
 e-ISSN 2320 –7876 www.ijfans.org

Vol.10, Iss.1, Jan 2021

 Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal

40

Improving GNSS Positioning Using Neural-Network-Based Corrections

Mr.JADA LINGAIAH , Mrs.GUNDUBOINA ANUSUYA, Mrs K.VEERA VASANTHA, KAYATHI DIVYA

ASSISTANT PROFESSOR1,2,3, STUDENT 4

Department of ECE
 Arjun College Of Technology & Sciences

 Approved by AICTE& Affiliated to JNTUH
SPONSORED BY BRILLIANT BELLS EDUCATIONAL SCOITEY

Abstract
Deep neural networks (DNNs) are a promising tool for

global navigation satellite system (GNSS) positioning in

the presence of multipath and non-line-of-sight errors,

owing to their ability to model complex errors using data.

However, devel- oping a DNN for GNSS positioning

presents various challenges, such as (a) poor numerical

conditioning caused by large variations in measurements

and posi- tion values across the globe, (b) varying

number and order within the set of measurements due to

changing satellite visibility, and (c) overfitting to

available data. In this work, we address the

aforementioned challenges and propose an approach for

GNSS positioning by applying DNN-based corrections

to an initial position guess. Our DNN learns to output the

position correction using the set of pseudorange residuals

and satellite line-of-sight vectors as inputs. The limited

variation in these input and output values improves the

numerical conditioning for our DNN. We design our

DNN architecture to combine information from the

available GNSS measurements, which vary both in

number and order, by lever- aging recent advancements

in set-based deep learning methods. Furthermore, we

present a data augmentation strategy to reduce

overfitting in the DNN by randomizing the initial

position guesses. We, first, perform simulations and

show an improvement in the initial positioning error

when our DNN-based cor- rections are applied. After this,

we demonstrate that our approach outperforms a weighted

least squares (WLS) baseline on real-world data. Our

implementa- tion is available at github.com/Stanford-

NavLab/deep_gnss.

Keywords

deep learning, global navigation satellite system,

position-domain models, set transformer

INTRODUCTION

In the last decade, deep learning has been applied to

several localization appli- cations involving complex and

high-dimensional sensor inputs, such as camera images

and lidar pointclouds (Choy et al., 2020; Kendall et al.,

2015; Wang et al., 2017). Deep learning algorithms

utilize labeled data to (a) discover an effective

representation, or embedding, of the sensor inputs

needed for localization; and

(b) to build an approximate model, represented by a deep

neural network (DNN), of the sensor input-position

output relationship. Since both the embeddings and the

model are learned using data, these methods have shown

better performance than analytical methods when sensor

inputs are affected by environmental factors, such as

occlusions and dynamic obstacles (Sünderhauf et al.,

2018).

Given the success of deep learning in localization using

sensor inputs, it is natu- ral to consider applying deep

learning for localization using GNSS measurements.

This is especially important for localization in urban and

semi-urban environments, where multipath and non-line-

of-sight (NLOS) effects add environment-dependent

additive biases to GNSS measurements that are

challenging to model analytically. The error distributions

in GNSS measurements due to these effects are often

non-Gaussian, which reduces the accuracy of traditional

techniques that rely on Gaussian approximations of the

error (Reisdorf et al., 2016; Wen et al., 2020; Zhu et al.,

2018). Since DNNs can learn the relationship between

the measurements and corresponding positions using

data, they offer a promising alternative for localization

in urban and semi-urban environments.

Availability of labeled data sets containing ground truth

positions is necessary for training a DNN for

localization. The recent increase in public data sets

contain- ing GNSS pseudorange measurements along with

the associated ground truth posi- tions is promising for the

development of deep-learning algorithms for GNSS-based

localization (Fu et al., 2020). These data sets are

collected over different driving scenarios, such as

highway, urban, and semi-urban, as well as under different

oper- ating conditions. Thus, these data sets provide a

variety of input-output pairs for training the DNN.

Although labeled data with GNSS pseudorange

measurements is becoming increasingly available, three

main challenges must be addressed before this data can

be used to train a DNN for localization:

Different Variations in Values of GNSS Data:

Satellite positions in the Earth-centered, Earth-fixed

(ECEF) frame of reference can take values between

[20, 200, 20, 200] km in all three axes with variations

of the same magnitude. On the other hand, GNSS

pseudorange measurements have values of around 20,200

km but variations on a much smaller scale, of about 100

m. Similarly, GNSS receiver positions in the ECEF

reference frame take values approximately between

[6,000, 6,000] km in all three axes with variations of the

same magnitude. The large difference in the ratio of

 e-ISSN 2320 –7876 www.ijfans.org

Vol.10, Iss.1, Jan 2021

 Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal

41

meaningful variations to received values causes the

optimization problem of training a DNN to be

numerically ill-conditioned, resulting in large changes to

the DNN’s parameters at each update and numerical

instability (Goodfellow et al., 2016; McKeown et al.,

1997). Furthermore, naïvely rescaling the satellite

position and pseudorange measurement values risks loss

of information necessary for positioning due to the finite

precision of floating point operations. Therefore,

additional strategies for representing the satellite

positions and pseudorange measurements must be

considered.

Varying Number and Order of GNSS

Measurements: Since the number of visible satellites at

a measurement epoch depends on the environment, the

set of measurements received at different epochs often

contains different numbers of GNSS signals. Additionally,

for the same set of measurements, the output of GNSS-

based localization algorithms should be independent of

the order of measurements within the set. However, most

DNN architectures are designed for a fixed number of

inputs supplied in a pre-determined order, requiring the use

of specialized architectures for GNSS-based localization

(Lee et al., 2019; Skianis et al., 2020; Zaheer et al., 2017).

Limitation in Collecting Vast Amounts of Real-

World GNSS Data and Ground Truth: Collection

of large-scale GNSS data sets for deep learning is

limited by the need of ground truth positions associated

with the measurements, which requires sophisticated

hardware. Therefore, existing GNSS data sets with

ground truth are collected at a few locations in the world

and at specific times. These data sets are limited both in

the geography and in the variety of observed pairs of

GNSS measurements and positions. For instance, the

ECEF positions of both the receiver and the satellites

captured in a data set collected within California will not

include the ECEF positions seen in a data set collected

within Australia. Using such limited data in deep

learning often results in DNN models that overfit the

training data and perform poorly on unseen inputs

(Goodfellow et al., 2016).

In this work, we address these challenges and develop a

deep-learning algorithm for localization using GNSS

pseudorange measurements. We propose converting the

position estimation problem solved by traditional GNSS

positioning algorithms into the problem of estimating

position corrections to an initial position guess. In our

approach, we use a DNN to learn a functional mapping

from GNSS measure- ments to these position

corrections, as illustrated in Figure 1. This paper is

based on our work in Kanhere et al. (2021).

The main contributions of our work are:

The designing of a DNN to estimate position corrections

to an initial position guess. To our knowledge, our

approach is one of the first to use a DNN with outputs

directly in the GNSS positioning domain.

The use of a set-based DNN architecture to handle the

varying number and order of GNSS inputs at each

measurement epoch

The use of numerically conditioned inputs and outputs in

a local frame of reference for the DNN; we use residuals

and line-of-sight (LOS) vectors as inputs along with

position correction outputs in the local north-east-down

(NED) frame of reference for numerically stable training

and to encourage global applicability of the algorithm.

The development of a geometry-based data

augmentation strategy to prevent overfitting in the DNN

and improve its generalization to new GNSS

measurements; our strategy generates new data points

for training the DNN by leveraging the geometric

relationship between randomized initial position guesses,

residuals, LOS vectors, and position corrections.

FIGURE 1 Our approach for applying deep learning for GNSS-based localization; given GNSS pseudorange measurements and satellite
positions, our method uses a DNN to estimate position corrections to an initial position guess.

Validation of the proposed approach on simulations and real-world data from the Android Raw GNSS Measurements data
set (Fu et al., 2020)

Our implementation is also publicly available at

github.com/Stanford-NavLab/ deep_gnss.

The rest of this paper is organized as follows: Section 2

discusses related work; Section 3 gives relevant

background on set-based deep learning; Section 4

provides a description of our proposed method including

details of numerical conditioning of the DNN input-

output values, our data augmentation strategy, and the

neural network architecture; Section 5 details our

experimental validation on both simu- lated and real-

world data sets; and Section 6 concludes this paper.

 e-ISSN 2320 –7876 www.ijfans.org

Vol.10, Iss.1, Jan 2021

 Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal

42

RELATED WORK

Previous work has primarily used deep learning in the

GNSS measurement domain for detecting faulty

measurements or estimating pseudorange uncertainty. Hsu

(2017) proposes an approach that uses a support vector

machine (SVM) for the detection of multipath, LOS, and

NLOS measurements. The SVM is given a feature

vector consisting of pseudorange residuals, pseudorange

rate residuals, and a signal-to-noise ratio for each

measurement. The author shows that the SVM improves

NLOS, LOS, and multipath detection rates compared to

a fixed detec- tion threshold. In Munin et al. (2020), the

authors detect multipath signals using a convolutional

neural network (CNN) by learning relevant visual

features from the receiver correlator output for each

satellite measurement. In Zhang et al. (2021), the authors

use a combination of long short-term memory (LSTM)

and CNNs to predict satellite visibility and pseudorange

uncertainty. The LSTM architecture proposed by the

authors handles the varying numbers and order of GNSS

measure- ments in detecting multipath signals. However,

these previous works (Hsu, 2017; Munin et al., 2020;

Zhang et al., 2021) focus on applying deep learning in the

GNSS measurement domain and not directly in the

GNSS positioning domain.

In line with our proposed approach, several previous works

have proposed esti- mating the pose (position and

orientation) from sensor measurements by estimat- ing and

applying a correction to an initial pose guess. In Cattaneo et

al. (2019), the authors propose a localization approach

using a camera image measurement and a lidar map of the

environment. The approach trains several DNNs to

iteratively cor- rect an initial pose guess based on a learned

disparity between the camera image and an expected image

constructed from the lidar map. In Peretroukhin and Kelly

(2018) the authors generate correction factors within a

factor graph using pairwise image measurements from a

camera. The correction factor is obtained from a DNN and

represents the relative pose between the two pairs of

images. Although the idea of estimating position using

corrections to an initial guess has been explored in

literature, it has not been applied to the problem of

GNSS-based positioning using deep learning, which is the

focus of this work.

DEEP LEARNING ON SETS

Since the visibility of different satellites changes depending

on both the location and the time of measurement, GNSS

positioning output must be consistent for inputs containing

a different number and order of measurements. For

example, the position estimated using GNSS

measurements from satellites numbered 1−8

must be similar to that estimated using satellites

numbered 5−10, even if both the number of

measurements and the order in which measurements

from the same satellites appear are different in both

cases. These inputs of varying size and order are

commonly referred to as set-valued inputs. Set-valued

inputs pose unique chal- lenges to common DNN

architectures, which are designed to operate on inputs

with fixed dimensions and are sensitive to the order in

which different elements appear within the input (Zaheer

et al., 2017).

Recently, DNN architectures that can handle set-valued

inputs have been explored in literature (Lee et al., 2019;

Skianis et al., 2020; Zaheer et al., 2017). For set-valued

inputs comprised of elements in domain X and outputs

in domain , the objective of these DNN architectures is to

learn a function  : 2X  Y, such that:

Y (i)  X (i) 

X (i)  { X
(i)

, X
(i)

, , X
(i)

}

(1)

 M (i)  (2)
1 2 M (i)

where 2

X
 denotes the power set containing

all combinations of ele-

ments with domain X; X
(i)

 denotes the i-th set-valued data instance with

X (i) , X (i) , , X (i) X; Y
(i)

   denotes the i-th set-valued output; and M
(i) is

1 2 M (i)
()

the number of elements in X
i
 , which can vary across

data instances. To operate on sets,  satisfies the following

two properties:

Order Invariance: For an input X  { X1 , X2 , , X M }

and its permutation

X   { X (1) , X (2) , , X (M) }, which has the same

elements as X but with a different order defined by the

operator  (), the function output should remain the same,

i.e., fi (X)  fi (X ).

Consistency in Variable Input Size: For inputs X 

{ X1 , X2 , , X M }

and

X   { X1 , X2 , , X M  }, with a different number of

elements (M  M ),

well-defined outputs, i.e., fi (X), fi (X ) .

fi has

43

DNNs equipped to handle set-valued inputs realize these

properties in three main process steps: (a) generating input

embeddings, (b) aggregating these embeddings, and (c)

processing the aggregated embeddings to produce the

output (Soelch et al., 2019). In the following description

of DNNs for set-valued inputs, we walk through these

three steps for applying  to a single data instance.

Correspondingly, we simplify the notation from X
(i)

 to

X.

In the first step, an encoder network encoder composed

of feed-forward neural

network layers individually processes each element Xm

 m  {1, , M } within

the set-valued input X to obtain corresponding feature

embeddings fim such that:

fm  encoder (Xm) (3)

For the set input, we denote this encoding process as:

F  encoder (X) (4)

where   { fi1 ,  fiM } is the set of all embeddings such

that fm  encoder (Xm).

In the second step, the aggregation function combines the

embeddings fim into a fixed-size aggregated embedding e

of the inputs using an aggregation function

aggregate :
e  aggregate ()
 (5)

Since the aggregation function aggregate combines the

embeddings from differ- ent input elements in the set to a

fixed-size output, aggregate can be chosen such that it is

number and order invariant.

Finally, in the third step, a decoder network decoder

composed of feed-forward neural network layers processes

the embedding e to produce the output Y:

Y  decoder (e) (6)

As a result of the three steps, the overall function  :

2X  Y

sented as: can be repre-

Y  (X)  decoder (aggregate (encoder (X)))(7)

If the aggregation function aggregate is chosen to be number

and order invariant, the composite function  is both

invariant to the ordering of the inputs and unaf- fected by

the number of elements. A variety of aggregations

aggregate that fulfill this criteria have been studied in

literature, such as sum, max-pooling, and learned

aggregations (Soelch et al., 2019).

A set transformer (Lee et al., 2019) is a particular type of

DNN architecture for set-valued inputs that uses learned

aggregations to construct the fixed-size input encoding e.

In set transformers, the learned aggregations consider

interactions between different set elements while

combining the embeddings fim . Modeling

these element-to-element interactions has shown to

perform well in tasks such as

clustering, where the effective aggregation needs to be

determined from the set elements themselves. Furthermore,

these learned aggregations have been shown to perform

well for a wide range of hyperparameters (Soelch et al.,

2019).

GNSS-based localization benefits from such considerations

in modeling element-element interactions because

comparisons between different GNSS measurements aid in

the detection of multipath and NLOS errors (Mikhailov &

Nikandrov, 2012; Savas & Dovis, 2019). Additionally, the

set transformer aggrega- tion function aggregate is

number and order invariant which allows its application

to set-valued inputs, such as GNSS measurements. Hence,

we employ the set trans-

former within our DNN architecture to handle set-valued

GNSS measurements.

PROPOSED METHOD

In this section, we describe our approach for developing

a DNN for estimating corrections to an initial position

guess using GNSS pseudorange measurements. First, we

formulate the problem of estimating position corrections

with data val- ues that are numerically well-conditioned

for deep learning. Then, we describe the architecture and

training process of our DNN that employs a set

transformer to process the set-valued inputs derived from

GNSS measurements and estimates the position

correction. Next, we explain our strategies to overcome

the problems of geographic sparsity of data and

overfitting. Finally, we illustrate our inference procedure

for a new set of GNSS measurements. Figure 2 shows

the overall archi- tecture of our algorithm.

Position Correction From GNSS Measurements

At a measurement epoch, typical methods estimate

position using GNSS pseu-

dorange measurements, 
(i)

 , 
(i)

 , , 
(i)

 , collected from

a position p
(i)

 in the

ECEF

FIGURE 2 View of the overall positioning pipeline; we process input GNSS pseudorange measurements and satellite positions using a DNN

44

to estimate the correction to an initial position estimate.

DNN for Estimating Position Corrections

To obtain the estimated position corrections
 (i) ECEF

from the conditioned
set-valued inputs 

(i) using Equation (17), we
developed a neural network based
on the set transformer (Lee et al., 2019) architecture
discussed in Section 3.
Our DNN architecture is comprised of four components
that we train together to estimate the position
corrections from input set  of residuals and LOS

vectors. First, as a part of the encoder encoder , a fully

connected network, with rectified linear unit (ReLU)
activation functions, generates a high-dimensional
embedding
of each input, comprised of a residual r from  and the
associated LOS vector 1 from  . Each embedding is a D-
dimensional vector and is an instance of a mea- surement
in latent space. Here D is a hyperparameter of the network
architecture and can be different after encoding or
after aggregation in the network. In this

FIGURE 3 Architecture of the network consisting of the encoder, the aggregator, and the decoder; features from M satellites are
processed by the network into a 3D position correction.

work, we choose D  64 as the hyperparameter

throughout the network. Then, a set transformer encoder

based on the set transformer encoder block (Lee et al.,

2019) further refines the embeddings by modeling

interactions between different set elements. Next, a

network for learned aggregation aggregate , based on the set

transformer pooling block (Lee et al., 2019), determines the

influence of each set element on the position correction

output and combines the embeddings based on these

influences. Finally, a set transformer decoder network

decoder , composed of a set transformer decoder and a

linear layer (Goodfellow et al., 2016), processes

the aggregated embedding to determine the position

correction output
p̂ECEF .

Section 3 briefly explains the set transformer encoder,

aggregation, and decoder

blocks. Figure 3 depicts the DNN architecture for our

proposed approach.

We train the DNN by minimizing the mean squared error

(MSE) between a batch of the estimated and the true

corrections as the loss function:

p̂

45

init

init

ECEF

While a DNN trained from Equation (17) has access to

well-conditioned inputs and outputs, its ability to

generalize to new data instances is limited by (a) the geo-

graphic sparsity of the data and (b) variations in inputs

and outputs encountered during training. In this section,

we present strategies to overcome these limitations and

improve the generalization capability of the DNN.

Overcoming Geographic Sparsity by Change

ofi

Refierence Frame

Geographic sparsity arises here because the data set that

was used was collected in a fixed region on the globe. The

satellite LOS vectors and position corrections in the data

collected in one part of the world may significantly differ

from those in the data from another part, resulting in

measurements from some regions being dis-

proportionately represented in a given data set. This

disproportionality increases the difficulty in training the

DNN to accurately estimate corrections for positions all

around the globe, since certain input-output relations

might be missing from the data set.

To incentivize the DNN to generalize to inputs from

across the globe, we make the input-output behavior

independent of the location the data was collected in. We

achieve this by changing the frame of reference of the

inputs and outputs from the global ECEF frame to the

local north-east-down (NED) frame about p
(i)

 . In

Increasing Data Variation Using Geometry-

Based

Data Augmentation

Using limited data to train a DNN with several

parameters often leads to overfit- ting, in which the DNN

memorizes input-output pairs specific to the training

data set (Goodfellow et al., 2016). Data augmentation is a

commonly used technique to reduce overfitting, which

introduces new data points to the DNN during training

by transforming existing training samples based on the

problem context.

We introduced a geometry-based data augmentation

strategy for training a DNN to estimate position corrections

from pseudorange measurement residuals and LOS

vectors. Algorithm 1 illustrates the process for generating

new data points from a data instance. Our augmentation

strategy leverages the geometric aspect of GNSS-based

positioning by changing the value of the initial position

guess p̂
(i)

 each training epoch to generate new residuals


(i)

 , LOS vectors 
(i)

 , and cor-

rections p
(i)

 via Equation (14). New initial position

guesses are generated by
(i)

adding zero-mean uniformly distributed noise to the

ground truth position p . As

a result, new samples are generated without any

correlation, thus regularizing the training process and

allowing the network to better learn the input-output

map- ping relationship. Finally, the network sees new

samples in every training epoch, which prevents it from

overfitting the training data.

Inference

In this section, we illustrate our process to use the

trained DNN for estimatingthe position

p̂ECEFfrom new GNSS pseudorange measurements and

the corre-

sponding satellite positions, represented by the set .
ALGORITHM 1

Geometry-Based Data Augmentation

Input: Set  of paired pseudorange measurements and satellite

positions and ground

truth position pECEF

Parameters: Number of augmented data points K and vector-

valued initialization range 

Output: A list of residuals R, LOS vectors I , and position

corrections P

1 R [], I [], P []

for k  1 to K do

Sample pinit uniformly from [pECEF , pECEF  ]

Generate R, I , pECEF from , and pinit using Equation (14)

Assign values R[k]  R, I [k]  I , P[k]  pECEF

 6 return R, I , P

First, we obtain an initial position guess pinit from a

traditional localization algo- rithm or prior knowledge

that we assume is in the vicinity of the true position

pECEF . Then, we use Equation (17) to determine the input

set  that is comprised of pseudorange residuals  and

corresponding LOS vectors  in the NED refer- ence

frame with respect to pinit . Using the set  as an input to

the DNN, we eval- uate the position correction in the

NED frame p̂NED and convert it to the position

correction in the ECEF frame

p̂ECEF .

Finally, we add the correction p̂ECEF to

pinit to obtain the position estimate p̂ECEF

using:

p̂ECEF  pinit  p̂ECEF

 (22)

E PERIMENTS

We validated our approach using a simulated data set and

real-world measure- ments from the Android Raw GNSS

Measurements data set (Fu et al., 2020). We used

simulations to verify the performance of our network in a

setting with con- trolled measurement errors and access to

precise ground truth information. In the validation of real-

world data, we compared the accuracy of our proposed

approach to that of weighted least squares (WLS;

Morton et al., 2021), which is an equiv- alent traditional

localization algorithm and serves as a baseline comparison.

In experiments on both data types, we used the same

network architecture, optimizer parameters, data

generalization method, and other experimental

46

ECEF

ECEF

hyperparameters. These parameters are described in

Section 5.1 followed by experimental evaluation on the

simulated data set in Section 5.2 and an evaluation on

the Android Raw GNSS Measurements data set in Section

5.3.

E perimental Parameters

In our experiments, a fully trained network occupies 611

kB on a disk for 151,107 parameters. We used an instance

of the network described in Section 4.2 where the inputs

(residuals and LOS vectors) were projected into a latent

space of dimension D  64 by a linear layer, followed

by a ReLU activation (Goodfellow et al., 2016). In our

implementation, we chose D  64 as the dimension of the

latent spaces in which all projected and embedded

features exist.

The projected features were then encoded by two

transformer encoder layers (Vaswani et al., 2017) that

would operate on the features sequentially. The encoded

features were pooled using a pooling attention module

(Lee et al., 2019), which was followed by two sequential

transformer decoder layers and a linear layer to output

the 3D position correction. We did not use batch

normalization or dropout techniques at any point in the

network architecture.

Our experiments were performed with data batches of 64

samples and the net- work was trained for 200 epochs.

The DNN parameters were optimized using Adam

(Kingma & Ba, 2014) with a learning rate   3 104 as

well as a moving window average 1  0.9 and 2 

0.99.

At each training and testing epoch, we generated the initial

position guess p̂init by

uniformly sampling from the interval [pECEF , pECEF

 ], where    [1, 1, 1]

was the vector-valued initialization range with a

magnitude  that was the same

along each direction. We used initial position guesses

with randomly sampled noise added to the true position

in all our experiments, except those without data

augmentation, for training the network and

validating/testing the trained network. The default value in

the experimental validations was   15 m, which was

changed when studying the effect of different  values

on the final position estimate.

Additionally, when evaluating the effectiveness of our

data augmentation method, we compared our approach

to a baseline without data augmentation. In the network

without data augmentation, we used a fixed trajectory

uniformly sam-

pled from the interval [pECEF , pECEF  ]. Here, the

term fiixed implies that the samples were drawn once to

generate the training and validation data sets and have not

been changed over any epoch during training.

Simulated Data Set

We created the simulated data set by (a) generating smooth

horizontal trajecto- ries in the NED frame of reference, (b)

converting the simulated trajectories to the ECEF frame of

reference, and (c) simulating open-sky GNSS

measurements for each point along the trajectory.

We simulated the trajectories to imitate real-world data

sets, like the Android Raw GNSS Measurements data set

(Fu et al., 2020), that are often confined to a lim- ited

geographical region and contain samples along vehicle

trajectories. We sim- ulate these trajectories based on the

approach proposed by Mueller et al. (2015). Note that our

network performs snapshot position estimation (i.e., the

correlation between samples in the trajectory has no

impact on our experimental results).

To generate the measurements for samples from the

simulated trajectories, we used the standard pseudorange

model (Morton et al., 2021) with the true position

and clock states for each instance of data in the

converted trajectories p
(i)

 . We

did not consider any atmospheric effects or satellite

clock biases in simulating the pseudorange

measurements. Set 
(i)

 represents the pairs of simulated

pseudor- ange measurements and the corresponding

satellite positions.

For each data instance, measurements were only

simulated for satellites that

were visible from p
(i)

 , determined using an

elevation mask of 5°. Because we

used an elevation mask to simulate the measurements, the

number of measure- ments at each instance M (i) varied

between 8–10 in our data set. Additionally, we imposed no

constraints on the order of the simulated measurements.

We, next, describe the experiments that utilized the

simulated data to verify the validity of our approach.

Additionally, we investigate the sensitivity of the DNN

performance to the choice of measurement errors and the

initialization range magnitude .

Verifiying Perfiormance Under Dififierent

Measurement Errors

We verified the positioning performance of our DNN in our

approach across two scenarios with different error profiles

in the pseudorange measurements.

In the first scenario, simulated pseudoranges contained

stochastic noise terms that followed a zero-mean

Gaussian distribution with a 6−m standard devia- tion.

In the second scenario, we added bias errors along with the

zero-mean Gaussian errors in the measurements. The bias

errors were sampled from the interval [50, 200] m and

were added to pseudoranges picked at random to mimic

the effect of multipath and NLOS signals. The number

of biased measurements at a time was sampled from a

Poisson distribution with rate 1. In both scenar-

the DNN is not restricted by a prior measurement

model, we hypothesized that

the positioning error for the DNN would be unaffected

by the noise scenarios, as long as the DNN encounters

the same noise scenario during the training process.

To verify this hypothesis, we evaluated the mean

absolute positioning error along the north, east, and

down directions, respectively. For both scenarios, the

positions estimated by applying corrections from our

trained DNN exhibited posi- tioning errors that were less

47

than half the initial value, verifying that our proposed

approach is effective in learning a function for

positioning using GNSS measure- ments. These results

are summarized in Table 1.

Comparing Perfiormance Across Dififierent

Initial Positions

Since the magnitude of the initialization range 

determines the maximum initial positioning error, we

expected it to have a significant effect on the posi-

tioning performance of the DNN. To investigate this, we

evaluated the sensi- tivity of our approach to different

choices of  for a scenario with zero-mean Gaussian errors

in pseudorange measurements. We considered three

different

values of  {5 m, 15 m, 30 m}for training the DNN

and compared the posi-

tioning performance of the resultant DNN, the results of

which are shown in Figure 4.

We observed that the positioning error along each of the

north, east, and down directions increased as we increased

the value of . However, this increase wasn’t linear and

the difference between the positioning errors for   15 m

and   30 m showed less than linear growth. This

indicates that, while the positioning error of

TABLE 1
Mean Absolute Error in Position Along Each Direction for Different Simulated Sensor Error Characteristics

Scenario North (m) East (m) Down (m)

Initialization 7.5 ± 5.0 7.5 ± 5.0 7.5 ± 5.0

Gaussian error 2.6 ± 2.0 2.4 ± 1.8 2.2 ± 1.6

Gaussian + bias error 2.8 ± 2.1 2.6 ± 2.0 2.4 ± 1.8

Note: In both scenarios, our approach reduced the positioning error over the baseline with
random initialization by more than half the value.

FIGURE 4 Sensitivity analysis over various initialization ranges along the north, east, and down directions; the mean absolute error
(MAE) in DNN-based position corrections increases when the initialization range increases.

the DNN does depend on the magnitude of the

initialization range , the impact of  reduces as its

magnitude increases.

We attributed the increase in the mean absolute error

(MAE) on increasing the initialization range  to

primarily two factors. First, the network learns the maxi-

mum possible corrections based on the magnitude of the

maximum error it sees in the training data set. As a result,

outputs for smaller values of  are restricted to smaller

ranges, resulting in a smaller MAE. The second factor is

that, in increasing

, the network must generalize to a larger set of

possible inputs, which increases the overall error in the

position estimate.

Android Raw GNSS Measurements Data Set

The Android Raw GNSS Measurements data set (Fu et

al., 2020) consists of GNSS measurements collected

using Android phones from multiple driving tra-

jectories executed in the San Francisco Bay Area. This

data set has two compo- nents: a training component

and a testing component. The training component is

accompanied by high-accuracy position estimates

collected using a NovAtel SPAN system that we used as

the ground truth position in our approach. Due to the

availability of ground truth positions, we restricted

ourselves to the training component because the ground

truth provides a reference to both train and eval- uate the

DNN. Henceforth, we refer to this training component as

the data set for evaluating our approach. The GNSS

measurements in each trajectory, referred to as traces,

include raw pseudoranges, atmospheric biases, satellite

clock biases, and satellite positions from at least two

Android phones. These measurements, including

satellite positions, atmospheric biases, and satellite clock

biases, were computed and provided in derived files in

the data set. We used these quantities without any

modification or additional computations. We treated

each unique phone-trace combination as an independent

48

m

m

trajectory while validating our approach.

To create the set 
(i)

 for each data instance that was input

to the DNN, we used measurements corresponding to

GPS L1 signals and processed the raw pseudor- anges to

remove errors that could be modeled. The corrected

pseudorange  (i) was

obtained from values present in the measurement data set

by:

where  (i) represents the raw pseudorange, B(i) is the

satellite clock bias, b(i) rep-
m m m

resents the inter-signal ranging bias, I (i) is the modeled

delay due to ionospheric effects, and T (i) represents the

modeled delay due to tropospheric effects. This

process was repeated for all measurements m  {1, , M
(i) } in all data instances

i  {1, , N }, where M (i) is the number of measurements in

the i-th data instance and there are N data instances in the

entire data set.

In our experimental evaluation of the Android data set,

we split the data set into three independent parts: (a) a

training split ( 75% of the data set), (b) a validation split

( 10% of the data set), and (c) a testing split ( 15% of

the data set).

The first split divided the data set into two parts: one for

training/validation and another for testing. This division

was performed on the trace level and the training/

validation and testing data set contained different traces

with all corresponding Android measurements from a

particular trace associated with either the training/

validation or testing data set. The split between the

training/validation and test- ing data sets was fixed and,

therefore, the same for all experiments in this work. The

traces belonging to each data set are plotted in Figure 5.

The additional split between the training and validation

data sets was performed by randomly selecting a ratio of

samples from the training/validation traces and using

them to validate the network. Each split between the

training and validation data sets was stochas- tic and

changed from experiment to experiment. As a result of the

data set split, the training data set had 93,195 samples, the

validation data set had 10,355 samples, and the testing

data set had 16,568 samples.

Perfiormance Evaluation

We used the training split to train the DNN while the validation split was used to evaluate the DNN during training and
ensure that it was learning successfully.

FIGURE 5 Traces from the Android Raw GNSS Measurements data set used for training/ validation (blue) and testing (red)

We used the testing split to evaluate the performance of

different variations of our approach and compared it to the

weighted least squares (WLS) baseline.

The WLS baseline position estimates were generated

using the open-source goGPS implementation (Herrera

et al., 2016). goGPS internally corrects pseudor- anges

by removing estimated atmospheric delays, satellite

clock biases, and other modeled biases. An elevation mask

of 10° was applied to the received measurements and the

remaining measurements were weighed using the default

elevation-based weights from goGPS. The WLS output

contained a 3D position estimate along with a clock bias

estimate, of which we compared only the positions of

those obtained by our proposed architecture.

We evaluated the performance of our proposed DNN

with NED corrections and data augmentation using  

49

15 m to our approach without augmentation, our approach

with data augmentation using   30 m, and the WLS

baseline. This evaluation was performed on the entire

testing data set and our experiments show that our approach

with   15 m performed the best out of all variations,

both in terms of MAE (listed in Table 2) and cumulative

distribution function (CDF) plots of the errors (shown in

Figure 7). We also evaluated a network that predicted posi-

tions directly, instead of predicting corrections to an initial

position. However, such an approach showed a MAE in the

order of 103 m along all directions and was not investigated

further or compared to other methods.

Of the three variations of our method that we evaluated,

turning off the data augmentation had the least negative

impact on the performance of the neural net- work. This

difference was particularly noticeable in the north

direction where the CDF curve deviations from the best

case and an additional mean error of approx- imately 0.8

m were observed. The differences along the east and

down directions were not as evident, with an additional

mean error of 0.15 m to 0.25 m and having virtually

indistinguishable CDF curves.

Similar to our observations from the simulated data,

increasing the initialization range  increased the MAE

and caused a perceptible drop in the CDF curve for the

same error values. Performance of the WLS baseline was

poorer than both net- works initialized with   15 m in

all three directions. However, the WLS baseline

outperformed the network initialized with   30 m in the

north and east direc- tions while still performing poorly in

the down direction.

This difference is further evidenced by a comparison of the

error quantiles between our approach with   15 m, our

approach with   30 m, and the WLS baseline, as shown

in Figure 8. Our approach with   15 m outperformed

the WLS baseline in all directions. However, with  

30 m, our approach was only

TABLE 2
Mean Absolute Positioning Error Along the North, East, and Down Directions in the Estimate of the WLS Baseline and Variations of our
Approach

Scenario North (m) East (m) Down (m)

WLS baseline 11.6 ± 51.9 9.7 ± 38.7 36.4 ± 265.9

Our approach with   30 m 11.1 ± 10.2 9.3 ± 8.5 9.3 ± 7.5

Our approach without data augmentation 7.1 ± 5.7 6.0 ± 5.1 6.6 ± 5.1

Our approach with   15 m 6.4 ± 5.2 5.9 ± 5.0 6.2 ± 4.9

Note: The variations at hand include NED corrections +   30 m, NED corrections +   30 m

without data augmentation, and NED corrections +   15 m. We can observe that a smaller
initialization range results in smaller position estimate errors, data augmentation improves
performance on the testing data set, and that final positioning errors were significantly less than
those of WLS estimates in the down direction for all cases.

able to outperform WLS in the down direction. Similar to

the simulated data, there was a strong correlation between

the accuracy and the largest magnitude of the initial

error, which is currently a limitation of the proposed

work.

Figure 8 also demonstrates that the network learns the

largest magnitude of error in the training data set and

bounds the estimated position correction using this

information. This also results in the improved

performance of networks with smaller initialization

ranges  that provide corrections with correspondingly

smaller magnitudes. The network’s initial guess is

always within a certain range of the ground truth;

because of which, the network’s final estimate is also

rela- tively closer to the ground truth solution. This

results in our approach’s superior

CONCLUSION

In this work, we proposed an approach to use a deep neural

network (DNN) with GNSS measurements to provide a

position estimate. Our proposed approach is the first, to our

knowledge, that works with GNSS measurements to

provide outputs in the position domain.

To obtain a position estimate, we converted the traditional

position estimation problem to that of estimating position

corrections to an initial position guess using a DNN. Our

proposed approach addresses the challenge of set-based

GNSS inputs that vary in number and order by utilizing the

set transformer in the DNN archi- tecture. We proposed

using pseudorange residuals and LOS vectors from the

initial position guess as inputs and NED position

corrections as outputs to the DNN. This particular choice of

inputs and outputs improves the numerical conditioning

of the DNN and provides a natural method to extend our

approach to other global regions. Additionally, to reduce

overfitting on training data and incentivize the DNN to

learn a functional map between the measurements and

position correc- tions, we developed a geometry-based data

augmentation method.

We validated our proposed approach on both simulated

and real-world data. Experiments performed on the

simulated data showed that the position corrections

provided by the DNN reduced the mean absolute

localization error in each of the north, east, and down

directions from the error in the initial position guess,

indicat- ing that the DNN effectively learns to solve the

positioning problem. Experiments on real-world data

demonstrated that the performance of the DNN is

sensitive to the error present in the initial position guess.

Comparison of the absolute localiza- tion error to a

weighted least squares (WLS) baseline showed that our

50

approach outperforms WLS along the vertical direction

when initialized with position errors within 15 m as well

as 30 m. Our experimentation also validates that our data

aug- mentation technique improves the network’s

performance when compared to a similar network

without data augmentation.

This work validates that using DNNs for GNSS-based

localization is a promis- ing and interesting area of

research. Our current approach is a snapshot method

limited to using simple features. Additionally, both of

our training and testing data sets were entirely from the

San Francisco Bay Area, which does not provide

geographical diversity. In the future, we plan to validate

our proposed method on diverse testing data sets

collected from locations around the globe. We also plan

to extend our approach to sequential position estimation

while considering addi- tional measurements such as

signal-to-noise-ratio and Doppler. Furthermore, we are

considering performing a more detailed parametric study

to investigate the effect of hyperparameter values, the use

of additional regularization methods, and an iterative

positioning correction approach similar to CMR Net

(Cattaneo et al., 2019). Our proposed work is also limited

by its reliance on close initial guesses and the sensitivity

to initialization ranges, which we will also address in

future work.

ac K n o w l e d g e m e n T s

Some of the computing for this project was performed

on the Sherlock cluster. We would like to thank Stanford

University and the Stanford Research Computing Center

for providing the computational resources and support

that contributed to this research.

R efe R ences
Cattaneo, D., Vaghi, M., Ballardini, A. L., Fontana, S., Sorrenti,

D. G., & Burgard, W. (2019). CMRNet: Camera to lidar-map

registration. 2019 IEEE Intelligent Transportation Systems

Confierence (ITSC), Auckland, New Zealand.

https://doi.org/10.1109/ITSC.2019.8917470

Choy, C., Dong, W., & Koltun, V. (2020). Deep global

registration. 2020 IEEE/CVF Confierence on Computer Vision

and Pattern Recognition (CVPR), Seattle, WA.

https://doi.org/10.1109/ CVPR42600.2020.00259

Fu, G. M., Khider, M., & van Diggelen, F. (2020). Android raw

GNSS measurement datasets for precise positioning. Proc. ofi the

33rd International Technical Meeting ofi the Satellite Division ofi the

Institute ofi Navigation (ION GNSS+ 2020), 1925–1937.

https://doi.org/10.33012/2020.17628 Goodfellow, I., Bengio, Y., &

Courville, A. (2016). Deep learning. MIT press.

https://dl.acm.org/

doi/abs/10.5555/3086952

Herrera, A. M., Suhandri, H. F., Realini, E., Reguzzoni, M., & de

Lacy, M. (2016). GoGPS: Open- source MATLAB software. GPS

Solutions, 20(3), 595–603. https://doi.org/10.1007/s10291-015- 0469-

x

Hsu, L. -T. (2017). GNSS multipath detection using a machine

learning approach. 2017 IEEE 20th International Confierence on

Intelligent Transportation Systems (ITSC), Yokohama, Japan.

https://doi.org/10.1109/ITSC.2017.8317700

Kanhere, A. V., Gupta, S., Shetty, A., & Gao, G. (2021). Improving

GNSS positioning using neural network-based corrections. Proc. ofi

the 34th International Technical Meeting ofi the Satellite Division ofi

the Institute ofi Navigation (ION GNSS+ 2021), St. Louis, MO, 3068–

3080. https:// doi.org/10.33012/2021.17999

Kendall, A., Grimes, M., & Cipolla, R. (2015). PoseNet: A

convolutional network for real-time 6-DOF camera relocalization.

2015 IEEE International Confierence on Computer Vision (ICCV),

Santiago, Chile. https://doi.org/10.1109/ICCV.2015.336

Kingma, D. P., & Ba, J. (2014). Adam: A method fior stochastic

optimization. Cornell University arXiv.

https://doi.org/10.48550/arXiv.1412.6980

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., & Teh, Y. W.

(2019). Set transformer: A framework for attention-based

permutation-invariant neural networks. Proc. ofi the 36th

International Confierence on Machine Learning, 3744–3753. PMLR.

https://proceedings.mlr.press/v97/lee19d. html

McKeown, J. J., Stella, F., & Hall, G. (1997). Some numerical aspects

of the training problem for feed-forward neural nets. Neural

Networks, 10(8), 1455–1463. https://doi.org/10.1016/S0893-

6080(97)00015-4

Mikhailov, N. V., & Nikandrov, A. V. (2012). Identification and

mitigation of multipath in GNSS receivers using cluster analysis

methods. Gyroscopy and Navigation, 3(1), 20–27. https://doi.

org/10.1134/S2075108712010105

Morton, Y. J., van Diggelen, F., Spilker Jr., J. J., Parkinson, B. W.,

Lo, S., & Gao, G. (2021). Position, navigation, and timing

technologies in the 21st century: Integrated satellite navigation,

sensor systems, and civil applications (Vol. 2). John Wiley & Sons.

Mueller, M. W., Hehn, M., & D’Andrea, R. (2015). A

computationally efficient motion primitive for quadrocopter trajectory

generation. IEEE Transactions on Robotics, 31(6), 1294–1310.

https:// doi.org/10.1109/TRO.2015.2479878

Munin, E., Blais, A., & Couellan, N. (2020). Convolutional neural

network for multipath detection in GNSS receivers. 2020

International Confierence on Artifiicial Intelligence and Data

Analytics fior Air Transportation (AIDA-AT), Singapore.

https://doi.org/10.1109/AIDA- AT48540.2020.9049188

Peretroukhin, V., & Kelly, J. (2018). DPC-Net: Deep pose

correction for visual localization. IEEE Robotics and Automation

Letters, 3(3), 2424–2431. https://doi.org/10.1109/LRA.2017.2778765

Reisdorf, P., Pfeifer, T., Breßler, J., Bauer, S., Weissig, P.,

Lange, S., Wanielik, G., & Protzel, P.

(2016). The problem of comparable GNSS results–An approach for a

uniform dataset with low- cost and reference data. The 5th

International Confierence on Advances in Vehicular Systems,

Technologies and Applications (VEHICULAR). https://www.tu-

chemnitz.de/projekt/smartLoc/ paper/reisdorf2016.pdf

Savas, C., & Dovis, F. (2019). Multipath detection based on K-means

clustering. Proc. ofi the 32nd International Technical Meeting ofi the

Satellite Division ofi the Institute ofi Navigation (ION GNSS+ 2019),

Miami, FL, 3801–3811. https://doi.org/10.33012/2019.17028

Skianis, K., Nikolentzos, G., Limnios, S., & Vazirgiannis, M.

(2020). Rep the set: Neural networks for learning set

representations. Proc. ofi the 23rd International Confierence on

Artifiicial Intelligence and Statistics, 1410–1420. PMLR.

https://proceedings.mlr.press/v108/skianis20a. html

Soelch, M., Akhundov, A., van der Smagt, P., & Bayer, J. (2019).

On deep set learning and the choice of aggregations. In I. V.

Tetko, V. Kůrkovi, P. Karpov, & F. Theis (Eds.), Artifiicial neural

networks and machine learning – ICANN 2019: Theoretical neural

computation (pp. 444–457). Springer International Publishing.

https://doi.org/10.1007/978-3-030-30487-4_35

Sünderhauf, N., Brock, O., Scheirer, W., Hadsell, R., Fox, D.,

Leitner, J., Upcroft, B., Abbeel, P., Burgard, W., Milford, M., &

Corke, P. (2018). The limits and potentials of deep learning for

robotics. The International Journal ofi Robotics Research, 37(4–5),

405–420. https://doi. org/10.1177/0278364918770733

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all

you need. Proc. ofi the 31st International Confierence on Neural

Infiormation Processing Systems (NIPS 2017), Long Beach, CA,

6000–6010. https:// dl.acm.org/doi/10.5555/3295222.3295349

Wang, S., Clark, R., Wen, H., & Trigoni, N. (2017). DeepVO:

Towards end-to-end visual odometry with deep recurrent

convolutional neural networks. 2017 IEEE International Confierence

on Robotics and Automation (ICRA), Singapore.

https://doi.org/10.1109/ICRA.2017.7989236

Wen, W., Zhou, Y., Zhang, G., Fahandezh-Saadi, S., Bai, X.,

Zhan, W., Tomizuka, M., & Hsu, L. -T. (2020). UrbanLoco: A full

sensor suite dataset for mapping and localization in urban scenes.

2020 IEEE International Confierence on Robotics and Automation

https://doi.org/10.1109/ITSC.2019.8917470
https://doi.org/10.1109/CVPR42600.2020.00259
https://doi.org/10.1109/CVPR42600.2020.00259
https://doi.org/10.33012/2020.17628
https://dl.acm.org/doi/abs/10.5555/3086952
https://dl.acm.org/doi/abs/10.5555/3086952
https://doi.org/10.1007/s10291-015-0469-x
https://doi.org/10.1007/s10291-015-0469-x
https://doi.org/10.1007/s10291-015-0469-x
https://doi.org/10.1109/ITSC.2017.8317700
https://doi.org/10.33012/2021.17999
https://doi.org/10.33012/2021.17999
https://doi.org/10.1109/ICCV.2015.336
https://doi.org/10.48550/arXiv.1412.6980
https://proceedings.mlr.press/v97/lee19d.html
https://proceedings.mlr.press/v97/lee19d.html
https://doi.org/10.1016/S0893-6080%2897%2900015-4
https://doi.org/10.1016/S0893-6080%2897%2900015-4
https://doi.org/10.1134/S2075108712010105
https://doi.org/10.1134/S2075108712010105
https://doi.org/10.1109/TRO.2015.2479878
https://doi.org/10.1109/TRO.2015.2479878
https://doi.org/10.1109/AIDA-AT48540.2020.9049188
https://doi.org/10.1109/AIDA-AT48540.2020.9049188
https://doi.org/10.1109/LRA.2017.2778765
https://www.tu-chemnitz.de/projekt/smartLoc/paper/reisdorf2016.pdf
https://www.tu-chemnitz.de/projekt/smartLoc/paper/reisdorf2016.pdf
https://www.tu-chemnitz.de/projekt/smartLoc/paper/reisdorf2016.pdf
https://doi.org/10.33012/2019.17028
https://proceedings.mlr.press/v108/skianis20a.html
https://proceedings.mlr.press/v108/skianis20a.html
https://doi.org/10.1007/978-3-030-30487-4_35
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1177/0278364918770733
https://dl.acm.org/doi/10.5555/3295222.3295349
https://dl.acm.org/doi/10.5555/3295222.3295349
https://doi.org/10.1109/ICRA.2017.7989236

51

(ICRA), Paris, France. https://

doi.org/10.1109/ICRA40945.2020.9196526

Zaheer, M., Kottur, S., Ravanbhakhsh, S., Póczos, B., Salakhutdinov,

R., & Smola, A. J. (2017). Deep sets. Proc. ofi the 31st

International Confierence on Neural Infiormation Processing

Systems, Long Beach, CA, 3394–3404.

https://dl.acm.org/doi/10.5555/3294996.3295098

Zhang, G., Xu, P., Xu, H., & Hsu, L. -T. (2021). Prediction on the

urban GNSS measurement uncertainty based on deep learning

networks with long short-term memory. IEEE Sensors Journal,

21(18), 20563–20577. https://doi.org/10.1109/JSEN.2021.3098006

Zhu, N., Marais, J., Bétaille, D., & Berbineau, M. (2018). GNSS

position integrity in urban environments: A review of literature.

IEEE Transactions on Intelligent Transportation Systems, 19(9),

2762–2778. https://doi.org/10.1109/TITS.2017.2766768

https://doi.org/10.1109/ICRA40945.2020.9196526
https://doi.org/10.1109/ICRA40945.2020.9196526
https://dl.acm.org/doi/10.5555/3294996.3295098
https://doi.org/10.1109/JSEN.2021.3098006
https://doi.org/10.1109/TITS.2017.2766768

