MINIMAL CONNECTED GEO CHROMATIC NUMBER OFSOME STANDARD GRAPHS

Q. ANLIN LOUISHA MERLAC, Department of Mathematics, St. John's College of Arts and Science Ammandivilai - 629 204, Tamil Nadu, India.merlac 1996@gmail.com
G. SUDHANA, Department of Mathematics, Nesamony Memorial Christian CollegeMarthandam

- 629 165, Tamil Nadu, India. sudhanaarun1985@gmail.com

Abstract

: For a connected graph G of order $n \geq 2$, a connected geo chromatic set $\mathrm{S}_{c g}$ in a connected graph G is called a minimal connected geo chromatic set if no proper subset of $\mathrm{S}_{c g}$ is a connected geo chromatic set of G. The minimal connected geo chromatic number $\chi_{c g}^{+}(G)$ is the maximum cardinality of a minimum connected geo chromatic set of G. We determined the minimum connected geo chromatic number of certain standard graphs and bounds of the minimum connected geo chromatic number is proved. It is shown that for positive integers x, y and z such that $2 \leq x<y \leq z$, there exists a connected graph G such that $g(G)=x, \chi_{c g}(G)=y$ and $\quad \chi_{c g}^{+}(G)=\mathrm{z}$.

Keywords : geodetic number, chromatic number, geo chromatic number, connected

1.INTRODUCTION

Let $G=(V, E)$ be a finite undirected connected graph without multiple edges or loops. The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology we refer to Harary [8]. For vertices p and q in a connected graph G, the distance $d(p, q)$ is the length of a shortest $p-q$ path in G. A $p-q$ path of length $d(p, q)$ is called a $p-q$ geodesic. A vertex x is said to lie on a $p-q$ geodesic p^{\prime}, if x is a vertex of p^{\prime}, including the vertices of p and q. The neighborhood of a vertex x is the set $N(x)$ consisting of all vertices y which are adjacent with x. A vertex x is an extreme vertex of G if the subgraph induced by its neighbors is complete. The closed interval $I[p, q]$ consists of all vertices lying on some $p-q$ geodesic of G, while for $S \subseteq V, I[S]=$ $\cup p, q \in S I[p, q]$. If $I[S]=V$, then a set S of vertices is a geodetic set and the minimum cardinality of a geodetic set is the geodetic number $g(G)$. A geodetic number of a graph was introduced in $[3,5]$ and further studied in [7,9].A connected geodetic set of G is a geodetic set S^{\prime} such that the subgraph $G\left[S^{\prime}\right]$ induced by S^{\prime} is Minimal Connected Geo Chromatic Number of a Graph

Definition 2.1. A connected geo chromatic set $S_{c g}$ in a connected graph G is called a minimal connected geo chromatic set if no proper subset of $S_{c g}$ is a connected geo chromatic set of G. The minimal connected geo chromatic number $\chi_{c g}^{+}(G)$ is the maximum cardinality of a minimum connected geo chromatic set of G.

Example 2.2. For the graph G given in Figure (a), $S_{c g 1}=\left\{a_{2}, a_{4}, a_{5}, a_{6}\right\}, S_{c g 2}=\left\{a_{1}, a_{2}, a_{4}, a_{5}\right\}$, $S_{c g 3}=\left\{a_{1}, a_{2}, a_{4}, a_{6}\right\}, S_{c g 4}=\left\{a_{2}, a_{3}, a_{4}, a_{5}\right\}, S_{c g 5}=\left\{a_{2}, a_{3}, a_{4}, a_{6}\right\}$ are the minimum connected
geo chromatic set of G so that $\chi_{c g}(G)=4$. The set $\mathrm{S}_{c g}^{+}=\left\{a_{1}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$ is also a connected geo chromatic set of G. Hence $\chi_{c g}^{+}(G)=5$.

Remark 2.3. Every minimum connected geo chromatic set of G is a minimal connected geo chromatic set of G. The converse is not true. For the graph G given Figure $1, \mathrm{~S}_{c g}^{+}=\left\{a_{1}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$ is a minimal connected geo chromatic set but not a minimum connected.
3. Minimal Connected Geo Chromatic Number of Some Standard Graphs

Theorem 3.1.

For a connected graph $C_{n}, \chi_{c g}^{+}\left(C_{n}\right)=k$. Proof. Let $V\left(P_{k}\right)=h_{1}, h_{2}, \ldots, h_{k}$ be the vertex set of P_{k}.
Let usconsider two cases.
Case 1. Suppose that k is even. Then $S=h_{1}, h_{k}$ is the minimum geodetic set of P_{k} and $\operatorname{sog}\left(P_{k}\right)$ $=2$. Define a coloring of P_{k} such that the vertices $h_{1}, h_{3}, \ldots, h_{k-3}, h_{k-1}$ receive color 1 and the vertices $h_{2}, h_{4}, \ldots, h_{k-2}, h_{k}$ receive color 2 . It is easily seen that S is a chromatic set of P_{k}. Therefore $S=\left\{h_{1}, h_{k}\right\}$ is also theminimum geo chromatic set S_{c} of P_{k} and so $\chi_{g c}\left(P_{k}\right)=2$. Clearly, the induced subgraph $\left\langle S_{c}\right\rangle$ is not connected so that S_{c} not a connected geo chromatic set of P_{k}. If at least one $h_{i} \nsucceq S_{c}(2 \leq i \leq k-1)$, then the subgraph induced by S_{c} is not connected so that $\chi_{c g}\left(P_{k}\right)<k$ is not possible. Hence $\chi_{c g}\left(P_{k}\right)=k$ and it follows that $\chi_{c g}{ }^{+}\left(P_{k}\right)=k$.

Case 2. Suppose that k is odd. Then the set $S=\left\{h_{1}, h_{k}\right\}$ is the unique minimum geodetic set of P_{k} so that $g\left(P_{k}\right)=2$. Define a coloring of P_{k} such that the vertices $h_{2}, h_{4}, \ldots, h_{k-2}, h_{k}$ receive color 1 and the
vertices $h_{1}, h_{3}, \ldots, h_{k-3}, h_{k-1}$ receive color 2 . Let the vertices which receive color 1 and color 2 belong to the
color classes, namely C and D. No vertex from color class D belongs to S so that the minimum geodetic set S is not a chromatic set of P_{k}. To obtain S as a geo chromatic set S_{c}, choose at least one vertex from color
class D. Let $h_{k-1} \in D$. If $h_{k-1} \in S$, then S becomes $S_{c}=S \cup\left\{h_{k-1}\right\}$, which is a chromatic set of P_{k} Therefore, $S_{c}=S \cup\left\{h_{k-1}\right.$ \} is a geo chromatic set of P_{k} and $\chi_{c g}\left(P_{k}\right)=3$. By an argument exactly similar to the one given in Case 1, it can be proved that $\chi_{c g}\left(P_{k}\right)=k$ and it follows that $\chi_{c g}{ }^{+}\left(P_{k}\right)=$ k. Example 3.2: For the path P_{6} given in Figure 1, the vertexset $\{1,6\}$ is a minimum geo chromatic set S_{c} of G and so $\chi_{g c}\left(P_{6}\right)=2$. It is clear that $\left\langle S_{c}>\right.$ is not connected. If the vertices $2,3,4$, $5 \in S_{c}$, then $\left\langle S_{c}\right\rangle$ is connected and so $\chi_{c g}\left(P_{6}\right)=6$. It is clear that S_{c} is the unique minimal geo chromatic set of maximum cardinality so that $\chi_{c g}{ }^{+}\left(P_{6}\right)=6$.

Example 2.3: For the path P_{7} given in Figure 2, the vertex set $\{1,6,7\}$ is a minimum geo chromatic set S_{c} of G and so $\chi_{g c}\left(P_{7}\right)=3$. It is clear that $\left\langle S_{c}>\right.$ is not connected. If the vertices $2,3,4$,
$5 \in S_{c}$, then $\left\langle S_{c}\right\rangle$ is connected and so $\chi_{c g}\left(P_{7}\right)=7$. It is clear that S_{c} is the unique minimal geo chromatic set of maximum cardinality so that $\chi_{c g}{ }^{+}\left(P_{7}\right)=7$.

Theorem 2.4: For a connected graph $K_{k}, \chi_{c g}{ }^{+}\left(K_{k}\right)=k$.
Proof. Each vertex of K_{k} receive distinct colors and so each vertex of K_{k} belong to a geo chromatic set S_{c} of G. It is clear that the induced subgraph $\left\langle S_{c}\right\rangle$ is connected. Therefore $\chi_{c g}\left(K_{k}\right)=k$ and it follows that $\chi_{c g}{ }^{+}\left(K_{k}\right)=k$.

CONCLUSION

In this paper, the minimal connected geo chromatic number $\chi_{c{ }^{\prime}}{ }^{+}(G)$ of some standard graphs has been discussed. Future works can be carried out on obtaining the minimal connected geo chromatic number $\chi_{c g}{ }^{+}(G)$ with some graph parameters

REFERENCES

${ }^{[1]}$ Anlin Louisha Merlac, Q \& Sudhana, G 2021, ‘The Minimal Connected Geo Chromatic Number of a Graph', Turkish Online Journal of Quali- tative Inquiry (TOJQI), Vol.12, no.10, pp.5237-5245, ISSN: 1309-6591.
${ }^{[2]}$ Beulah Samli, S \& Robinson Chellathurai, S, 2018, 'Geo Chromatic Number of a Graph', International Journal of Scientific Research in Mathematical and Statistical Sciences,Vol.5, no.6, pp.259-264.
${ }^{[3]}$ Beulah Samli, S, John, J \& Robinson Chellathurai, S 2021, ‘The Double Geo Chromatic Number of a Graph’, Bulletin of the International Mathematical Virtual Institute, Vol.11, no.1, pp.55-68.
${ }^{[4]}$ Beulah Samli, S, Robinson Chellathurai, S \& Ashwin Shijo, M 2018,
" The Connected Geo Chromatic Number of a Graph", Proceedings of Two Day International Conference on Mathematical Computer Engineering, VIT University, Chennai, pp.318-319, ISBN:978-93-81899-94-6.
${ }^{\text {[5] }}$ Buckley, F \& Harary, F 1990, 'Distance in Graphs', Addison-Wesley, Redwood City, Calif.

