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Abstract 
Deep neural networks (DNNs) are a promising tool for 

global navigation satellite system (GNSS) positioning in 

the presence of multipath and non-line-of-sight errors, 

owing to their ability to model complex errors using data. 

However, devel- oping a DNN for GNSS positioning 

presents various challenges, such as (a) poor numerical 

conditioning caused by large variations in measurements 

and posi- tion values across the globe, (b) varying 

number and order within the set of measurements due to 

changing satellite visibility, and (c) overfitting to 

available data. In this work, we address the 

aforementioned challenges and propose an approach for 

GNSS positioning by applying DNN-based corrections 

to an initial position guess. Our DNN learns to output the 

position correction using the set of pseudorange residuals 

and satellite line-of-sight vectors as inputs. The limited 

variation in these input and output values improves the 

numerical conditioning for our DNN. We design our 

DNN architecture to combine information from the 

available GNSS measurements, which vary both in 

number and order, by lever- aging recent advancements 

in set-based deep learning methods. Furthermore, we 

present a data augmentation strategy to reduce 

overfitting in the DNN by randomizing the initial 

position guesses. We, first, perform simulations and 

show an improvement in the initial positioning error 

when our DNN-based cor- rections are applied. After this, 

we demonstrate that our approach outperforms a weighted 

least squares (WLS) baseline on real-world data. Our 

implementa- tion is available at github.com/Stanford-

NavLab/deep_gnss. 
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INTRODUCTION 
 

In the last decade, deep learning has been applied to 

several localization appli- cations involving complex and 

high-dimensional sensor inputs, such as camera images 

and lidar pointclouds (Choy et al., 2020; Kendall et al., 

2015; Wang et al., 2017). Deep learning algorithms 

utilize labeled data to (a) discover an effective 

representation, or embedding, of the sensor inputs 

needed for localization; and 

(b) to build an approximate model, represented by a deep 

neural network (DNN), of the sensor input-position 

output relationship. Since both the embeddings and the 

model are learned using data, these methods have shown 

better performance than analytical methods when sensor 

inputs are affected by environmental factors, such as 

occlusions and dynamic obstacles (Sünderhauf et al., 

2018). 

Given the success of deep learning in localization using 

sensor inputs, it is natu- ral to consider applying deep 

learning for localization using GNSS measurements. 

This is especially important for localization in urban and 

semi-urban environments, where multipath and non-line-

of-sight (NLOS) effects add environment-dependent 

additive biases to GNSS measurements that are 

challenging to model analytically. The error distributions 

in GNSS measurements due to these effects are often 

non-Gaussian, which reduces the accuracy of traditional 

techniques that rely on Gaussian approximations of the 

error (Reisdorf et al., 2016; Wen et al., 2020; Zhu et al., 

2018). Since DNNs can learn the relationship between 

the measurements and corresponding positions using 

data, they offer a promising alternative for localization 

in urban and semi-urban environments. 

Availability of labeled data sets containing ground truth 

positions is necessary for training a DNN for 

localization. The recent increase in public data sets 

contain- ing GNSS pseudorange measurements along with 

the associated ground truth posi- tions is promising for the 

development of deep-learning algorithms for GNSS-based 

localization (Fu et al., 2020). These data sets are 

collected over different driving scenarios, such as 

highway, urban, and semi-urban, as well as under different 

oper- ating conditions. Thus, these data sets provide a 

variety of input-output pairs for training the DNN. 

Although labeled data with GNSS pseudorange 

measurements is becoming increasingly available, three 

main challenges must be addressed before this data can 

be used to train a DNN for localization: 
 

Different Variations in Values of GNSS Data: 

Satellite positions in the Earth-centered, Earth-fixed 

(ECEF) frame of reference can take values between 

[20, 200, 20, 200] km in all three axes with variations 

of the same magnitude. On the other hand, GNSS 

pseudorange measurements have values of around 20,200 

km but variations on a much smaller scale, of about 100 

m. Similarly, GNSS receiver positions in the ECEF 

reference frame take values approximately between 

[6,000, 6,000] km in all three axes with variations of the 

same magnitude. The large difference in the ratio of 
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meaningful variations to received values causes the 

optimization problem of training a DNN to be 

numerically ill-conditioned, resulting in large changes to 

the DNN’s parameters at each update and numerical 

instability (Goodfellow et al., 2016; McKeown et al., 

1997). Furthermore, naïvely rescaling the satellite 

position and pseudorange measurement values risks loss 

of information necessary for positioning due to the finite 

precision of floating point operations. Therefore, 

additional strategies for representing the satellite 

positions and pseudorange measurements must be 

considered. 

Varying Number and Order of GNSS 

Measurements: Since the number of visible satellites at 

a measurement epoch depends on the environment, the 

set of measurements received at different epochs often 

contains different numbers of GNSS signals. Additionally, 

for the same set of measurements, the output of GNSS-

based localization algorithms should be independent of 

the order of measurements within the set. However, most 

DNN architectures are designed for a fixed number of 

inputs supplied in a pre-determined order, requiring the use 

of specialized architectures for GNSS-based localization 

(Lee et al., 2019; Skianis et al., 2020; Zaheer et al., 2017). 

Limitation  in  Collecting   Vast   Amounts   of   Real-

World   GNSS   Data and Ground Truth: Collection 

of large-scale GNSS data sets for  deep learning is 

limited by the need of ground truth positions associated 

with the measurements, which requires sophisticated 

hardware. Therefore, existing GNSS data sets with 

ground truth are collected at a few locations in the world 

and at specific times. These data sets are limited both in 

the geography and in the variety of observed pairs of 

GNSS measurements and positions. For instance, the 

ECEF positions of both the receiver and the satellites 

captured in a data set collected within California will not 

include the ECEF positions seen in a data set collected 

within Australia. Using such limited data in deep 

learning often results in DNN models that overfit the 

training data and perform poorly on unseen inputs 

(Goodfellow et al., 2016). 
 

In this work, we address these challenges and develop a 

deep-learning algorithm for localization using GNSS 

pseudorange measurements. We propose converting the 

position estimation problem solved by traditional GNSS 

positioning algorithms into the problem of estimating 

position corrections to an initial position guess. In our 

approach, we use a DNN to learn a functional mapping 

from GNSS measure- ments to these position 

corrections, as illustrated in Figure 1. This paper is 

based on our work in Kanhere et al. (2021). 

The main contributions of our work are: 

 

The designing of a DNN to estimate position corrections 

to an initial position guess. To our knowledge, our 

approach is one of the first to use a DNN with outputs 

directly in the GNSS positioning domain. 

The use of a set-based DNN architecture to handle the 

varying number and order of GNSS inputs at each 

measurement epoch 

The use of numerically conditioned inputs and outputs in 

a local frame of reference for the DNN; we use residuals 

and line-of-sight (LOS) vectors as inputs along with 

position correction outputs in the local north-east-down 

(NED) frame of reference for numerically stable training 

and to encourage global applicability of the algorithm. 

The development of a geometry-based data 

augmentation strategy to prevent overfitting in the DNN 

and improve its generalization to new GNSS 

measurements; our strategy generates new data points 

for training the DNN by leveraging the geometric 

relationship between randomized initial position guesses, 

residuals, LOS vectors, and position corrections. 

 

 

 
FIGURE 1 Our approach for applying deep learning for GNSS-based localization; given GNSS pseudorange measurements and satellite 
positions, our method uses a DNN to estimate position corrections to an initial position guess. 

Validation of the proposed approach on simulations and real-world data from the Android Raw GNSS Measurements data 
set (Fu et al., 2020) 
 
Our implementation is also publicly available at 

github.com/Stanford-NavLab/ deep_gnss. 

The rest of this paper is organized as follows: Section 2 

discusses related work; Section 3 gives relevant 

background on set-based deep learning; Section 4 

provides a description of our proposed method including 

details of numerical conditioning of the DNN input-

output values, our data augmentation strategy, and the 

neural network architecture; Section 5 details our 

experimental validation on both simu- lated and real-

world data sets; and Section 6 concludes this paper. 
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RELATED WORK 
 

Previous work has primarily used deep learning in the 

GNSS measurement domain for detecting faulty 

measurements or estimating pseudorange uncertainty. Hsu 

(2017) proposes an approach that uses a support vector 

machine (SVM) for the detection of multipath, LOS, and 

NLOS measurements. The SVM is given a feature 

vector consisting of pseudorange residuals, pseudorange 

rate residuals, and a signal-to-noise ratio for each 

measurement. The author shows that the SVM improves 

NLOS, LOS, and multipath detection rates compared to 

a fixed detec- tion threshold. In Munin et al. (2020), the 

authors detect multipath signals using a convolutional 

neural network (CNN) by learning relevant visual 

features from the receiver correlator output for each 

satellite measurement. In Zhang et al. (2021), the authors 

use a combination of long short-term memory (LSTM) 

and CNNs to predict satellite visibility and pseudorange 

uncertainty. The LSTM architecture proposed by the 

authors handles the varying numbers and order of GNSS 

measure- ments in detecting multipath signals. However, 

these previous works (Hsu, 2017; Munin et al., 2020; 

Zhang et al., 2021) focus on applying deep learning in the 

GNSS measurement domain and not directly in the 

GNSS positioning domain. 

In line with our proposed approach, several previous works 

have proposed esti- mating the pose (position and 

orientation) from sensor measurements by estimat- ing and 

applying a correction to an initial pose guess. In Cattaneo et 

al. (2019), the authors propose a localization approach 

using a camera image measurement and a lidar map of the 

environment. The approach trains several DNNs to 

iteratively cor- rect an initial pose guess based on a learned 

disparity between the camera image and an expected image 

constructed from the lidar map. In Peretroukhin and Kelly 

(2018) the authors generate correction factors within a 

factor graph using pairwise image measurements from a 

camera. The correction factor is obtained from a DNN and 

represents the relative pose between the two pairs of 

images. Although the idea of estimating position using 

corrections to an initial guess has been explored in 

literature, it has not been applied to the problem of 

GNSS-based positioning using deep learning, which is the 

focus of this work. 

 
 

DEEP LEARNING ON SETS 
 

Since the visibility of different satellites changes depending 

on both the location and the time of measurement, GNSS 

positioning output must be consistent for inputs containing 

a different number and order of measurements. For 

example, the position estimated using GNSS 

measurements from satellites numbered 1−8 

must be similar to that estimated using satellites 

numbered 5−10, even if both the number of 

measurements and the order in which measurements 

from the same satellites appear are different in both 

cases. These inputs of varying size and order are 

commonly referred to as set-valued inputs. Set-valued 

inputs pose unique chal- lenges to common DNN 

architectures, which are designed to operate on inputs 

with fixed dimensions and are sensitive to the order in 

which different elements appear within the input (Zaheer 

et al., 2017). 

Recently, DNN architectures that can handle set-valued 

inputs have been explored in literature (Lee et al., 2019; 

Skianis et al., 2020; Zaheer et al., 2017). For set-valued 

inputs comprised of elements in domain X and outputs 

in domain , the objective of these DNN architectures is to 

learn a function  : 2X  Y, such that: 

Y (i)  X (i)  

X (i)  { X 
(i) 

, X 
(i) 

, , X 
(i) 

} 

 
(1) 
 

 M (i)  (2) 
1 2 M (i )   

 
where    2

X
 denotes  the   power   set   containing   

all   combinations   of   ele- 
 

 

ments  with  domain  X;  X 
(i)

  denotes the i-th set-valued data instance with 

X (i) , X (i) , , X (i)  X; Y 
(i)

   denotes the i-th set-valued output; and M 
(i) is 

1 2 M (i ) 
( ) 

 

the number of elements in X 
i
 , which can vary across 

data instances. To operate on sets,  satisfies the following 

two properties: 

Order Invariance: For an input X  { X1 , X2 , , X M }  

and its permutation 

X   { X (1) , X (2) , , X ( M ) }, which has the same 

elements as X but with a different order defined by the 

operator  (), the function output should remain the same, 

i.e., fi (X )  fi (X ). 

Consistency in Variable Input Size: For inputs  X  

{ X1 , X2 , , X M } 

and 

X   { X1 , X2 , , X M  }, with a different number of 

elements (M  M ), 

well-defined outputs, i.e., fi (X ), fi (X ) . 

fi has 
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DNNs equipped to handle set-valued inputs realize these 

properties in three main process steps: (a) generating input 

embeddings, (b) aggregating these embeddings, and (c) 

processing the aggregated embeddings to produce the 

output (Soelch et al., 2019). In the following description 

of DNNs for set-valued inputs, we walk through these 

three steps for applying  to a single data instance. 

Correspondingly, we simplify the notation from X 
(i)

 to 

X. 

In the first step, an encoder network encoder   composed 

of feed-forward neural 

network layers individually processes each element   Xm   

 m  {1, , M } within 

the set-valued input X to obtain corresponding feature 

embeddings fim such that: 

fm  encoder ( Xm ) (3) 

For the set input, we denote this encoding process as: 

 
F  encoder (X ) (4) 

where   { fi1 ,  fiM } is the set of all embeddings such 

that fm  encoder ( Xm ). 

In the second step, the aggregation function combines the 

embeddings fim into a fixed-size aggregated embedding e 

of the inputs using an aggregation function 

aggregate : 
e  aggregate ( ) 
 (5) 

Since the aggregation function aggregate combines the 

embeddings from differ- ent input elements in the set to a 

fixed-size output, aggregate can be chosen such that it is 

number and order invariant. 

Finally, in the third step, a decoder network decoder 

composed of feed-forward neural network layers processes 

the embedding e to produce the output Y: 
 

Y  decoder (e) (6) 

As a result of the three steps, the overall function  : 

2X  Y 

sented as: can be repre- 

Y  (X )  decoder (aggregate (encoder (X )))(7) 

If the aggregation function aggregate is chosen to be number 

and order invariant, the composite function  is both 

invariant to the ordering of the inputs and unaf- fected by 

the number of elements. A variety of aggregations 

aggregate that fulfill this criteria have been studied in 

literature, such as sum, max-pooling, and learned 

aggregations (Soelch et al., 2019). 

A set transformer (Lee et al., 2019) is a particular type of 

DNN architecture for set-valued inputs that uses learned 

aggregations to construct the fixed-size input encoding e. 

In set transformers, the learned aggregations consider 

interactions between different set elements while 

combining the embeddings   fim . Modeling 

these element-to-element interactions has shown to 

perform well in tasks such as 

clustering, where the effective aggregation needs to be 

determined from the set elements themselves. Furthermore, 

these learned aggregations have been shown to perform 

well for a wide range of hyperparameters (Soelch et al., 

2019). 

GNSS-based localization benefits from such considerations 

in modeling element-element interactions because 

comparisons between different GNSS measurements aid in 

the detection of multipath and NLOS errors (Mikhailov & 

Nikandrov, 2012; Savas & Dovis, 2019). Additionally, the 

set transformer aggrega- tion function aggregate    is 

number and order invariant which allows its application 

to set-valued inputs, such as GNSS measurements. Hence, 

we employ the set trans- 

former within our DNN architecture to handle set-valued 

GNSS measurements. 

 
 

PROPOSED METHOD 
 

In this section, we describe our approach for developing 

a DNN for estimating corrections to an initial position 

guess using GNSS pseudorange measurements. First, we 

formulate the problem of estimating position corrections 

with data val- ues that are numerically well-conditioned 

for deep learning. Then, we describe the architecture and 

training process of our DNN that employs a set 

transformer to process the set-valued inputs derived from 

GNSS measurements and estimates the position 

correction. Next, we explain our strategies to overcome 

the problems of geographic sparsity of data and 

overfitting. Finally, we illustrate our inference procedure 

for a new set of GNSS measurements. Figure 2 shows 

the overall archi- tecture of our algorithm. 

 
 

Position Correction From GNSS Measurements 
 

At a measurement epoch, typical methods estimate 

position using GNSS pseu- 

dorange measurements,  
(i)

 ,  
(i)

 , ,  
(i)

 , collected from 

a position p
(i)

 in the 

ECEF 
 

 
 

FIGURE 2 View of the overall positioning pipeline; we process input GNSS pseudorange measurements and satellite positions using a DNN 
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to estimate the correction to an initial position estimate. 

 
 

DNN for Estimating Position Corrections 
 

To obtain the estimated position corrections 
 (i) ECEF 

from the conditioned 
set-valued inputs 

(i) using Equation (17), we 
developed a neural network based 
on the set transformer (Lee et al., 2019) architecture 
discussed in Section 3. 
Our DNN architecture is comprised of four components 
that we train together to estimate the position 
corrections from input set  of residuals and LOS 

vectors. First, as a part of the encoder encoder , a fully 

connected network, with rectified linear unit (ReLU) 
activation functions, generates a high-dimensional 
embedding 
of each input, comprised of a residual r from  and the 
associated LOS vector 1 from  . Each embedding is a D-
dimensional vector and is an instance of a mea- surement 
in latent space. Here D is a hyperparameter of the network 
architecture and can be different after encoding or 
after aggregation in the network. In this 

 

 
 
FIGURE  3 Architecture of the network consisting of the encoder, the aggregator, and the decoder; features from M satellites are 
processed by the network into a 3D position correction. 

 
work, we choose D  64 as the hyperparameter 

throughout the network. Then, a set transformer encoder 

based on the set transformer encoder block (Lee et al., 

2019) further refines the embeddings by modeling 

interactions between different set elements. Next, a 

network for learned aggregation aggregate , based on the set 

transformer pooling block (Lee et al., 2019), determines the 

influence of each set element on the position correction 

output and combines the embeddings based on these 

influences. Finally, a set transformer decoder network 

decoder , composed of a set transformer decoder and a 

linear layer (Goodfellow et al., 2016), processes 

the aggregated embedding to determine the position 

correction output 
p̂ECEF . 

Section 3 briefly explains the set transformer encoder, 

aggregation, and decoder 

blocks. Figure 3 depicts the DNN architecture for our 

proposed approach. 

We train the DNN by minimizing the mean squared error 

(MSE) between a batch of the estimated and the true 

corrections as the loss function: 
 

p̂ 
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init 

init 

ECEF 

 
 

While a DNN trained from Equation (17) has access to 

well-conditioned inputs and outputs, its ability to 

generalize to new data instances is limited by (a) the geo- 

graphic sparsity of the data and (b) variations in inputs 

and outputs encountered during training. In this section, 

we present strategies to overcome these limitations and 

improve the generalization capability of the DNN. 

 
 

Overcoming Geographic Sparsity by Change 

ofi 

Refierence Frame 
 

Geographic sparsity arises here because the data set that 

was used was collected in a fixed region on the globe. The 

satellite LOS vectors and position corrections in the data 

collected in one part of the world may significantly differ 

from those in the data from another part, resulting in 

measurements from some regions being dis- 

proportionately represented in a given data set. This 

disproportionality increases the difficulty in training the 

DNN to accurately estimate corrections for positions all 

around the globe, since certain input-output relations 

might be missing from the data set. 

To incentivize the DNN to generalize to inputs from 

across the globe, we make the input-output behavior 

independent of the location the data was collected in. We 

achieve this by changing the frame of reference of the 

inputs and outputs from the global ECEF frame to the 

local north-east-down (NED) frame about p
(i)

 . In 

Increasing Data Variation Using Geometry-

Based 

Data Augmentation 
 

Using limited data to train a DNN with several 

parameters often leads to overfit- ting, in which the DNN 

memorizes input-output pairs specific to the training 

data set (Goodfellow et al., 2016). Data augmentation is a 

commonly used technique to reduce overfitting, which 

introduces new data points to the DNN during training 

by transforming existing training samples based on the 

problem context. 

We introduced a geometry-based data augmentation 

strategy for training a DNN to estimate position corrections 

from pseudorange measurement residuals and LOS 

vectors. Algorithm 1 illustrates the process for generating 

new data points from a data instance. Our augmentation 

strategy leverages the geometric aspect of GNSS-based 

positioning by changing the value of the initial position 

guess p̂
(i)

 each training epoch to generate new residuals 


(i)

 , LOS vectors  
(i)

 , and cor- 

rections  p
(i)

 via Equation (14). New initial position 

guesses are generated by 
(i)  

adding zero-mean uniformly distributed noise to the 

ground truth position p  . As 

a result, new samples are generated without any 

correlation, thus regularizing the training process and 

allowing the network to better learn the input-output 

map- ping relationship. Finally, the network sees new 

samples in every training epoch, which prevents it from 

overfitting the training data. 

 
 

Inference 
 

In this section, we illustrate our process to use the 

trained DNN for estimatingthe position 

p̂ECEFfrom new GNSS pseudorange measurements and 

the corre- 
 

 

sponding satellite positions, represented by the set . 
ALGORITHM   1 

Geometry-Based Data Augmentation 
 

 

Input: Set  of paired pseudorange measurements and satellite 

positions and ground 

truth position pECEF 

Parameters: Number of augmented data points K and vector-

valued initialization range  

Output: A list of residuals R, LOS vectors  I ,  and position 

corrections  P 

1 R [], I [], P [] 

for k  1 to K do 

Sample  pinit   uniformly from  [pECEF  , pECEF   ] 

Generate  R, I , pECEF  from  ,  and  pinit   using Equation (14) 
   

Assign values R[k]  R, I [k]  I , P[k]  pECEF 

  6  return  R, I , P  

 

 

First, we obtain an initial position guess pinit from a 

traditional localization algo- rithm or prior knowledge 

that we assume is in the vicinity of the true position 

pECEF . Then, we use Equation (17) to determine the input 

set  that is comprised of pseudorange residuals  and 

corresponding LOS vectors  in the NED refer- ence 

frame with respect to pinit . Using the set  as an input to 

the DNN, we eval- uate the position correction in the 

NED frame  p̂NED  and convert it to the position 

correction in the ECEF frame 

p̂ECEF . 

Finally, we add the correction  p̂ECEF  to 

pinit  to obtain the position estimate  p̂ECEF 

using: 

p̂ECEF   pinit   p̂ECEF 

 (22) 

E PERIMENTS 
 

We validated our approach using a simulated data set and 

real-world measure- ments from the Android Raw GNSS 

Measurements data set (Fu et al., 2020). We used 

simulations to verify the performance of our network in a 

setting with con- trolled measurement errors and access to 

precise ground truth information. In the validation of real-

world data, we compared the accuracy of our proposed 

approach to that of  weighted least squares (WLS; 

Morton et al., 2021), which is an equiv- alent traditional 

localization algorithm and serves as a baseline comparison. 

In experiments on both data types, we used the same 

network architecture, optimizer parameters, data 

generalization method, and other experimental 
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ECEF 

ECEF 

hyperparameters. These parameters are described in 

Section 5.1 followed by experimental evaluation on the 

simulated data set in Section 5.2 and an evaluation on 

the Android Raw GNSS Measurements data set in Section 

5.3. 

 
 

E perimental Parameters 
 

In our experiments, a fully trained network occupies 611 

kB on a disk for 151,107 parameters. We used an instance 

of the network described in Section 4.2 where the inputs 

(residuals and LOS vectors) were projected into a latent 

space of dimension D  64 by a linear layer, followed 

by a ReLU activation (Goodfellow et al., 2016). In our 

implementation, we chose D  64 as the dimension of the 

latent spaces in which all projected and embedded 

features exist. 

The projected features were then encoded by two 

transformer encoder layers (Vaswani et al., 2017) that 

would operate on the features sequentially. The encoded 

features were pooled using a pooling attention module 

(Lee et al., 2019), which was followed by two sequential 

transformer decoder layers and a linear layer to output 

the 3D position correction. We did not use batch 

normalization or dropout techniques at any point in the 

network architecture. 

Our experiments were performed with data batches of 64 

samples and the net- work was trained for 200 epochs. 

The DNN parameters were optimized using Adam 

(Kingma & Ba, 2014) with a learning rate   3 104 as 

well as a moving window average 1  0.9 and 2  

0.99. 

At each training and testing epoch, we generated the initial 

position guess p̂init  by 

uniformly sampling from the interval [pECEF , pECEF 

 ], where    [1, 1, 1]
 

was the vector-valued initialization range with a 

magnitude  that was the same 

along each direction. We used initial position guesses 

with randomly sampled noise added to the true position 

in all our experiments, except those without data 

augmentation, for training the network and 

validating/testing the trained network. The default value in 

the experimental validations was   15 m, which was 

changed when studying the effect of different  values 

on the final position estimate. 

Additionally, when evaluating the effectiveness of our 

data augmentation method, we compared our approach 

to a baseline without data augmentation. In the network 

without data augmentation, we used a fixed trajectory 

uniformly sam- 

pled from the interval [pECEF , pECEF  ]. Here, the 

term fiixed implies that the samples were drawn once to 

generate the training and validation data sets and have not 

been changed over any epoch during training. 

 
 

Simulated Data Set 
 

We created the simulated data set by (a) generating smooth 

horizontal trajecto- ries in the NED frame of reference, (b) 

converting the simulated trajectories to the ECEF frame of 

reference, and (c) simulating open-sky GNSS 

measurements for each point along the trajectory. 

We simulated the trajectories to imitate real-world data 

sets, like the Android Raw GNSS Measurements data set 

(Fu et al., 2020), that are often confined to a lim- ited 

geographical region and contain samples along vehicle 

trajectories. We sim- ulate these trajectories based on the 

approach proposed by Mueller et al. (2015). Note that our 

network performs snapshot position estimation (i.e., the 

correlation between samples in the trajectory has no 

impact on our experimental results). 

To generate the measurements for samples from the 

simulated trajectories, we used the standard pseudorange 

model (Morton et al., 2021) with the true position 

and clock states for each instance of data in the 

converted trajectories p
(i)

 . We 

did not consider any atmospheric effects or satellite 

clock biases in simulating the pseudorange 

measurements. Set 
(i)

 represents the pairs of simulated 

pseudor- ange measurements and the corresponding 

satellite positions. 

For each  data  instance, measurements  were  only 

simulated  for  satellites that 

were visible from p
(i)

 , determined using an 

elevation mask of 5°. Because we 

used an elevation mask to simulate the measurements, the 

number of measure- ments at each instance M (i) varied 

between 8–10 in our data set. Additionally, we imposed no 

constraints on the order of the simulated measurements. 

We, next, describe the experiments that utilized the 

simulated data to verify the validity of our approach. 

Additionally, we investigate the sensitivity of the DNN 

performance to the choice of measurement errors and the 

initialization range magnitude . 

Verifiying Perfiormance Under Dififierent 

Measurement Errors 
 

We verified the positioning performance of our DNN in our 

approach across two scenarios with different error profiles 

in the pseudorange measurements. 

In the first scenario, simulated pseudoranges contained 

stochastic noise terms that followed a zero-mean 

Gaussian distribution with a 6−m standard devia- tion. 

In the second scenario, we added bias errors along with the 

zero-mean Gaussian errors in the measurements. The bias 

errors were sampled from the interval [50, 200] m and 

were added to pseudoranges picked at random to mimic 

the effect of multipath and NLOS signals. The number 

of biased measurements at a time was sampled from a 

Poisson distribution with rate 1. In both scenar- 

the DNN is not restricted by a prior measurement 

model, we hypothesized that 

the positioning error for the DNN would be unaffected 

by the noise scenarios, as long as the DNN encounters 

the same noise scenario during the training process. 

To verify this hypothesis, we evaluated the mean 

absolute positioning error along the north, east, and 

down directions, respectively. For both scenarios, the 

positions estimated by applying corrections from our 

trained DNN exhibited posi- tioning errors that were less 
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than half the initial value, verifying that our proposed 

approach is effective in learning a function for 

positioning using GNSS measure- ments. These results 

are summarized in Table 1. 

 
 

Comparing Perfiormance Across Dififierent 

Initial Positions 
 

Since the magnitude of the initialization range  

determines the maximum initial positioning error, we 

expected it to have a significant effect on the posi- 

tioning performance of the DNN. To investigate this, we 

evaluated the sensi- tivity of our approach to different 

choices of  for a scenario with zero-mean Gaussian errors 

in pseudorange measurements. We considered three 

different 

values of  {5 m, 15 m, 30 m}for  training  the  DNN  

and  compared  the  posi- 

tioning performance of the resultant DNN, the results of 

which are shown in Figure 4. 

We observed that the positioning error along each of the 

north, east, and down directions increased as we increased 

the value of . However, this increase wasn’t linear and 

the difference between the positioning errors for   15 m 

and   30 m showed less than linear growth. This 

indicates that, while the positioning error of 

 
TABLE   1 
Mean Absolute Error in Position Along Each Direction for Different Simulated Sensor Error Characteristics 
 

Scenario North (m) East (m) Down (m) 

Initialization 7.5 ± 5.0 7.5 ± 5.0 7.5 ± 5.0 

Gaussian error 2.6 ± 2.0 2.4 ± 1.8 2.2 ± 1.6 

Gaussian + bias error 2.8 ± 2.1 2.6 ± 2.0 2.4 ± 1.8 

Note: In both scenarios, our approach reduced the positioning error over the baseline with 
random initialization by more than half the value. 

 

 
 
FIGURE 4 Sensitivity analysis over various initialization ranges along the north, east, and down directions; the mean absolute error 
(MAE) in DNN-based position corrections increases when the initialization range increases. 

 
the DNN does depend on the magnitude of the 

initialization range , the impact of  reduces as its 

magnitude increases. 

We attributed the increase in the mean absolute error 

(MAE) on increasing the initialization range  to 

primarily two factors. First, the network learns the maxi- 

mum possible corrections based on the magnitude of the 

maximum error it sees in the training data set. As a result, 

outputs for smaller values of  are restricted to smaller 

ranges, resulting in a smaller MAE. The second factor is 

that, in increasing 

, the network must generalize to a larger set of 

possible inputs, which increases the overall error in the 

position estimate. 

 
 

Android Raw GNSS Measurements Data Set 
 

The Android Raw GNSS Measurements data set (Fu et 

al., 2020) consists of GNSS measurements collected 

using Android phones from multiple driving tra- 

jectories executed in the San Francisco Bay Area. This 

data set has two compo- nents: a training component 

and a testing component. The training component is 

accompanied by high-accuracy position estimates 

collected using a NovAtel SPAN system that we used as 

the ground truth position in our approach. Due to the 

availability of ground truth positions, we restricted 

ourselves to the training component because the ground 

truth provides a reference to both train and eval- uate the 

DNN. Henceforth, we refer to this training component as 

the data set for evaluating our approach. The GNSS 

measurements in each trajectory, referred to as traces, 

include raw pseudoranges, atmospheric biases, satellite 

clock biases, and satellite positions from at least two 

Android phones. These measurements, including 

satellite positions, atmospheric biases, and satellite clock 

biases, were computed and provided in derived files in 

the data set. We used these quantities without any 

modification or additional computations. We treated 

each unique phone-trace combination as an independent 
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m 

m 

trajectory while validating our approach. 

To create the set 
(i)

 for each data instance that was input 

to the DNN, we used measurements corresponding to 

GPS L1 signals and processed the raw pseudor- anges to 

remove errors that could be modeled. The corrected 

pseudorange  (i) was 

obtained from values present in the measurement data set 

by: 

where  (i) represents the raw pseudorange, B(i) is the 

satellite clock bias, b(i) rep- 
m m m 

resents the inter-signal ranging bias, I (i) is the modeled 

delay due to ionospheric effects, and T (i)   represents the 

modeled delay due to tropospheric effects. This 

process was repeated for all measurements m  {1, , M 
(i) } in all data instances 

i  {1, , N }, where M (i) is the number of measurements in 

the i-th data instance and there are N data instances in the 

entire data set. 

In our experimental evaluation of the Android data set, 

we split the data set into three independent parts: (a) a 

training split ( 75% of the data set), (b) a validation split 

( 10% of the data set), and (c) a testing split ( 15% of 

the data set). 

The first split divided the data set into two parts: one for 

training/validation and another for testing. This division 

was performed on the trace level and the training/ 

validation and testing data set contained different traces 

with all corresponding Android measurements from a 

particular trace associated with either the training/ 

validation or testing data set. The split between the 

training/validation and test- ing data sets was fixed and, 

therefore, the same for all experiments in this work. The 

traces belonging to each data set are plotted in Figure 5. 

The additional split between the training and validation 

data sets was performed by randomly selecting a ratio of 

samples from the training/validation traces and using 

them to validate the network. Each split between the 

training and validation data sets was stochas- tic and 

changed from experiment to experiment. As a result of the 

data set split, the training data set had 93,195 samples, the 

validation data set had 10,355 samples, and the testing 

data set had 16,568 samples. 

 
 

Perfiormance  Evaluation 
 

We used the training split to train the DNN while the validation split was used to evaluate the DNN during training and 
ensure that it was learning successfully. 
 
 

 
FIGURE  5 Traces from the Android Raw GNSS Measurements data set used for training/ validation (blue) and testing (red) 

We used the testing split to evaluate the performance of 

different variations of our approach and compared it to the 

weighted least squares (WLS) baseline. 

The WLS baseline position estimates were generated 

using the open-source goGPS implementation (Herrera 

et al., 2016). goGPS internally corrects pseudor- anges 

by removing estimated atmospheric delays, satellite 

clock biases, and other modeled biases. An elevation mask 

of 10° was applied to the received measurements and the 

remaining measurements were weighed using the default 

elevation-based weights from goGPS. The WLS output 

contained a 3D position estimate along with a clock bias 

estimate, of which we compared only the positions of 

those obtained by our proposed architecture. 

We evaluated the performance of our proposed DNN 

with NED corrections and data augmentation using   
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15 m to our approach without augmentation, our approach 

with data augmentation using   30 m, and the WLS 

baseline. This evaluation was performed on the entire 

testing data set and our experiments show that our approach 

with   15 m performed the best out of all variations, 

both in terms of MAE (listed in Table 2) and cumulative 

distribution function (CDF) plots of the errors (shown in 

Figure 7). We also evaluated a network that predicted posi- 

tions directly, instead of predicting corrections to an initial 

position. However, such an approach showed a MAE in the 

order of 103 m along all directions and was not investigated 

further or compared to other methods. 

Of the three variations of our method that we evaluated, 

turning off the data augmentation had the least negative 

impact on the performance of the neural net- work. This 

difference was particularly noticeable in the north 

direction where the CDF curve deviations from the best 

case and an additional mean error of approx- imately 0.8 

m were observed. The differences along the east and 

down directions were not as evident, with an additional 

mean error of 0.15 m to 0.25 m and having virtually 

indistinguishable CDF curves. 

Similar to our observations from the simulated data, 

increasing the initialization range  increased the MAE 

and caused a perceptible drop in the CDF curve for the 

same error values. Performance of the WLS baseline was 

poorer than both net- works initialized with   15 m in 

all three directions. However, the WLS baseline 

outperformed the network initialized with   30 m in the 

north and east direc- tions while still performing poorly in 

the down direction. 

This difference is further evidenced by a comparison of the 

error quantiles between our approach with   15 m, our 

approach with   30 m, and the WLS baseline, as shown 

in Figure 8. Our approach with   15 m outperformed 

the WLS baseline in all directions. However, with   

30 m, our approach was only 

 
TABLE  2 
Mean Absolute Positioning Error Along the North, East, and Down Directions in the Estimate of the WLS Baseline and Variations of our 
Approach 
 

Scenario North (m) East (m) Down (m) 

WLS baseline 11.6 ± 51.9 9.7 ± 38.7 36.4 ± 265.9 

Our approach with   30 m 11.1 ± 10.2 9.3 ± 8.5 9.3 ± 7.5 

Our approach without data augmentation 7.1 ± 5.7 6.0 ± 5.1 6.6 ± 5.1 

Our approach with   15 m 6.4 ± 5.2 5.9 ± 5.0 6.2 ± 4.9 

Note: The variations at hand include NED corrections +   30 m, NED corrections +   30 m 

without data augmentation, and NED corrections +   15 m. We can observe that a smaller 
initialization range results in smaller position estimate errors, data augmentation improves 
performance on the testing data set, and that final positioning errors were significantly less than 
those of WLS estimates in the down direction for all cases. 

able to outperform WLS in the down direction. Similar to 

the simulated data, there was a strong correlation between 

the accuracy and the largest magnitude of the initial 

error, which is currently a limitation of the proposed 

work. 

Figure 8 also demonstrates that the network learns the 

largest magnitude of error in the training data set and 

bounds the estimated position correction using this 

information. This also results in the improved 

performance of networks with smaller initialization 

ranges  that provide corrections with correspondingly 

smaller magnitudes. The network’s initial guess is 

always within a certain range of the ground truth; 

because of which, the network’s final estimate is also 

rela- tively closer to the ground truth solution. This 

results in our approach’s superior 

 
 

CONCLUSION 
 

In this work, we proposed an approach to use a deep neural 

network (DNN) with GNSS measurements to provide a 

position estimate. Our proposed approach is the first, to our 

knowledge, that works with GNSS measurements to 

provide outputs in the position domain. 

To obtain a position estimate, we converted the traditional 

position estimation problem to that of estimating position 

corrections to an initial position guess using a DNN. Our 

proposed approach addresses the challenge of set-based 

GNSS inputs that vary in number and order by utilizing the 

set transformer in the DNN archi- tecture. We proposed 

using pseudorange residuals and LOS vectors from the 

initial position guess as inputs and NED position 

corrections as outputs to the DNN. This particular choice of 

inputs and outputs improves the numerical conditioning 

of the DNN and provides a natural method to extend our 

approach to other global regions. Additionally, to reduce 

overfitting on training data and incentivize the DNN to 

learn a functional map between the measurements and 

position correc- tions, we developed a geometry-based data 

augmentation method. 

We validated our proposed approach on both simulated 

and real-world data. Experiments performed on the 

simulated data showed that the position corrections 

provided by the DNN reduced the mean absolute 

localization error in each of the north, east, and down 

directions from the error in the initial position guess, 

indicat- ing that the DNN effectively learns to solve the 

positioning problem. Experiments on real-world data 

demonstrated that the performance of the DNN is 

sensitive to the error present in the initial position guess. 

Comparison of the absolute localiza- tion error to a 

weighted least squares (WLS) baseline showed that our 
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approach outperforms WLS along the vertical direction 

when initialized with position errors within 15 m as well 

as 30 m. Our experimentation also validates that our data 

aug- mentation technique improves the network’s 

performance when compared to a similar network 

without data augmentation. 

This work validates that using DNNs for GNSS-based 

localization is a promis- ing and interesting area of 

research. Our current approach is a snapshot method 

limited to using simple features. Additionally, both of 

our training and testing data sets were entirely from the 

San Francisco Bay Area, which does not provide 

geographical diversity. In the future, we plan to validate 

our proposed method on diverse testing data sets 

collected from locations around the globe. We also plan 

to extend our approach to sequential position estimation 

while considering addi- tional measurements such as 

signal-to-noise-ratio and Doppler. Furthermore, we are 

considering performing a more detailed parametric study 

to investigate the effect of hyperparameter values, the use 

of additional regularization methods, and an iterative 

positioning correction approach similar to CMR Net 

(Cattaneo et al., 2019). Our proposed work is also limited 

by its reliance on close initial guesses and the sensitivity 

to initialization ranges, which we will also address in 

future work. 
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