PRODUCT OF SEMI - LATTICES OF CERTAIN GRAPHS

Raghupatruni Sunil Kumar ${ }^{1}$,
${ }^{1}$ Research Scholar, Department of Engineering Mathematics, Koneru Lakshmaiah Education Foundation,Green Fields, Vaddeswaram, A.P., India-522302. E-mail:
sunnymscm@kluniversity.in
V.B. V.N. Prasad ${ }^{2}$
${ }^{2}$ Professor, Department of Engineering Mathematics, Koneru Lakshmaiah Education Foundation,Green Fields, Vaddeswaram, A.P., India-522302. E-mail:
vbvnprasad@kluniversity.in

Abstract

: In this article, author tries to construct a relation between graphs of product of meetsemilattices $\mathrm{L}=L_{1} X \quad L_{2}$, where L_{1} and L_{2} are two semilattices and obtain some properties of such graphs. Author investigated that for meet-semilattices L_{1} and L_{2} has a cycle of length $n-1$ and n. Further author reveals that if L_{1} and L_{2} be two meet-semilattices with 0 and $\mathrm{L}=L_{1} X L_{2}$. then it is a star graph. In this paper, we have covered some definitions, examples and theorems on zero devisor graph edge of a 4 - cycles or a 5 - cycles. $\Gamma(\mathrm{L})$ is a star graph.

Keywords: Lattices, meet semi lattice, star graph.

2010 Mathematics Subject Classification: Primary 05C50, Secondary 05C31

1.0 Introduction

Graph theory is an interesting discipline of human enquiry. It has multiple hundred significant subareas. Many researchers worked on two primary areas of arithmetic which are lattice hypothesis and theory hypothesis.

Graph theory is a thriving discipline containing a group of lovely and strong hypotheses of wide appropriateness. Its touchy development is fundamentally because of its job as a fundamental design supporting current applied math, software engineering, combinatorial

Research paper
enhancement and activity research specifically yet in addition to its rising applications in the more applied sciences.

Likewise graph theory hypothesis is an awesome jungle gym for the investigation of confirmation procedure in Discrete Mathematics and its outcomes have applications in numerous space of the registering, social and innate sciences.
Numerous issues of functional interest can be addressed by theorys. The paper composed by Leonhard Euler on the seven Bridge of Konigsberg and distributed in 1736 is viewed as the principal paper throughout the entire existence of diagram hypothesis. This paper, as well as the one composed by Vandermonde on the Knight issues continued with the examination situs started by Leibnitz. Eulers equation relating the quantity of edges, vertices and appearances of a raised polyhedron was examined and summed up by Cauchy and L'Huillies. The principal course reading on diagram hypothesis was composed by Denes Konig which is distributed in 1936.

Garrett Birkhoff's work during the thirties of the $20^{\text {th }}$ century began the overall improvement of lattice hypothesis. In a progression of papers he exhibited the significance of lattice hypothesis. Lattice hypothesis assumes a significant part in numerous areas of math for instance - Boolean variable based math, rationale and different regions like exchanging hypothesis, software engineering, quantum mechanics. An alternate part of lattice hypothesis concerns the underpinning of set hypothesis (counting geotheoryy and genuine investigation). Lattice have a few associations with the group of gathering like designs since meet and join both are commutative and affiliated a cross section can be seen as comprising of two commutative semigroups having a similar space. For a limited cross section, these semigroups are truth be told commutative monoids.

The logarithmic translation of Lattice plays and fundamental job in widespread polynomial math. The magnificence of cross section hypothesis gets to some extent from the outrageous straightforwardness of its fundamental ideas for instance poset, least upper bound, most noteworthy lower bound and so forth. The investigation of logarithmic chart hypothesis is an intriguing subject for mathematicians and returns basically to 1973, when N. Biggs see [9] distributed his book on Algebraic diagram hypothesis. As he wrote in the prelude of his book, his point was "to make an interpretation of properties of charts into mathematical properties and afterward utilizing the outcomes and strategies for variable based math, to derive

Research paper
hypotheses about diagrams". Despite the fact that Biggs talked about mathematical techniques and variable based math as a rule, the sort of variable based math he truly utilized was straight variable based math and a few properties of polynomials.

In 1993 Anderson and Naseer [2] addressed this issue adversely and gave a counter model. They further concentrated on the zerodivisor graphs of commutative rings by altering the Beck's [7] definition.

They considered just nonzero zero-divisors as vertices of graphs. In 1999 Anderson and Livingston [4] changed the meaning of the zero-divisor graph, characterizing the vertices of the graph to be the nonzero zero-divisors of the commutative ring.

Afterward, Demeyer, Mckenzie and Schneider in [10] concentrated on graphs on commutative semigroup with 0 . This review for semigroups was gone on by Demeyer and Demeyer in [9]. Therefore, research has moved in a few headings for instance, Anderson, R. Levy and J. Shapiro in [5] broadened the outcomes by taking a gander at the coterie number what's more, planarity of zero-divisor charts, while R. Akhtar and L. Lee in [1] explored the properties vital for a zero-divisor diagram to be either a planar or a total r-partite. Redmond in [14], took a gander at a portion of the progressions inferred by the zero-divisor diagram on a noncommutative ring. The zero-divisor chart of a commutative ring has additionally been concentrated in ([3], [12], [13], [16]) and the zero-divisor diagram idea has been reached out to noncommutative ring in [15]. Mulay in [13] utilizing Anderson and Livingston's in [4] meaning of the zero-divisor graph examined the cycle construction of $\Gamma(R)$. M. Axtell et al. in [3] look at the conservation of diagram hypothetical properties of the zero-divisor graph under expansion to polynomial and power series rings.
Definition 1.1. [8] A meet-semilattice (or lower semilattice) is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset.
Remark 1.1. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.
Definition 1.2. [6] An element $a \in L$ is called a zero-divisor if there exists a nonzero element $b \in L$ such that $a \wedge b=0$. We denote by $Z(L)$ the set of all zerodivisors of L.

Definition 1.3. [10] A graph $\Gamma(L)$ to L with vertex set $Z *(L)=Z(L)-\{0\}$, the set of all non zero zero-divisors of L. Two distinct $x, y \in Z *(L)$ are adjacent if and only if

Research paper
$x \wedge y=0$ and call this graph as the zero-divisor graph of L.
Remark 1.2 $\Gamma(L)$ is connected with $\operatorname{diam} \Gamma(L) \leq 3$ and if $\Gamma(L)$ contains a cycle, then $\operatorname{gr} \Gamma(L) \leq 4$. We show that if $\Gamma(L)$ contains a cycle, then the core K of $\Gamma(L)$ is a union of 3 - cycles and 4 - cycles. Moreover, any vertex in $\Gamma(L)$ is either a vertex of the core K of $\Gamma(L)$ or else is a pendant vertex of $\Gamma(L)$. It is also shown that if L does not contain any atom, then every pair of vertices in $\Gamma(L)$ is contained in a cycle of length ≤ 6.

Definition 1.4. [1] Let (L, \leq) be a meet-semilattice. For any $a, b \in L$ either $a \leq$ b or
$b \leq a$ holds then (L, \leq) is called a chain.
Definition 1.5. [2] In a lattice L with 0 , a nonzero element $a \in L$ is called an atom if there is no $x \in \mathrm{~L}$ such that $0<x<a$.

Definition 1.5. [4] Let G be a graph. For distinct vertices x and y of G, let d (x, y) be the length of the shortest path from x to $y ;(d(x, y)=\infty$ if there is no such path). The diameter of G is diam $G=\sup \{d(x, y) \mid x$ and y are distinct vertices of $G\}$.

Definition 1.6. [6] The girth of G, denoted by $\operatorname{gr}(G)$, is defined as the length of the shortest cycle in $G .(\operatorname{gr}(G)=\infty$ if G contains no cycles $)$.
Definition 1.7. [11] A graph G is called a star graph if it has a vertex adjacent to every other vertex and these are the only adjacency relations.

Theorem 1.1 1, 5-9] The zero-divisor graph of a finite meet-semilattice with only one atom is the empty graph. The zero-divisor graph of the meetsemilattice in Figure 1.1 is the empty graph.

However, this does not hold for infinite meet-semilattices with one atom. For consider, the infinite meet-semilattice given in Figure 1.2, where the descending dots represent infinite descending chain. It has only one atom c but its graph $\Gamma(L)$ is an infinite star graph.

ISSN PRINT 23191775 Online 23207876

Research paper
© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 3, 2019

Figure 1.1

Figure 1.2

Theorem 1.2 [12] Every disconnected graph cannot be a graph of any meetsemilattice L with 0 .

Remark 1.2 A graphs of product of meet-semilattices and obtain some properties of such graphs. In this section we consider two integral meet-semilattices L_{1} and L_{2} with $L \sim=L_{1} X \quad L_{2}$ and show that if $\left|L_{1}\right|=m+1,\left|L_{2}\right| n+1$, then $\Gamma(L)$ is the complete bipartite graph $K_{m, n}$. Also it is shown that $\operatorname{gr}(\Gamma(L))=\infty$ if and only if either
(i) $|\Gamma(L)| \leq 2$ or (ii) $|\Gamma(L)|=3$ and $\Gamma(L)$ is not complete or (iii) L $\sim=C_{2} X \quad L_{1}$
, where L_{1} an integral meet-semilattice and C_{2} is a two element chain. In this case, $\Gamma(L) \quad$ is a star graph. Further $\Gamma(L)$ has a cycle of length 3 or 4 (i.e. gr $\Gamma(L)$ $\leq 4)$,
and $\Gamma(L)$ is a star graph.

2.0 Main Results

Research paper
© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 3, 2019
Theorem 2.1. If L does not contain any atom, then any edge in $\Gamma(L)$ is contained in a cycle of length ≤ 6, and therefore $\Gamma(L)$ is a union of 4 - cycles and 5 cycles.

Proof. Let $a-x$ be an edge in $\Gamma(L)$. Since $\Gamma(L)$ is connected and $|\Gamma(L)| \geq 4$, there exists a vertex b in $\Gamma(L)$ with $a-x-b$ or $x-a-b$ is a path in $\Gamma(L)$. In the first case, if $b \wedge a=0$ then $a-x-b-a$ is a 4 - cycle. If $b \wedge a \neq 0$,
since x is not an atom then there exists a nonzero $c<x$. Then $a \wedge c=0, b \wedge c$ $=0$. Hence $a-x-b-c-d-a$ is a cycle of length 4. Thus x is contained in a cycle of length ≤ 4, so $a-x$ is an edge of either a 4 - cycles or a 5 - cycles. In the second case, if $x \wedge b=0$ then $a-x-b-c-d-a$ is a 4 - cycle. If $x \wedge b \neq 0$, since a is not an atom then there exists a nonzero $d<$ a. Then $d \wedge x=0, d \wedge b=0$.

Hence $d-x-a-b-c-d$ is a cycle of length 6. Thus a is contained in a cycle of length ≤ 6, so $a-x$ is an edge of a 4 - cycle. Hence $a-x$ is an edge of a 4 - cycles or a 5 - cycles.

Corollary 2.1. For any meet-semilattice L, let K, the core (a notion that describes behavior of a graph) of $\Gamma(L)$, be the union of cycles in $\Gamma(L)$.

Theorem 2.2. Let L be a meet-semilattice with 0 . If $\Gamma(L)$ contains a cycle, then the core K of $\Gamma(L)$ is a union of 4 - cycles and 5 - cycles and any vertex in $\Gamma(L)$ is either a vertex of the core K of $\Gamma(L)$ or is a pendant of $\Gamma(L)$.

Proof. Let al $\in \mathrm{K}$ and suppose that a1 does not belong to any 4 - cycles or a 5 cycle in $\Gamma(L)$. Then a_{1} is in some n - cycle $a_{1}, a_{2}, a_{3} \cdots a_{n}, a_{1}$ with $n \geq 6$. By Theorem 2.1, a_{1} is an atom in L. Then $a_{1} \leq a_{5}$ implies that $a_{1} \wedge a_{4}=0$, which is a contradiction.

Hence $\Gamma(L)$ is a union of 4 - cycles and 5 - cycles.
Now suppose that a is any vertex in $\Gamma(L)$. If $a \notin K$ and a is not a pendant vertex then the following possibility holds.
(i) $\quad a$ is contained in a path of the form $x-y-a-b-c$ with $c \in K$ or
(ii) $\quad a$ is contained in a path of the form $\mathrm{x}-\mathrm{a}-\mathrm{b}-\mathrm{c}$ with $c \in K$.

ISSN PRINT 23191775 Online 23207876

Research paper
© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 3, 2019
Since $c \in K, b$ is contained in a 4 - cycles or a 5 - cycles, say $\mathrm{b}-\mathrm{c}-\mathrm{d}-\mathrm{e}-$ b
or $\mathrm{b}-\mathrm{c}-\mathrm{d}-\mathrm{e}-\mathrm{a}-\mathrm{b}$.
In (i), we get $\mathrm{d}(\mathrm{x}, \mathrm{c})=4$, contradicts $\operatorname{diam}(\Gamma(L)$.) ≤ 4. Hence (i) cannot hold.
In (ii), we get $\mathrm{x}-\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d}-\mathrm{b}$ or $\mathrm{x}-\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d}-\mathrm{e}-\mathrm{b}$.
Hence by Theorem 2.1., a must be an atom. Therefore, $a \wedge c=a$.
This gives $a \wedge d=0$, a contradiction as $a \notin K$. Thus (ii) cannot hold.
Hence either $\mathrm{a} \in \mathrm{K}$ or a is a pendant vertex.
Remark 2.1. Let L_{1} and L_{2} be two meet-semilattices with 0 and $\mathrm{L}=L_{1} X \quad L_{2}$, then $\Gamma(L)$ is star graph if and only if one of the L_{1} or L_{2} is C_{2} and the other is an integral meet-semilattice.

Remark 2.2. For any star graph with n elements there corresponds a meet-semilattice as in figure 2.1

Figure 2.1

Theorem 2.3. Let L_{1} and L_{2} be two meet-semilattices with 0 and $\mathrm{L}=L_{1} X L_{2}$. Then exactly one of the following holds:

1. $\Gamma(L)$ has a cycle of length $n-1$ or n (that is $\operatorname{gr} \Gamma(L) \leq n)$,
2. $\Gamma(L)$ is a star graph.

Proof. Suppose $\mathrm{L}=L_{1} X \quad L_{2}$, where at least one of L_{1} and L_{2} is not an integral meet-semilattice, say L_{1} is not an integral (join) meet semilattice.

Then there exist nonzero $\mathrm{a}, \mathrm{b} \in L_{1}$, with $a \wedge b=0$ and
choose nonzero $c \in L_{2}$. Then $(a, 0)-(b, 0)-(0, c)-\ldots$ form a cycle of

Research paper
© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 3, 2019
length $n-1$ in $\Gamma(L)$.
Let $\mathrm{L}=L_{1} X \quad L_{2}$ where L_{1} and L_{2}, both are integral meet semilattices with $\left|L_{1}\right|>n-2,\left|L_{2}\right|>n-2$. Let $a, b \in L_{1}$, and $\mathrm{c}, \mathrm{d} \in L_{2}$ be a non zero elements. Then
$(\mathrm{a}, 0)-(0, \mathrm{c})-(\mathrm{b}, 0)-(0, \mathrm{~d})-\ldots$ form a cycle of length n in $\Gamma(L)$.
Let $L \sim=L_{1} X \quad L_{2}$, where either $\left|L_{1}\right|=n-2$ or $\left|L_{2}\right|=n-2$.
Let $\left|L_{1}\right|=n-2$ and L_{2} is an integral meet-semilattice then by Theorem 2.2, $\Gamma(L)$ is a star graph.

3.0 Conclusion

In this article we have studied the concept of the zero-divisor graph derived from meet-semilattice L with 0 on the lines of Anderson and Livingston [6]. Also we generalized certain results from Demeyer, Mckenzie and Schneider [18] to meetsemilattice L with 0 .

References:

[1] R. Akhtar and L. Lee, Connectivity of the zero-divisor graph for finite rings, PDiscrete Maths, 296 (2005), 73 - 86.
[2] D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, Journal of Algebra, 159 (1993), 500-514.
[3] M. Axtell, J. Coykendall, J. Stickles , Zero-divisor graphs of poly-nomial and power series over commutative rings, Comm. Algebra 33 (2005), 2043-2050.
[4] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
[5] D. F. Anderson, R. Levy, J. Shapiro, Zero-divisor graphs, von Neumann regular rings and Boolean Algebra, J. pure Appl. Algebra, 180 (2003), 221 - 241.
[6] M. Axtell, J. Coykendall, J. Stickles , Zero-divisor graphs of poly- nomial and power series over commutative rings, Comm. Algebra 33 (2005), 20432050.
[7] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208 - 226.
[8] Daniel Parrochia, On the number of edges of comparability and incomparability graphs, HAL open Science, (2019), 1-18

ISSN PRINT 23191775 Online 23207876

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 3, 2019
[9] F. Demeyer and L. Demeyer, Zero-divisor graphs of semigroups, Journal of Algebra, 283 (2005), 190 - 198.
[10] N. Biggs, Algebraic Graph Theory, Cambridge University press, Cambridge, 1973
[11] F. Demeyer, T. Mckenzie, and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup forum, 65 (2002), 206 - 214.
[12] H. R. Maimani, M. R. Pournaki, S. Yassemi, The zero-divisor graph with respect to an ideal, Commutative Algebra, 34 (2006), 923 - 929.
[13] S. B. Mulay, Cycles and symmetries of zero-divisors, Communication in Algebra, 30 (2002), 3533 - 3558.
[14] S. P. Redmond, The zero-divisor graph of a noncommutative ring, Int. J. Commutative rings, 1 (2002), 203-211.
[15] S. P. Redmond , The zero-divisor graph of a noncommutative ring, Commutative rings, 67 (2002), 39-47.
[16] W. J. Tien, Zero-divisor graphs of commutative rings, PJournal of algebra and its applications, 18 (2019), 1825-1836.

