infty, 0)}(x)+\sum_{=1}^{2} g_{i} \lambda_{i} e^{-\lambda_{i} x} I_{[0, \infty)}(x) \tag{6.3.5}
\end{equation*}
$$

## Skew Laplace type $3\left(S L_{3}\right)$ distribution

Another form of skew Laplace distribution can be obtained by the convolution of symmetric Laplace and exponential distributions. This distribution is known as Skew Laplace type 3 ( $S L_{3}$ ) distribution, see Kozubowski and Podgorski (2008). The prob-ability density function of the $S L_{3}$ distribution is given by

A random variable $X$ following Skew Laplace type 3 distribution has characteristicfunction is given by,

$$
\begin{equation*}
\Psi_{X}(t)=\frac{1}{\left[1+\left(1-c^{2}\right) \sigma^{2} t^{2}\right][1-i c \sigma t]^{\prime}} \tag{6.4.2}
\end{equation*}
$$

$\sigma>0, c \in[-1,1]$. It is denoted by $X{ }^{\&} S L_{3}(c, \sigma)$. Whenever the parameter $\mathrm{c}=0$, we obtain the standard symmetric Laplace distribution. This distribution arise as the distribution of the random variable $X_{\lambda}$, where,

$$
X_{\lambda}=\frac{V^{1}}{\overline{1+\lambda^{2}}} X+\frac{\nu^{\lambda}}{\overline{1+\lambda^{2}}}|Y|,
$$

and by denoting $c=\underset{1+\lambda^{2}}{\lambda} \in[-1,1]$ where $X$ and $Y$ are independent and identically distributed standard Laplace random variables, see Kozubowski and Podgorski (2008). The above characteristic function is actually is the characteristic function of the convolution of a Laplace random variable and an independent exponential random variable, see Jose et al (2010). That is, it is the characteristic function of the random variable $\mathbf{Z}=\mathbf{L}+\mathrm{E}$, where $\boldsymbol{L} \boldsymbol{L}\left(\left(1-c^{2}\right) \frac{1}{2} \sigma\right)$. and $\boldsymbol{E} \quad \operatorname{Exp}(c \sigma)$. From (6.4.2), d d
it is clear that the $\mathrm{SL}_{3}$ distribution is infinitely divisible. Next we introduce an AR(1)time series model with skew Laplace distribution as marginals.

## First order autoregressive process with $S L_{3}$ as marginal distribution

Consider the $\mathrm{AR}(1)$ process,

$$
\begin{equation*}
X_{n}=\rho X_{n-1}+\epsilon_{n}, 0<\rho<1 . \tag{6.5.1}
\end{equation*}
$$

In terms of characteristic function, we obtain,

$$
\begin{equation*}
\Psi_{\epsilon}(t)=\frac{\Psi_{X}(t)}{\Psi_{X}(\rho t)} \tag{6.5.2}
\end{equation*}
$$

The first order $\mathrm{SL}_{3}$ autoregressive process is given by (6.5.1) and $\epsilon_{n}$ is a sequence of independent and identically distributed random variables such that $X_{n}$ is stationary Markovian with $S L_{3}$ marginal distribution. Suppose that $X_{n} \sim \operatorname{SL}_{3}(c, \sigma)$. Then

$$
\begin{align*}
\Psi_{\epsilon}(t) & \frac{\left[1+\left(1-c^{2}\right) \sigma^{2} \rho^{2} t^{2}\right][1-i c \rho \sigma t]}{\left[1+\left(1-c^{2}\right) \sigma^{2} t^{2}\right]} \frac{{ }_{3}}{[1-i c \sigma t]}  \tag{6.5.3}\\
= & \rho+\rho(1-\rho) \frac{\left(1-\rho^{2}\right) \rho}{1-i c \sigma t}+\frac{1}{2} \frac{\sqrt{2}}{1+i\left(1-c^{2}\right) \sigma t} \\
& +\frac{\left(1-\rho^{2}\right) \rho}{2} \frac{1}{1-i^{\frac{V}{\left(1-c^{2}\right)} \sigma t}+(1-\rho)^{2(1+\rho)} \overline{\left[1+\left(1-c^{2}\right) \sigma^{2} t^{2}\right][1-i c \sigma t]}} \tag{6.5.4}
\end{align*}
$$

Therefore we can represent the innovation sequence as

where $E_{i n}, \mathrm{i}=1,2,3$ are independent and identically distributed exponential random variables.

Using (6.5.3) we can also be written as,

$$
\begin{equation*}
\Psi_{c}(t)=\rho^{2}+\frac{\left(1-\rho^{2}\right)}{\left(1+\left(1-c^{2}\right) \sigma^{2} t^{2}\right)} \quad \rho+\frac{(1-\rho)}{(1-i c \sigma t)} . \tag{6.5.6}
\end{equation*}
$$

This implies that the innovation sequence is a convolution of a Laplace tailed random variable and an independently distributed tailed exponential random variable of Littlejohn (1994). That is, $\epsilon_{n}$ can be written as

$$
\begin{equation*}
\epsilon_{n} \stackrel{d}{=} Y_{1}+Y_{2} \tag{6.5.7}
\end{equation*}
$$

where $Y_{1}$ is a tailed Laplace random variable and $Y_{2}$ is a tailed exponential random variable, ie, $\quad \sim \operatorname{LT}\left(\rho^{2},(1-c)^{\frac{2}{2}} \sigma\right)$ and $\sim \operatorname{ET}(\rho, c \sigma)$. $\begin{array}{ll}\mathrm{Y}_{1} & \mathrm{Y}_{2}\end{array}$

Theorem 6.5.1. The $A R(1)$ process as defined in (6.5.1) is strictly stationary Marko-vian with $S L_{3}$ marginal distribution if and only if $\left\{\epsilon_{n}\right\}$ 's are independent and identid cally distributed as defined in (6.5.5) (or (6.5.7)), provided $X_{0} \quad S L_{3}(c, \sigma)$. ~

Proof: The equation (6.5.1), when it expressed in terms of characteristic function becomes,

$$
\begin{equation*}
\Psi_{X_{n}}(t)=\Psi_{X_{n-1}}(\rho t) \Psi_{\epsilon_{n}}(t) \tag{6.5.8}
\end{equation*}
$$

on assuming stationarity and if $\boldsymbol{X}_{n}{ }^{d} S L_{3}(c, \sigma)$, we obtain, $\Psi_{\epsilon}(t)$ same as (6.5.3) and so $\left\{\epsilon_{n}\right\}$ 's are independent and identically distributed as defined in (6.5.7).

The converse can be proved by the method of mathematical induction. From (6.5.8)
and assuming $X_{0} \stackrel{d}{\sim}$
$S L_{3}(c, \sigma)$, we obtain $X_{1} \sim S L_{3}(c, \sigma)$, we obtain the required result.
Another representation of the innovation random variable is obtained using the result that,

$$
\begin{equation*}
\frac{\left[1+\left(1-c^{2}\right) \sigma^{2} \rho^{2} t^{2}\right][1-i c \rho \sigma t]}{\left[1+\left(1-c^{2}\right) \sigma^{2} t^{2}\right]} \frac{p_{1}}{[1-i c \sigma t]}=\frac{p_{2}}{\left(1-i 1-c^{2} \sigma t\right)}+\frac{\sqrt{ }-\frac{\left(1+i p \frac{1}{3}-c^{2} \sigma t\right)}{(1-i c \sigma t)}}{+\frac{\sqrt{(1-2})}{(1)}} \tag{6.5.9}
\end{equation*}
$$

where $0<p_{i}<1, \mathrm{i}=1,2,3$ and
$\Sigma_{3} \quad{ }_{i=1} p_{i}=1$ is given

$$
\begin{align*}
& p_{1}=\frac{\operatorname{by}\left(1-\rho^{2}\right) \frac{\sqrt{ }}{1-c^{2}}}{\left(\underset{1-\left(1-e^{2}+c\right)(\rho e+(1-\sqrt{2}}{1-c^{2}}+c_{2}-c\right)} \\
& p_{2}=\frac{\rho c+\sqrt{\left.1-c^{2}+c\right) p_{1}}}{\left(1-c^{2}-c\right)}  \tag{6.5.11}\\
& p_{3}=1-p_{1}-p_{2} \tag{6.5.12}
\end{align*}
$$

Therefore we can represent the error variable $\epsilon_{n}$ as

$$
\epsilon_{n}=\begin{array}{cll}
E_{1} & \text { with probability } & p_{1}  \tag{6.5.14}\\
-E_{2} & \text { with probability } & p_{2} \\
\square \boldsymbol{E}_{3} & \text { with probability } & p_{3}
\end{array}
$$

where $E_{i}{ }^{\mathrm{J}} \mathrm{s}$, i=1,2 are exponentially distributed with parameter $\left(\sqrt{ } 1-c^{2}\right) \sigma$ and $E_{3}$ follows exponential distribution with parameter $\mathrm{c} \sigma$.

The joint characteristic function of ( $X_{n}, X_{n-1}$ ), can be written as

$$
\begin{align*}
\Psi_{X_{n}, X_{n-1}}\left(t_{1}, t_{2}\right) & =E\left[\exp \left(i t_{1} X_{n}+i t_{2} X_{n-1}\right)\right]  \tag{6.5.15}\\
& =\Psi_{\epsilon}\left(t_{2}\right) \Psi_{X}\left(t_{1}+\rho t_{2}\right) \tag{6.5.16}
\end{align*}
$$



Figure 6.1: sample path of the process (6.5.1) for the parameters $\mathrm{c}=.25, \sigma=1$ and $\mathrm{c}=.5$, $\sigma=1$.

In the case where $X_{n} \sim \operatorname{SL}_{3}(c, \sigma)$, the above becomes

The joint distribution is obtain by inverting the joint characteristic function. Note that the characteristic function (6.5.17) is not symmetric in the arguments $\mathrm{t}_{1}$ and $\mathrm{t}_{2}$. So the process is not time reversible.
Using the $\operatorname{AR}(1)$ structure $X_{n}=\rho X_{n-1}+\epsilon_{n}$, we can write,

$$
\begin{equation*}
\Psi_{X_{n}}(t)=\Psi_{X}\left(\rho_{n} t\right)^{n \mathbf{Y}} \Psi_{k=0} \Psi_{k}\left(\rho_{k} t\right) \tag{6.5.18}
\end{equation*}
$$

Suppose $X_{n}$ d
$\mathrm{SL}_{3}(c, \sigma)$. It can be seen that,

When $n \longrightarrow \infty$,

$$
\Psi_{X_{n}}(t) \rightarrow \frac{1}{\left[1+\left(1-c^{2}\right) \sigma^{2} t^{2}\right][1-i c \sigma t]}
$$

Hence $X_{n}$ is asymptotically distributed as $\mathrm{SL}_{3}(c, \sigma)$.
We have,

$$
\begin{equation*}
\Psi_{X_{n}}^{\mathrm{J}}(t) \frac{\left.\left(\left[1+\left(1 \_c^{2}\right) \sigma^{2} t^{2}\right]\left(\left[1 \_i c \sigma t\right] i c \sigma\right)+\left[1_{-} i c \sigma t\right] 2 \sigma^{2} t\left(1 \_c^{2}\right)\right]\right)}{\left(\left[1+\left(1-c^{2}\right) \sigma^{2} t^{2}\right][1-i c \sigma t]\right)^{2}} \tag{6.5.20}
\end{equation*}
$$

When $\mathrm{t}=0$, we obtain $\mathrm{E}(\mathrm{X})=c \sigma, \mathrm{E}\left(\epsilon_{n}\right)=(1-\rho)(c \sigma)$.
Therefore, $\mathrm{E}\left(\boldsymbol{X}_{n} \mid \boldsymbol{X}_{n-1}=x\right)=\rho x+(1-\rho)(c \sigma)$.

Now let us look at the sample path behavior of the process discussed above. Using (6.5.14) we obtain,

$$
\begin{align*}
P\left(X_{n}>X_{n-1}\right)=p_{1} P\left(E_{1}>(1-\rho) X_{n-1}\right) & +p_{2} P\left(-E_{2}>(1-\rho) X_{n-1}\right) \\
& +p_{3} P\left(E_{3}>(1-\rho) X_{n-1}\right) . \tag{6.5.21}
\end{align*}
$$

where $p_{i}$ 's and $E_{i}$ 's are as given above. Using simple algebraic calculations, it can beshown that
$P\left(E_{1}>(1-\rho) X_{n-1}\right)=$

$$
\begin{equation*}
\left.\sqrt{ } \overline{1-c^{2}(1}-\rho\right) \quad \frac{1}{2(2-\rho)\left[\frac{1}{1-c^{2}-c}\right]}-\frac{\sqrt{ } c^{2}}{\left.\left(1-2 c^{2}\right)\left[\frac{1-c^{2}(1}{}-\rho\right)+c\right]} \tag{6.5.22}
\end{equation*}
$$

and

$$
\begin{align*}
P\left(-E_{2}>(1-\rho) X_{n-1}\right)= & \frac{\sqrt{ }-c^{2}}{2(2-\rho)\left[1-c^{2}+c\right]} \\
P\left(E_{3}>(1-\rho) X_{n-1}\right) & =\frac{\sqrt{ }}{1-c^{2}}  \tag{6.5.23}\\
2\left[\frac{\left.\sqrt{ } 1-c^{2}-c\right]}{1-}\right. & 1-\frac{c}{(1-\rho) \sqrt{ } 1-c^{2}+c}-1-2 c^{2} \tag{6.5.24}
\end{align*}
$$

On substituting (6.5.22), (6.5.23) and (6.5.25) in (6.5.21) we obtain the required probability.

Estimation of parameters can be done as follows. The parameter ${ }^{J} \rho^{J}$ can be estimated from the sample auto correlation, ie. we obtain $\hat{a} \xlongequal{ }=\operatorname{Corr}\left(\boldsymbol{X}_{n}, \boldsymbol{X}_{n-1}\right)$. The other parameters are obtained by equating the the sample cumulants and corresponding population cumulants. The estimators are

$$
\begin{aligned}
\hat{\sigma} & =\frac{\kappa_{1}}{(1-\hat{\rho}) \hat{c}} \\
\hat{c}^{2} & =\frac{2 \kappa_{1}}{\kappa_{1}+\kappa_{2}}
\end{aligned}
$$

Consider another process of the structure

$$
X_{n}=\begin{array}{ll}
X_{n-1} & \text { with probability }  \tag{6.5.26}\\
\square \rho X_{n-1}+\epsilon_{n} & \text { with probability } \\
1-p
\end{array}
$$

Using characteristic function we obtain the characteristic function of the innovation as (6.5.3), therefore the innovation sequence $\epsilon_{n}$ is distributed as in (6.5.5).

Next we discuss the higher order AR process with $S L_{3}$ as marginal distribution. The $k^{\text {th }}$ order autoregressive process with $S L_{3}$ as marginal distribution is given by

$$
\begin{array}{rlrl} 
& \rho_{1} X_{n-1}+\epsilon_{n} & \text { with probability } & p_{1} \\
& \rho_{2} X_{n-2}+\epsilon_{n} & \text { with probability } & p_{2} \\
\boldsymbol{X}_{n}= & \\
& \cdot & \\
& \cdot & \\
& \cdot & \\
\rho_{k} X_{n-k}+\epsilon_{n} & \text { with probability } & p_{k}
\end{array}
$$

where $0<p_{i}<1, \mathrm{i}=1,2, . ., \mathrm{k}$. and ${ }_{i=1}^{\Sigma_{k}} p_{i}=1$ and $\left\{X_{n}, n \geq 1\right\}$ are $S L_{3}$ distributed. If all the $\rho_{i}{ }^{\mathrm{J}} s$ are equal, say $\rho_{i}=\rho$ for $\mathrm{i}=1,2, \ldots, \mathrm{k}$, then by using characteristic function
of $S L_{3}$ distribution, from (6.5.27), we obtain

$$
\begin{equation*}
\Psi_{X_{n}}(t)=p_{1} \Psi_{X_{n}}(\rho t) \Psi_{\epsilon_{n}}(t)+p_{2} \Psi_{X_{n-1}}(\rho t) \Psi_{\epsilon_{n}}(t)+\ldots+p_{k} \Psi_{X_{n-k}}(\rho t) \Psi_{\epsilon_{n}}(t) \tag{6.5.28}
\end{equation*}
$$

Assuming stationarity we get

$$
\begin{equation*}
\Psi_{\epsilon}(t)=\frac{\Psi_{X}(t)}{\Psi_{X}(\rho t)} \tag{6.5.29}
\end{equation*}
$$

Therefore the innovation distribution corresponding to the $k^{t h}$ order process (6.5.27)is distributed as (6.5.14).

## First order autoregressive process with Generalized SkewLaplace type 3 as marginal distribution

Mathai (1993) introduced the class of generalized Laplace distribution (GL), with characteristic function

$$
\begin{equation*}
\Psi(t)={\frac{1}{1+\sigma^{2} t^{2}}}^{\tau} \quad, \sigma \geq 0, \tau \geq 0 \tag{6.6.1}
\end{equation*}
$$

The applications of generalized Laplace distributions in different contexts such as the production of a chemical called meltatonin in human body, solar nutrino fluxes in cosmos, growth decay mechanism like formation of sand dunes in nature etc. were discussed in Mathai (2000). The applications of generalized Laplace distribution in the field of time series modeling is discussed in Seetha Lekshmi et al. (2003) and they developed first order auto regressive process with generalized Laplace distribution as the marginal distribution. In this section, we introduce the generalized skew Laplace type 3 distribution.

A random variable X is said to follow generalized skew Laplace type 3 distribution
if its characteristic function is given by,

$$
\begin{equation*}
\Psi(t)={\frac{1}{\left[1+\left(1-c^{2}\right) \sigma^{2} t^{2}\right][1-i c \sigma t]}}^{\tau} \quad, \sigma \geq 0, \tau \geq 0 \tag{6.6.2}
\end{equation*}
$$

and it is denoted by $\mathrm{X}^{d} \operatorname{GSL}_{3}(\tau, c, \sigma)$.

From the form of the characteristic function (6.6.2) we can see that $\operatorname{GSL}_{3}(\tau, c, \sigma)$ is the $\tau$ - fold convolutions of independent and identically distributed as $\mathrm{SL}_{3}$ random variables. Another representation is obtained by noting that characteristic function (6.6.2) is the convolution of a generalized Laplace and a independently distributed gamma random variable. ie, a $\operatorname{GSL}_{3}(\tau, c, \sigma)$ distributed random variable Z has the representation $Z=X+G$, where X is a $G L\left(\tau,\left(1-\epsilon_{2}^{2}\right)^{1} \sigma\right)$ and G is $\operatorname{Gamma}(\tau$, $c \sigma$ )
distributed random variable. When $\tau=\mathrm{n}$, a positive integer, then the $\operatorname{GSL}_{3}(\tau, c, \sigma)$ is self-decomposable being $n$-fold convolution of skew Laplace type 3 distribution.

An AR(1) process of the form (6.5.1), with generalized skew Laplace marginal distribution of type 3 can be construct in the same method discussed in the Section 1. The distribution of the innovation random variable $\epsilon_{n}$ can be represent as the distribution of the $\tau$ - fold convolution of the $\zeta_{n}$ where

$$
\zeta_{n}=\begin{array}{lll}
E_{1} & \text { with probability } & p_{1}  \tag{6.6.3}\\
-E_{2} & \text { with probability } & p_{2} \\
E_{3} & \text { with probability } & p_{3}
\end{array}
$$

where $E_{i}{ }^{\prime} s, \mathrm{i}=1,2$ are exponentially distributed with parameter $\left(1-c^{2}\right) \sigma$ and $E_{3}$ follows exponential distribution with parameter $\mathrm{c} \sigma$ and $p_{i}, \mathrm{i}=1,2,3$ is as defined in the section 2.

## Conclusion

So formed distributions have important applications in the theory of time series analysis. The outline of theses is as follows

In the focus on exponentiated exponential distribution. The importance of this distribution in various real life situations and in distribution theory is discussed in Gupta and Kundu (1999). But our focus is mainly on constructing time series models for data distributed according to exponentiated exponential distri- bution. We introduce Marshal-Olkin Generalized Exponential Distribution (MOGE) and discuss many of its important properties. As an illustration, we successfully fitted the MOGE distribution for two datasets. As a generalization to the exponentiated exponential distribution we study expo- nentiated Weibull distribution in Chapter 3. Many lifetime data are of bathtub shape or upside-down bathtub shape failure rates and so the exponentiated Weibull distri- bution as a failure model is more realistic than that of distributions with monotone failure rates and plays an important role to represent such data. But, much studieshave not done in the case of exponentiated Weibull distribution. In Chapter 3 we introduce an exponentiated Weibull process and studied many important properties of this process. A discriminate study is done in between gamma distribution and exponentiated Weibull distribution and illustrated it by using two datasets. a general time series model is introduced. A strictly monotone function $\varphi(x)$, $\varphi(0)=0$ and $\varphi(\infty)=\infty$ is used for constructing the stationary auto regressive time series models. Many of the existing time series models can be derivedas the particular case. Also we can use time series models introduced in Chapter 4 forconstructing auto regressive process for distributions having a closed form expressionfor its distribution function.

## References

Alliney, S. and Ruzinsky, S. A. (1994) An algorithm for the minimization of mixed $l_{1}$ and $l_{2}$ norms with application to Bayesian-estimation. IEEE Transactions on Signal Processing 42, 618-627.

Arnold, B. C. and Beaver, R. J. (2000a) Hidden truncation models. Sankhya A 62,23-35.

Arnold, B. C. and Beaver, R. J. (2000b) The skew Cauchy distribution. Statistics and Probability Letters 49, 285-290.

Bottazzi, G. and Secchi, A. (2003b) Common properties and sectoral specificities in the dynamics of US manufacturing companies. Review of Industrial Organization 23, 217-232.

Bottazzi, G. and Secchi, A. (2003c) Why are distributions of firm growth rates tentshaped? Economic Letters 80, 415-420.

Box, G. E. P., G. M. Jenkins, and Reinsel, G. C. (1994) Time series analysis: Fore- casting and control. III Edition, New Jersy.

Cifarelli, C. D., Gupta, R.P. and Jayakumar, K. (2008) On generalized semiPareto and semi-Burr distributions and random coefficient minification processes. Sta-tistical Papers 8, 99-113.

Choudhary, A. (2005) A simple derivation of moments of the exponentiated Weibull distribution. Metrika 62, 17-22.

Dewald, L.S. and Lewis, P.A.W. (1985) A new Laplace second order autoregressive time series model-NLAR (2). IEEE Transactions on Information Theory 31, 645-651.

Dumonceaux, R. and Antle, C. E. (1973) Discrimination between the log-normal and Weibull distributions. Technometrics 15, 923-926.

Etzel, C. J., Shete, S. and Beasley, T. M. (2003) Effect of Box-Cox transformation
on power of Haseman Elston and maximum-likelihood variance components tests to detect quantitative trait loci. Humane Hereditary 55, 108-116.

Gupta, R. C., Gupta, P.L. and Gupta, R. D. (1998) Modeling failure time data by Lehman alternatives. Communications in Statistics: Theory and Methods 27, 887-904.

Gupta, R. D. and Kundu, D. (1999) Generalized exponential distributions. Australian and New Zealand Journal of Statistics 41, 187-198.

Gupta, R. D. and Kundu, D. (2001a) Generalized exponential distribution: Different methods of estimation. Journal of Statistical Computation and Simulation 69, 315-338.

Jayakumar, K. and Jilesh, V. (2010) Weighted Exponential Distribution and Process. Journal of Statistics and Applications (Accepted for publication).

Jayakumar, K. Kalyanaraman, K and Pillai, R. N. (1995) $\alpha$-Laplace processes. Mathematical and Computer Modeling 22, 109-116.

Jayakumar, K. and Kuttikrishnan, A. P. (2007) A time-series model using asymmetric Laplace distribution. Statistics and Probability Letters 77, 1636-1640.
ulia, O. and Vives-Rego, J. (2005) Skew Laplace distribution in Gram-negative bacterial axenic cultures: new insight into intrinsic cellular heterogeneity. Microbiology 151, 749-755.

Kakade, C. S. and Shirke, D. T. and Kundu, D. (2008) Inference for $\mathrm{P}(\mathrm{Y}<\mathrm{X})$ in exponentiated Gumbel distribution. Journal of Statistics and Applications 3, 121-133.

Kozubowski, T. J. and Ayebo, A. (2003) Asymmetric generalization of Gaussian and Laplace laws. Journal of Probability and Statistical Science 1, 187-210.

Kotz, S., Kozubowski, T. J. and Podgorski, K. (2001) The Laplace distribution and generalizations: A Revisit with Applications to Communications,

Economics, Engineering and Finance, Birkhäuser, Boston.

Kim, J. S. and Yum, B. J. (2008) Selection between Weibull and log normal distribution: a comparative simulation study.Computational Statistics and Data Analysis 53, 477-485.

Lau, K. N. and Post, G. V. (1992) A note on discriminant-analysis using LAD. Decision Science 23, 260-265.

Lawrance, A. J. and Lewis, P. A. W. (1980) The exponential autoregressive moving average EARMA(p,q) process. Journal of Royal Statistical Society B 42, 150-161.

Lawrance, A. J. and Lewis, P. A. W. (1981) A new autoregressive time series model in exponential variables (NEAR(1)). Advances in Applied Probability 13, 826845.

Mudholkar, G. S. and Srivastava, D. K. (1993) Exponentiated Weibull family for analysing bathtub failure data. IEEE Transactions in Reliability 42, 299302.

Mudholkar, G. S., Srivastava, D. K. and Freimer, M. (1995) Exponentiated Weibull family: a re-analysis of the bus motor failure data. Technometrics 37, 436-445.

Mudholkar, G. S. and Hutson, A. D. (1996) The exponentiated Weibull family: Some properties and a flood data application. Communications in Statistics: Theory and Methods 25, 3059-3083.

Muraleedharan, K. (1999) Test for mixing proportions in the mixture of a degenerate and exponential distributions. Journal of the Indian Statistical Association 37, 105-119.

Nakayama, J., Nakamura, K. and Yoshida, Y. (1993) Generation of random images with modified Laplace distributions. IEICE Transactions on Fundamantal Electronics, Communication and Computer Science E 76, 1019-1022.

Nassar, M. M. and Eissa, F. H. (2003) On exponentiated Weibull distribution. Communications in Statistics: Theory and Methods 32, 1317-1336.

Nassar, M. M. and Eissa, F. H. (2004) Bayesian estimation for the exponentiated Weibull model. Communications in Statistics: Theory and Methods 33, 23432362.

Nelson, L. S. (2002) A nonparametric test for comparing any number of variances. Journal of Quality Technology 34, 130-132.

Nelson, L. S. and Wayne (2004) Applied Life Data Analysis. John Wiley and Sons,New York.

Persson, K. and Ryden, J. (2007) Exponentiated Gumbel distribution for estimation of return levels of significant wave height. Technical Report, Uppassala University.

Shirke, D. T., Kumbhar, R. R. and Kundu, D. (2005) Tolerance intervals for exponentiated scale family of distributions. Journal of Applied Statistics 32, 10671074.

Sim, C. H. (1990) First-order autoregressive models for gamma and exponential processes. Journal of Applied Probability 27, 325-332.

Tavares, L.V. (1980) An exponential Markovian stationary process. Journal of Applied Probability 17, 1117-1120.

Thomas, A. and Jose, K.K. (2003) Marshall-Olkin Pareto processes. Far East Jour-nal of Theoretical Statistics 9, 117-132.

Thomas, A. and Jose, K.K. (2004) Bivariate semi-Pareto minification Processes Metrika, 59, 305-313.

Thomas, A and Jose. K.K. (2005) Marshall-Olkin semi-Weibull minification pro- cesses. Recent Advances in Statistical Theory and Applications, Edited by K.K. Jose, Alex Thannippara and Sebastian George, 6-17.

Theodossiou, P. (1998) Financial data and the skewed generalized T distribution. Management Sciences 44, 1650-1661.

Walker, R. and Jackson, A. (2000) Robust modelling of the earths magnetic field. Geophysical Journal International 143, 799-808.

White, H. (1982). Regularity conditions for Cox's test of non-nested hypotheses. Journal of Econometrics 19, 301-318.

Wu, M. and Fitzgerald, W. J. (1995) Analytical approach to changepoint detection in Laplacian noise. IEEE Proceedings Vision, Image, Signal Processing 142, 174-180.

Xi, N., Ding, N. and Wang, Y. G. (2005) How required reserve ratio affects distribu- tion and velocity of money?. Physica A: Statistical Mechanics and Applications 357, 543-555.

Yeh, H.C., Arnold, B. C. and Robertson, C.R. (1988) Pareto processes, Journal of Applied Probability 25, 291-301.

Yu, K. and Zhang, J. (2005) A three-parameter asymmetric Laplace distribution and its extension. Communications in Statistics: Theory and Methods 34, 18671879.

