Integrating Technology in Nutrition Education: Opportunities and Challenges

Dr. Bhupal Pujari, Assistant Professor Department of General Medicine Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth Deemed To Be University, Karad, Maharashtra, India. Email IDdhairyasheel94@gmail.com

Mr.Shivaji H. Pawar Assistant Professor, Krishna Institute of Nursing Sciences, Krishna Vishwa Vidyapeeth, Karad, Maharashtra, India. Email:shivajipawar446@gmail.com

Mr. Indrajeet B Jadhav Krishna Institute of Nursing Sciences, Krishna Vishwa Vidyapeeth, Karad, Maharashtra, India. Email:indrajeetjadhav88@gmail.com

Abstract: In recent times, computer applications have become effective tools for collecting and sharing nutrition information. Both independent and online applications are now utilized to offer nutrition education to the public, paraprofessionals, and professionals. Although online communication tools like email, electronic discussion groups, and list-servs are relatively new in the realm of nutrition education, the expanding reach of the Internet and the World Wide Web is increasing their accessibility. Nutrition educators are encouraged to explore the possibilities and challenges presented by these technologies to enhance their work. The landscape of education has been significantly shaped by digital technologies, influencing how teachers manage daily practices and how students engage in learning within classrooms. Furthermore, technology is increasingly integrated into classrooms through a blend of kinesthetic, visual, and auditory approaches. This study seeks to compile evidence on the impact of technology-incorporated, school-based nutrition education programs on the acquisition of nutrition-related knowledge and behavioral changes in adolescents. While all studies reported positive effects, these outcomes were not consistently sustained. Although technology-based approaches are feasible in such interventions, there is a need for enhancements to ensure the attainment of lasting results.

Keywords: Computer Applications, Nutrition Information, Online Applications, Nutrition Education, Public, Paraprofessionals, Professionals, Online Communication Tools, Email, Electronic Discussion Groups, List-Servs, Internet

I. Introduction

The integration of technology in nutrition education marks a transformative approach to how we teach, learn, and apply knowledge in the dynamic field of nutrition science. As our world becomes increasingly digitized, the incorporation of technological tools and platforms into educational practices has the potential to revolutionize the way individuals engage with and comprehend nutrition concepts [1]. This intersection of technology and nutrition education offers a wealth of opportunities to enhance learning experiences, foster practical application, and prepare students for the evolving challenges of the modern healthcare landscape. In this era of information accessibility, technology serves as a catalyst for expanding the reach and impact of nutrition education. Online courses, interactive apps, and virtual reality simulations create immersive and engaging environments, making complex nutritional concepts more accessible and enjoyable for learners.

Figure 1. Block Diagram of Integration of Technology

The utilization of data analytics and artificial intelligence further enables personalized learning experiences, tailoring educational content to individual needs and preferences. The integration of technology not only enhances theoretical understanding but also provides practical, real-world applications, aligning nutrition education with the demands of a rapidly evolving global health scenario^[2]. This introduction sets the stage for a comprehensive exploration of the multifaceted aspects of integrating technology into nutrition education. By delving into the opportunities, challenges, and prospects, we can gain valuable insights into how technology is reshaping the landscape of nutritional learning, contributing to the development of a well-informed and technologically literate generation of nutrition professionals. In the contemporary context, where information is readily available at our fingertips, the integration of technology serves to bridge the gap between traditional pedagogical approaches and the evolving needs of learners. Interactive applications, gamified platforms, and virtual laboratories not only capture the attention of students but also provide them with hands-on experiences that deepen their understanding of nutrition principles. Moreover, technology facilitates a shift from passive learning to active engagement, encouraging students to take charge of their educational journey by offering flexibility in accessing content, participating in discussions, and managing their learning pace[3].

The advent of online communities and social media platforms has transformed the way students and educators interact and share information. These digital spaces create opportunities for collaborative learning, knowledge exchange, and the exploration of diverse perspectives in the realm of nutrition[4]. As technology seamlessly connects individuals across geographic boundaries, it fosters a sense of community among learners and professionals alike, enriching the educational experience through a global lens.However, with these promising opportunities come challenges that warrant careful consideration. Issues such as accessibility, data security, and the digital divide must be addressed to ensure an inclusive and equitable learning environment. As educators navigate this technological landscape, the integration of professional development programs becomes imperative, empowering them to effectively leverage these tools and stay abreast of advancements in both nutrition science and educational technology[5].

II. Literature Review

Considerations for selecting nutrient calculation software and evaluating nutrient databases were addressed in one study. The emphasis was on choosing appropriate software for accurate nutritional analysis, laying the foundation for subsequent technological advancements in nutrition education [6]. Another study compared microcomputer dietary analysis systems with the USDA nutrient database, aiming to assess the reliability of different dietary analysis tools. This comparison enriched the understanding of the strengths and limitations of various programs, offering valuable insights for practitioners and educators in selecting suitable tools for dietary assessments[7].A separate analysis extended the comparative assessment to multiple microcomputer dietary analysis programs, further contributing to the ongoing discourse on the standardization of nutrition databases and their implications for dietary assessments.An exploration of interactive multimedia for delivering nutrition education to specific target groups of multimedia tools in demonstrated the potential enhancing accessibility and engagement. Another study focused on the impact of computer-assisted instruction on the clinical reasoning skills of dietetic students [8]. The findings highlighted the effectiveness of technology in improving practical skills, indicating its potential in enhancing the overall quality of nutrition education programs. Insights into database searching were provided, emphasizing the importance of efficient information retrieval systems, and setting the stage for future discussions on data accessibility and utilization in the field of nutrition[9].A review of computer software packages for dietary analysis critically assessed various options, aiding educators, and practitioners in making informed decisions regarding the adoption of dietary analysis tools [10]. Beyond the early studies, more recent works showcase the contemporary landscape of computer- and web-based interventions, emphasizing the ongoing relevance of technology in promoting healthy eating habits, preventing obesity, and addressing nutritional challenges among diverse populations[11].

Autho	Area	Methodo	Key	Challenge	Pros	Cons	Applicati
r &		logy	Findings	S			on
Year							
Buzzar	Nutrient	Evaluatio	Considera	-	-	-	Nutrition
d et al.	Calculatio	n	tions for				Education
(1991)	n Software		selecting				

ISSN PRINT 2319 1775 Online 2320 7876

			software				
			Nutrient				
			databasa				
			database				
			evaluatio				
			n				
Niema	Microcom	Compari	Assessing	Standardiz	-	-	Dietary
n et al.	puter	son	reliability	ation,			Assessme
(1992)	Dietary		of dietary	Database			nt
	Analysis		analysis	compatibil			
			tools	ity			
Lee et	Microcom	Compari	Evaluatio	Standardiz	-	-	Dietary
al.	puter	son	n of	ation,			Assessme
(1995)	Dietary		multiple	Database			nt
	Analysis		dietary	compatibil			
			analysis	ity			
			programs				
Carroll	Multimedi	Interactiv	Delivery	Accessibili	Enhanced	-	Targeted
et al.	a Nutrition	e	of	ty,	accessibili		Nutrition
(1996)	Education	Multime	nutrition	Engageme	ty,		Education
		dia	education	nt	Improved		
			to		engageme		
			specific		nt		
			groups				
Raidl	Computer-	Clinical	Improved	-	Skill	-	Dietetic
et al.	Assisted	Reasonin	clinical		enhancem		Education
(1995)	Instruction	g Skills	reasoning		ent		
			skills in				
			dietetic				
			students				
Updegr	Database	Informati	Importanc	Data	-	-	Nutrition
ove	Searching	on	e of	accessibilit			Profession

ISSN PRINT 2319 1775 Online 2320 7876

(1990)		Retrieval	efficient	у			alism
			informati				
			on				
			retrieval				
			systems				
Spangl	Distance	Review	Current	Remote	Flexibility	-	Distance
er et al.	Dietetics		endeavors	learning	, Remote		Education
(1995)	Education		in	challenges	access		Programs
			distance				
			dietetics				
			education				
Seama	Computer	Review	Critical	Informed	In-depth	_	Dietary
n	Software		assessme	decision-	evaluation		Analysis
(1992)	Packages		nt of	making			Tools
			dietary				Selection
			analysis				
			software				
Hamel	Computer/	Systemat	Promotio	Varied	Broad	-	Public
&	Web-	ic	n of	interventio	reach,		Health
Robbin	Based	Review	healthy	n	Accessibil		Initiatives
s	Interventio		eating	effectivene	ity		
(2013)	ns		among	SS			
			children				
			and				
			adolescen				
			ts				
Hingle	Parental	Systemat	Role of	Varied	Holistic	-	Childhood
et al.	Involveme	ic	parental	impact,	approach,		Nutrition
(2010)	nt in	Review	involvem	Parental	Family		Initiatives
	Interventio		ent in	engageme	involveme		
	ns		improvin	nt	nt		

ISSN PRINT 2319 1775 Online 2320 7876

			g child				
			dietary				
			intake				
Jones	Web-	Universa	Healthy	Web-based	Targeted	-	School-
et al.	Based	1 and	weight	interventio	approach,		Based
(2014)	Interventio	Targeted	regulation	n	Web-		Nutrition
	n	C	and	challenges	based		Programs
			eating	U	accessibili		U
			disorder		ty		
			preventio				
			n in high				
			school				
			students				
Kreisel	Computer-	Evaluatio	Assessme	Efficacy of	Enhanced	Limited	Nutrition
(2004)	Based	n	nt of a	the tool	learning.	scope	Education
(,	Nutrition		computer-		Interactive	F-	
	Education		based		format		
	Tool		nutrition				
	1001		education				
			tool				
Law	Enidemiol	Literatur	Dietary	Epidemiol	-	-	Public
(2000)	ogic	e Review	fat and its	ogical			Health
(2000)	Approach	e neview	implicatio	insights			Research
	to		ns for	morgino			Research
	Childhood		childhood				
	Nutrition		nutrition				
I ifshit	Childhood	Clinical	Fxaminati	Health	_	_	Pediatric
7	Obesity	Research	on of	implicatio			Endocrino
(2008)	Coconty	Research	ohesity in	ns			logy
(2000)			children	110			1061
Long	Technolog	Adolesce	Using	Technolog	Increased	_	Adolescen
Long	recimolog	AUDIESCE	Using	recimolog	mereaseu	-	AUDICSCEII

ISSN PRINT 2319 1775 Online 2320 7876

&	y for Self-	nt Self-	technolog	y-driven	self-		t Health
Steven	Efficacy	Efficacy	y to	self-	efficacy		Promotion
S			promote	efficacy			
(2004)			self-				
			efficacy				
			for				
			healthy				
			eating in				
			adolescen				
			ts				
Lynch	Fruit and	Cross-	Examinati	Cross-	Survey	-	Public
et al.	Vegetable	Sectional	on of fruit	cultural	insights		Health
(2014)	Consumpti	Survey	and	variations			Initiatives
	on		vegetable				
			consumpt				
			ion in				
			European				
			children				
Maes	Computer-	Pilot	Evaluatio	Positive	Tailored	Limited	Adolescen
et al.	Tailored	Evaluatio	n of a	evaluation	advice,	generaliz	t Nutrition
(2011)	Nutrition	n	computer-	outcomes	European	ation	Programs
	Advice		tailored		study		
			nutrition				
			advice				
			tool				
Maurie	Multi-	Program	Multi-	Positive	Multi-	Limited	Adolescen
llo et	Media	Results	media	interventio	behavior	sustainab	t Obesity
al.	Obesity		multiple	n	approach	ility	Prevention
(2010)	Prevention		behavior	outcomes			
			obesity				
			preventio				

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -1) Journal Volume 11, Iss 05, 2022

			n				
			program				
			for				
			adolescen				
			ts				
Mikkil	Longitudin	Longitud	Longitudi	Cardiovasc	Long-term	-	Cardiovas
ä et al.	al Diet	inal	nal	ular risk	dietary		cular
(2004)	Changes	Study	changes	factors	patterns		Health
			in diet				Research
			from				
			childhood				
			to				
			adulthood				
Moher	Systematic	Methodo	Preferred	Improved	Methodol	-	Research
et al.	Reviews	logy	reporting	reporting	ogical		Synthesis
(2009)	and Meta-	Reportin	items for	standards	clarity		and
	Analyses	g	systemati				Reporting
			c reviews				
			and meta-				
			analyses				

Table 1. Summarizes the Review of Literature of Various Authors

III. Existing Technology for Nutrition Education

Integrating technology into nutrition education involves leveraging various digital tools and platforms to enhance the learning experience and improve outcomes for students. Online courses and webinars offer a flexible and accessible way for learners to delve into nutrition topics at their own pace. Interactive apps and games make the learning process engaging and enjoyable, promoting better retention of information. Virtual Reality (VR) and Augmented Reality (AR) technologies provide immersive experiences, allowing students to embark on virtual field trips or interact with 3D models, bringing theoretical concepts to life. Nutrition tracking apps offer a practical application of knowledge, enabling students to monitor their dietary habits in real-time.

Social media and online communities foster collaboration, discussions, and resource sharing, creating a sense of community among students. Podcasts and video content cater to diverse learning preferences, providing auditory and visual aids to reinforce nutritional concepts. Simulations and virtual labs offer a risk-free environment for hands-on experimentation, promoting a deeper understanding of practical aspects. Learning Management Systems (LMS) and e-learning platforms centralize course materials, assignments, and assessments, streamlining the learning process. Gamification elements, such as quizzes and rewards, motivate and engage students. Digital resources and eBooks provide cost-effective and up-to-date learning materials, ensuring accessibility.

Evaluation	Definition	Indicators
Parameters		
Learning	Assess the impact of technology	Pre and post-assessment scores, skill
Outcomes	on students' knowledge, skills, and	acquisition, changes in attitudes or
	attitudes in nutrition.	behaviors.
Engagement and	Measure the level of student	Participation rates in online
Participation	engagement and active	discussions, completion rates for
	participation in technology-	interactive assignments, and usage
	enhanced learning.	metrics.
Accessibility	Evaluate how well technology	Availability of resources for different
	accommodates diverse learning	learning styles, accommodations for
	needs and ensures equitable	students with disabilities.
	access.	
User Satisfaction	Gauge the satisfaction levels of	Surveys, feedback, and qualitative
	both students and educators with	assessments of user experiences.
	the technology used.	
Effectiveness of	Analyze how well technology	Comparison of student performance in
Teaching	complements or enhances	technology-integrated vs. traditional
Methods	traditional teaching methods.	classes, observations of teaching.
Technological	Evaluate the reliability,	Availability of technical support, speed
Infrastructure	accessibility, and adequacy of the	and reliability of internet connections,

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -1) Journal Volume 11, Iss 05, 2022

	technological infrastructure.	compatibility with devices.		
Data Security	Assess measures in place to	Implementation of secure platforms,		
and Privacy	protect sensitive student data and	adherence to data protection		
	ensure privacy compliance.	regulations, transparency in data		
		handling.		
Professional	Measure the impact of	Educator feedback, changes in teaching		
Development	professional development	practices, improvements in		
Impact	programs on educators' ability to	technological proficiency.		
	integrate technology.			
Innovation and	Evaluate the extent to which	Integration of cutting-edge		
Creativity	technology fosters innovation and	technologies, development of		
	creativity in nutrition education.	innovative learning resources, student-		
		generated content.		
Cost-	Assess the economic efficiency of	Comparison of costs associated with		
Effectiveness	technology integration in relation	technology implementation against		
	to educational benefits.	perceived educational value and		
		outcomes.		
Global	Evaluate the effectiveness of	Participation in virtual collaborations,		
Collaboration	technology in facilitating	engagement in online communities,		
and Networking	collaboration and networking	and international collaboration		
	globally.	opportunities.		
Adaptability and	Assess the adaptability of	Integration of emerging technologies,		
Future-Readiness	technology to evolving trends and	updates to curriculum content, and		
	its capacity to prepare students for	responsiveness to industry		
	the future.	advancements.		

Table 2. Existing Technology used of Nutrition Education

Collaborative tools facilitate group projects and discussions, enhancing teamwork and communication skills. Remote learning platforms support continuity in education, especially during unforeseen circumstances. Data analysis tools help students interpret nutritional data, fostering analytical skills. Ongoing professional development for educators ensures that they are well-equipped to effectively integrate technology into their teaching methods. While these

strategies offer numerous benefits, challenges such as access disparities, technical issues, and the need for digital literacy must be addressed to create a comprehensive and inclusive technologyintegrated nutrition education program. By carefully navigating these challenges, educators can create a dynamic and effective learning environment that prepares students for the evolving landscape of nutrition science and practice.

IV. Challenges

While the integration of technology in nutrition education offers numerous opportunities, it also presents various challenges that educators and institutions must address to ensure successful implementation. Here are some key challenges:

A. Access Disparities:

- Challenge: Not all students have equal access to technology, leading to disparities in learning experiences. Socioeconomic factors can contribute to unequal access to devices and reliable internet connections.
- Solution: Institutions may need to provide resources, such as loaner devices or subsidized internet access, to ensure all students can participate in technology-integrated learning.

B. Technical Issues and Infrastructure:

- Challenge: Technical problems, such as poor internet connectivity, software glitches, or hardware malfunctions, can disrupt the learning process.
- Solution: Ensuring robust infrastructure, providing technical support, and having contingency plans for technical issues are crucial to maintaining a smooth learning experience.

C. Digital Literacy:

- Challenge: Both educators and students may lack the necessary digital literacy skills to effectively navigate and utilize technology for educational purposes.
- Solution: Ongoing training and professional development programs can help educators and students enhance their digital literacy skills and stay current with technological advancements.

D. Quality of Online Information:

• Challenge: The vast amount of information available online may vary in terms of accuracy and reliability, leading to potential misinformation.

• Solution: Educators should emphasize critical thinking skills and guide students in evaluating the credibility of online sources. Incorporating trusted platforms and resources is also essential.

E. Privacy and Security Concerns:

- Challenge: Online platforms may collect sensitive student data, raising privacy concerns. Ensuring data security and complying with privacy regulations are paramount.
- Solution: Implementing secure platforms, obtaining informed consent for data collection, and adhering to data protection regulations can help address privacy concerns.

F. Teacher Training and Professional Development:

- Challenge: Educators may require training to effectively integrate technology into their teaching methods. Limited professional development opportunities can hinder successful implementation.
- Solution: Institutions should invest in ongoing teacher training programs, workshops, and resources to enhance educators' technological proficiency and pedagogical skills.

G. Maintaining Engagement:

- Challenge: While technology can enhance engagement, there is a risk of overreliance on digital tools, potentially leading to disengagement.
- Solution: Balancing technology with other teaching methods, incorporating interactive and varied content, and regularly seeking student feedback can help maintain engagement.

H. Costs and Resource Allocation:

- Challenge: Implementing and maintaining technology integration may involve significant costs, including software licenses, device purchases, and technical support.
- Solution: Institutions should carefully plan budgets, explore cost-effective solutions, and prioritize resource allocation to ensure sustainable technology integration.

V. Future Scope

The future scope of integrating technology in nutrition education is expansive, with ongoing advancements and trends shaping the landscape. Here are key areas where technology is likely to play a crucial role in the future of nutrition educationTechnology will continue to enable

personalized learning experiences, tailoring educational content to individual learning styles, preferences, and progress. Adaptive learning platforms, AI-driven assessments, and personalized nutrition apps will become more sophisticated in addressing the unique needs of each student.AI and ML will play an increasingly significant role in analyzing large datasets related to nutrition, offering personalized dietary recommendations, and predicting trends in nutritional science. AIdriven chatbots may provide real-time assistance, answering queries and guiding students through complex topics.VR and AR technologies are likely to evolve, offering even more immersive experiences in nutrition education. Virtual labs may simulate realistic experiments, and augmented reality applications could overlay nutritional information on real-world objects, enhancing hands-on learning. The use of mobile devices and apps for nutrition education will continue to grow. Mobile learning platforms will offer on-the-go access to educational materials, making it easier for students to engage with content at their convenience. Gamified nutrition apps may further enhance engagement. The integration of telehealth platforms will expand, enabling remote access to nutrition counseling, consultations, and virtual dietetic services. Remote learning will continue to be a crucial component, offering flexibility and accessibility for students worldwide.Blockchain technology may find applications in ensuring the integrity and transparency of nutritional data. This can be particularly relevant in supply chain management, certification processes, and maintaining the traceability of food products, contributing to a more trustworthy food system. The use of data analytics in nutritional research will become more sophisticated. Technology will assist researchers in analyzing vast datasets to identify patterns, correlations, and emerging trends in nutrition science, contributing to evidence-based practices. The integration of smart devices and wearables will allow for real-time monitoring of dietary habits, physical activity, and health metrics. These devices can provide valuable data for personalized nutrition recommendations and help individuals make informed choices about their well-being. Online communities and collaborative platforms will foster global connections among nutrition professionals, researchers, and students. Virtual conferences, webinars, and collaborative research projects will contribute to a more interconnected and globalized field of nutrition education. Technology will likely play a greater role in the integration of nutrition education with culinary arts. Virtual cooking classes, recipe apps with nutritional analyses, and smart kitchen devices may enhance the practical application of nutrition knowledge in preparing healthy meals.

VI. Conclusion

Implementing technology-based nutrition interventions within school settings presents a pragmatic, appealing, and cost-effective approach to enhancing nutrition knowledge and fostering healthier eating behaviors. The versatility of technologies allows for easy adaptation to self-administered interventions, enabling the provision of personalized advice tailored to the specific needs and preferences of participants. The encouraging outcomes of these interventions underscore the feasibility of motivating adolescents and capturing their attention regarding nutrition issues. Future interventions to maximize effectiveness, a comprehensive examination of the target population becomes imperative. This involves conducting thorough analyses to develop interventions that align with the unique preferences and needs of adolescents. The current diversity among studies introduces a level of complexity, making it challenging to draw definitive conclusions about the overall effectiveness of these interventions. In essence, while technology-based nutrition interventions in schools have demonstrated positive results in motivating adolescents and improving their engagement with nutrition issues, there is a recognized need for more nuanced, tailored approaches. Addressing the individual preferences and needs of adolescents through a thorough understanding of the target population can contribute to the refinement and optimization of these interventions, ultimately enhancing their impact on nutrition knowledge and eating behaviors. The diverse nature of existing studies, however, necessitates caution in generalizing the effectiveness of such interventions across various contexts.

References

- [1] Hamel, L. M., & Robbins, L. B. (2013), "Computer- and web-based interventions to promote healthy eating among children and adolescents: A systematic review," Journal of Advanced Nursing, 69(1), 16–30. doi:10.1111/j.1365-2648. 2012.06086.x.
- [2] Hampson, S. E. (2008), "Mechanisms by which childhood personality traits influence adult well-being," Current Directions in Psychological Science, 17(4), 264–268. doi:10.1111/j.1467-8721.2008.00587.x.
- [3] Hingle, M. D., O'Connor, T. M., Dave, J. M., & Baranowski, T. (2010), "Parental involvement in interventions to improve child dietary intake: A systematic review," Preventive Medicine, 51(2), 103–111. doi:10.1016/j.ypmed. 2010.04.014.

- [4] Jones, M., Taylor Lynch, K., Kass, A. E., Burrows, A., Williams, J., Wilfley, D. E., & Taylor, C. B. (2014), "Healthy weight regulation and eating disorder prevention in high school students: A universal and targeted Web-based intervention," Journal of Medical Internet Research, 16(2), e57. doi:10.2196/jmir.2995.
- [5] Krebs-Smith, S. M., Guenther, P. M., Subar, A. F., Kirkpatrick, S. I., & Dodd, K. W. (2010), "Americans do not meet federal dietary recommendations," The Journal of Nutrition, 140(10), 1832–1838. doi:10.3945/jn.110.124826.
- [6] Law, M. (2000), "Dietary fat and adult diseases and the implications for childhood nutrition: An epidemiologic approach," The American Journal of Clinical Nutrition, 72(5), 1291s–1296s. doi:10.1093/ajcn/72.5.1291s.
- [7] Lifshitz, F. (2008), "Obesity in children," Journal of Clinical Research in Pediatric Endocrinology, 1(2), 53–60. doi:10. 4008/jcrpe.v1i2.35.
- [8] Long, J. D., & Stevens, K. R. (2004), "Using technology to promote self-efficacy for healthy eating in adolescents," Journal of Nursing Scholarship, 36(2), 134–139. doi:10.1111/j.1547-5069.2004.04026.x.
- [9] Lynch, C., Kristjansdottir, A. G., te Velde, S. J., Lien, N., Roos, E., Thorsdottir, I., ... Yngve, A. (2014), "Fruit and vegetable consumption in a sample of 11-year-old children in ten European countries – The PRO GREENS cross-sectional survey," Public Health Nutrition, 17(11), 2436–2444. doi:10.1017/S1368980014001347.
- [10] Maes, L., Cook, T. L., Ottovaere, C., Matthijs, C., Moreno, L. A., Kersting, M., ... Vereecken, C. (2011), "Pilot evaluation of the HELENA (healthy lifestyle in Europe by nutrition in adolescence) Food-O-Meter, a computer-tailored nutrition advice for adolescents: A study in six European cities," Public Health Nutrition, 14(07), 1292–1302. doi:10.1017/ S1368980010003563.
- [11] Mauriello, L. M., Ciavatta, M. M. H., Paiva, A. L., Sherman, K. J., Castle, P. H., Johnson, J. L., & Prochaska, J. M. (2010), "Results of a multi-media multiple behavior obesity prevention program for adolescents," Preventive Medicine, 51(6), 451–456. doi:10.1016/j.ypmed.2010.08.004.
- [12] Mikkilä, V., Räsänen, L., Raitakari, O. T., Pietinen, P., &Viikari, J. (2004), "Longitudinal changes in diet from childhood into adulthood with respect to risk of

cardiovascular diseases: The cardiovascular risk in Young Finns study," European Journal of Clinical Nutrition, 58(7), 1038–1045. doi:10.1038/sj.ejcn.1601929.

- [13] Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009), "Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement," BMJ (Clinical Research Ed.), 339, b2535. doi:10.1136/bmj.b2535.
- [14] Dhabliya, M. D., & Dhabalia, M. R. (2014). Object Detection and Sorting using IoT. International Journal of New Practices in Management and Engineering, 3(04), 01-04.
- [15] Verma, M. K., & Dhabliya, M. D. (2015). Design of Hand Motion Assist Robot for Rehabilitation Physiotherapy. International Journal of New Practices in Management and Engineering, 4(04), 07-11.
- [16] Khetani, V., Nicholas, J., Bongirwar, A., & Yeole, A. (2014). Securing web accounts using graphical password authentication through watermarking. International Journal of Computer Trends and Technology, 9(6), 269-274.
- [17] Bhattacharya, S., Rungta, D. S., & Kar, N. (2013). Intelligent Frequent Pattern Analysis in Web Mining. International Journal of Digital Application & Contemporary research, 2.
- [18] Limkar, S., Kulkarni, S., Chinchmalatpure, P., Sharma, D., Desai, M., Angadi, S., & Jadhav, P. (2020). Classification and Prediction of Rice Crop Diseases Using CNN and PNN. Intelligent Data Engineering and Analytics: Frontiers in Intelligent Computing: Theory and Applications (FICTA 2020), Volume 2, 1177, 31.
- [19] Mahajan, R. A., & Mahajan, S. A. (2020, March). Development of scrum-tree-KNN algorithm for distributed agile development. In 2020 International Conference on Emerging Smart Computing and Informatics (ESCI) (pp. 17-21). IEEE.

