
IJFANS International Journal of Food and Nutritional Sciences

905 | P a g e

Research paper

ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

Optimizing Bug Report Mapping: A Comprehensive Examination

of Adaptive Ranking Techniques

P S V S Sridhar

Computer Science and Engineering, Koneru Lakshmaih Education Foundation,

Vaddeswaram, India psvssridhar@gmail.com

Abstract –

A software bug is an error, flaw, malfunction, or fault in a computer program or system that

results in inaccurate or unexpected output, or causes the program or system to act in an

unexpected manner. Bug then refers to a code error that occurs during the product creation

phase. There are a number of reasons why it could occur, some of which are inconsistent

organization, inaccessibility of supporting documents, and rendition crisscross. Additionally, a

bug report suggests a client-level description of the issue. a bug report that includes the bug's

ID, a summary of the issue, and a detailed account of the bug. A system for organizing all the

source files related to how likely they are to hold the solution to the bug would enable

designers to focus their efforts and increase revenue. Based on an examination of the source

code and the issue report, the placement is completed; in this case, 19 highlights are

considered for the bug mapping system. Additionally, the term "bug triaging" refers to the

process of assigning a bug to the most qualified engineer in order to resolve it. The bug

mapping history of each engineer and the designer's zeal for the process determine how bugs

are prioritized. Keeping a strategic distance from the likelihood of a vault duplication incident

is also important.

Keywords: Bug Report, Bug Mapping, Bug Triaging

Introduction

The goal of word representation is to address certain aspects of word implications. For

example, the definition of "cell phone" may include the facts that they are electronic devices,

that they have a battery and screen, that they are designed to be used in social situations, and

so on. Considering that words are typically the primary procedure unit in writings, word

outlines may

IJFANS International Journal of Food and Nutritional Sciences

906 | P a g e

Research paper

ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

be a crucial component of many tongue process frameworks. A simple approach is to consider

every word as a single hot vector, with each word's length representing an estimate of

vocabulary and only one [1] measurement—all other values being zero. However, a single hot

word representation just encodes word lists from an extensive vocabulary; it ignores the

relative structure of the dictionary. In order to overcome this drawback, some analyses refer to

every word as a low-dimensional, consistent, and real valued vector—also known as word

embeddings. Current installation learning methodologies are essentially at the outset of spatial

course of action theory [9], which states that word representations are a reflection of their

particular contexts. As a result, words like "inn" and "motel," which have comparable

syntactic uses and semantic implications, are mapped into adjacent vectors inside the inserting

territory. Word embeddings have been used as data sources or additional word choices for a

variety of tongue process tasks, including MT, sentence structure parsing, question responder,

conversation parsing, and so on, since they capture semantic similarities between words.

Despite the setting-based word embeddings' success in a few common language preparation

tasks [14], we argue that they aren't strong enough when directly linked to assumption

examination, which is the area of study that focuses on eliminating, dissecting, and organizing

the assessment/supposition (e.g., thumbs up or thumbs down) of texts. The main problem with

setting-based implanting learning computations is that they only show word settings while

ignoring the content's conclusion information. Words that resemble smart and unpleasant, but

have inverted extreme, are mapped into closed vectors inside the insertion zone. This can be

useful for a few tasks, such as palavering [18], as the two terms have similar grammatical

functions and uses. However, because they need inverse conclusion extremity names, it

becomes a mess for hypothesis testing.

II. Literature Survey:

Saha is the author of the work Improving bug restriction utilizing organized data recovery [1].

This approach makes use of the Bluir technique, where source code is used as the information

source. Next, we create a unique grammar tree (AST) by parsing through the dynamic

sentence structure tree using JDT (Java Development Toolbox). separating the source code

into the class, variable, remark, and strategy fields—the four record fields. After that, using

blank spaces, tokenization is applied to a bag of words. Additionally, will be stored in the

well-organized

IJFANS International Journal of Food and Nutritional Sciences

907 | P a g e

Research paper

ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

XML document. The units will then be listed using an indexer into an exhibit. Extracted the

representation and synopsis from the problem report. Bluir outperforms bug locator in this

instance, but our method is more accurate in processing the comparability between the

highlights as a single aggregate. This approach uses the settled update of the source code to

evaluate bug reports, which may lead to extremely tainting bug reports in the event that

subsequent settling bug data should occur. The next paper, written by Zhou [2], is titled

"Where Should the Bugs Be Fixed?" We now suggest a bug locator as a method for getting

the info back. By doing this, the problem with locating the bug documentation has improved.

This method uses the vector space portrayal demonstrate (VSM) to position all records that

have a printed proximity between the source code document and the problem report. When a

bug is received, we will analyze the previously resolved bugs to determine the comparability

of the bug and source code using similarity metrics. The document list will be arranged in

decreasing order of request. The result is likely to be found in the best rundown. Another

method, a three-layer heterogeneous diagram, is being proposed in the event when

comparative bugs are present. The first layer addresses the bug reports. The third and final

layer talks to the source code documents, while the second layer displays recently disclosed

bug reports. Real hindrances to the work are if the engineer utilizes non-significant names the

execution will be seriously gets influenced. Additionally, terrible reports have the potential to

mislead data, and basic data itself has the potential to significantly delay matters.

Additionally, as a result, execution will be affected. The next paper, "Mapping Bug Reports to

Relevant Files: A Ranking Model, a Fine-Grained Benchmark, and Feature Evaluation," was

written by Xin Ye[3] and uses rank computation to complete the task. Comparability between

the source code documents and the bug report is used to calculate the placement score. Thus,

19 highlights were separated using the element extraction method. The method of structural

phonetics compartmentalization (SSI), which links words to ASCII content document

substances and strengthens API usage similarities, is presented in this study. This technique's

heuristic is based on the idea that items (classes, techniques, etc.) that show comparable uses

of the arthropod variety are semantically related since they perform similar tasks. We often

compare three SSI-basically based recovery plans with two conventional standard methods in

order to determine how effective SSI is in code recovery. We assess the recovery plots'

IJFANS International Journal of Food and Nutritional Sciences

908 | P a g e

Research paper

ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

performance by comparing a set of twenty rival queries to an archive that has 222,397 ASCII

content record elements from 346 containers joy

to the Eclipse structure. The results of the analysis show that SSI is effective in retrieving

historical records from code vaults. Code survey is a common programming framework that is

used in both current and open source environments. Compared to code inspections conducted

and thought about in the 1980s, auditing is today less formal and more "lightweight". We

typically use precise perception to look into the motivations, challenges, and outcomes of

hardware-based code surveys. At Microsoft, we frequently make decisions, meet, and review

engineers and administrators in addition to physically ordering a large number of survey

responses at various meetings. Our research reveals that while finding flaws continues to be

the primary motivation for surveys, audits are less effective in preventing theft than

previously thought and instead offer benefits including data sharing, increased group

awareness, and the generation of novel solutions to problems.

Figure 1. Architecture of system

Proposed method:

Using record dependence charts and describe features to get an idea of the level of code

versatility; fine-grained benchmark datasets created by looking at a previous adjustment of the

code package for each bug information; extensive appraisal and examinations with best-in-

class systems; and a careful evaluation of the influence that components have on the

IJFANS International Journal of Food and Nutritional Sciences

909 | P a g e

Research paper

ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

positioning accuracy are some of the features of a positioning method to manage issue to

delineate that enable steady compromise of contrasts of components..

III. Methodology :

Surface Lexical Similarity:

We use the synopsis and portrayal of a bug report to create the VSM representation. We use

the code and comments in their entirety for a source record. Initially, we used blank spaces to

divide the text into a bag of words in order to tokenize an information record. At that point,

we eliminate numbers, accentuation, and common IR stop words like determiners and

conjunctions. The comparability between the source code and the bug report is checked using

cosine similarity work.

Figure 2. Lexical similarity

API enriched lexical similarity

Find out how the source code and the completed bug report are similar in this instance. This

suggests some library work that includes information about catch and client-facing tools so

that these mistakes in the capacities can be identified by using this API enhanced lexical

similarity.

Collaborative Filtering Score

Since the record has already been settled before some mistakes may be made, it can be

identified by using this technique, and it is therefore also seen profitable in our rehabilitation

environment.

IJFANS International Journal of Food and Nutritional Sciences

910 | P a g e

Research paper

ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

Class name similarity

Identifying the class name similarity between the issue report and the source code. Compared

to the other elements in the assessment strategy, this component has a higher weight age. The

similitude verification process makes use of both the description and the outline.

Fine-Grained Benchmark datasets

Errors in programming frequently occur at several source code remedies. It is risky to use a

modified assessment for the following reasons: a) The changes made have the potential to be

utilized for evaluation and include bug information that may be referenced in the future,

mistake-settling informational indices for a more conclusive explanation, etc. b) Should the

overview record be erased after the bug was reported, it would no longer be an essential

record.

IV. CONCLUSION

A automated bug framework that may be effectively used in product organizations has been

presented through this work. A list of pages where the bug may occur will be positioned, and

it will automatically be assigned to the appropriate designer who wrote the code. Additionally,

remove the bugs' duplicates. additionally noted the semantic similarity between the source

code document and the problem report. Previous experiments have shown that ranking

methodology has a higher degree of precision, which is why our system uses it. In the future,

we can make use of more area data types, such as stack follows and includes used in the

imperfection expectation framework.

V. References.

[1] G. Antoniol and Y. G. Gueheneuc, “Feature identification: A novel approach and a case

study,” in Proc. 21st IEEE Int. Conf. Softw. Maintenance, Washington, DC, USA, 2005, pp.

357–366.

[2] G. Antoniol and Y. G. Gueheneuc, “Feature identification: An epidemiological metaphor,”

IEEE Trans. Softw. Eng., vol. 32, no. 9, pp. 627–641, Sep. 2006.

[3] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa, and V. Vangala, “Debug advisor:

A recommender system for debugging,” in Proc. 7th Joint Meeting Eur. Softw. Eng. Conf.

ACM SIGSOFT Symp. Found. Softw. Eng., New York, NY, USA, 2009, pp. 373–382.

IJFANS International Journal of Food and Nutritional Sciences

911 | P a g e

Research paper

ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 2, 2019

 [4] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern code

review,” in Proc. Int. Conf. Softw. Eng., Piscataway, NJ, USA, 2013, pp. 712–721.

[5] S. K. Bajracharya, J. Ossher, and C. V. Lopes, “Leveraging usage similarity for effective

retrieval of examples in code repositories,” in Proc. 18th ACM SIGSOFT Int. Symp. Found.

Softw. Eng., New York, NY, USA, 2010 pp. 157–166.

 [6] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, “Looking for bugs in all the right places,” in

Proc. Int. Symp. Softw. Testing Anal., New York, NY, USA, 2006, pp. 61–72.

[7] N. Bettenburg, S. Just, A. Schr€oter, C. Weiss, R. Premraj, and T. Zimmermann, “What

makes a good bug report?” in Proc. 16th ACM SIGSOFT Int. Symp. Found. Softw. Eng., New

York, NY, USA, 2008, pp. 308–318.

[8] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept assignment problem in

program understanding,” in Proc. 15th Int. Conf. Softw. Eng., Los Alamitos, CA, USA, 1993,

pp. 482–498.

[9] D. Binkley and D. Lawrie, “Learning to rank improves IR in SE,” in Proc. IEEE Int. Conf.

Softw. Maintenance Evol., Washington, DC, USA, 2014, pp. 441 445.

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” J. Mach. Learn.

Res., vol. 3, pp. 993–1022 Mar. 2003.

[11] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information needs in bug reports:

Improving cooperation between developers and users,” in Proc. ACM Conf. Comput.

Supported Cooperative Work, New York, NY, USA, 2010, pp.301–310.

[12] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering Using UML,

Patterns, and Java, 3rd ed. Upper Saddle River, NJ, USA, Prentice-Hall, 2009.

[13] Y. Brun and M. D. Ernst, “Finding latent code errors via machine learning over program

executions,” in Proc. 26th Int. Conf. Softw. Eng.,Washington, DC, USA, 2004, pp. 480–490.

[14] M. Burger and A. Zeller, “Minimizing reproduction of software failures,” in Proc. Int.

Symp. Softw. Testing Anal., New York, NY, USA, 2011 pp. 221–231.

[15] R. P. L. Buse and T. Zimmermann, “Information needs for software development

analytics,” in Proc. Int. Conf. Softw. Eng., Piscataway, NJ, USA, 2012, pp. 987–996

