Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

Q-I VAGUE IDEALS IN NEAR-RING

Pritam Vijaysigh Patil

¹Department of Mathematics, Shivaji University, Kolhapur ¹Department of Mathematics, Sanjay Ghodawat University, Kolhapur

J. D. Yadav

Department of Mathematics, SGM College, Karad

Abstract. In this paper author defines the concepts about Q-I vague sets, Q-I vague subnear-ring, Q-I vague ideals, homomorphic image and pre-image of Q-I vague ideals in a near-ring R.

AMS (MOS) Subject Classification Codes: 03G25, 06F35, 03F72. **Key Words**: I-Vague subnear-ring, I-Vague ideals, Q-Vague sets.

1. INTRODUCTION

Solairaju and Nagarajan [1] constructed Q-fuzzy groups by defining membership functions on an ordered pair R Q to unit interval [0, 1] where R is near-ring and Q is any non-empty set. Then various re- searchers defined these concepts using Q set. Again, both of them along with Muruganantham [2] extended this to Q-vague set and defined Qvague value, Q-vague cut, Q-vague groups, Q-vague normal subgroups, Q- vague normalizer, and centralizers. K. L. N. Swamy [9,10,11] introduced DRL-semigroups and T. Zelalem [21] defined *I*-vague sets from DRL- semigroup *I* to near ring *R*. Pritam [18] extended this concept to define *I*-vague ideals in near-ring *R*. So here in this paper, author extending that work to Q-I vague concepts.

2. PRELIMINARIES

Let us see some required definitions as follows:

Definition 2.1 [9] A system $A=(A,+, \leq, -)$ is called a dually residuated lattice ordered semigroup (in short DRL-semigroup) if and only if

(1) A=(A,+) is a commutative semigroup with zero "0".

(2) $A=(A, \leq)$ is a lattice such that $a+(b\cup c)=(a+b) \cup (a+c)$ & $a+(b\cap c)=(a+b)\cap(a+c)$ for all $a,b,c \in A$

(3) Given $a,b \in A$ then there exists a least x in A such that $b+x \ge a$, and we denotes this a by a-b (for a given a,b it is uniquely determined),

- (4) (a-b) $\cup 0+b \le a \cup b$ for all $a, b \in A$,
- (5) $a-a \ge 0$ for all $a \in A$.

In this research, let I = (I, +,-, V, \land , 0,1) be a DRL-semigroup satisfying 1- (1-a)=a for all $a \in I$.

Definition 2.2 [20] Let *f* be a mapping from set *X* into a set *Y*. Let *B* be a vague set in *Y*, Then the inverse image of *B* i.e. $f^{-1}[B]$ is the vague set in *X* given by, $V_{f}-1[B](x) = V_{B}[f(x)]$ for all $x \in X$.

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

Definition 2.3. [20] Let f be a mapping from a set X into a set Y. Let A be a vague set in X. Then the image of A i.e. f[A] is the vague set in Y is given by, V_{f[A1}(y)={isup V_A(z)/ z \in f1(y)} if f1(y) is non-empty and V_{f[A1}(y)=[0,0] otherwise.

Definition 2.4 [2] A Q-Vague set A in the universe of discourse X is characterized by two membership functions given by:

(1) a truth membership function $t_A : X \times Q \rightarrow [0, 1]$, (2) a false membership function $f_A : X \times Q \rightarrow [0, 1]$, Such that $t_A(x,p) + f_A(x,p) \le I$ for all $x \in X$ and $p \in Q$.

Definition 2.5 [21] An *I*-vague set *A* on a non-empty set *X* is a pair (t_A, f_A) where $t_A : X \times Q \rightarrow I$ and $f_A : X \times Q \rightarrow I$ with $t_A(x) \leq I - f_A(x)$ for all $x \in X$.

Definition 2.6 [18] Let *A* be an *I*-vague set in a near-ring *R*. Then *A* is called *I*-vague subnear-ring in a near-ring *R* if it satisfies the following conditions for all $x, y \in R$, (1) $V_A(x-y) \ge \inf \{V_A(x), V_A(y)\}$ (2) $V_A(xy) \ge \inf \{V_A(x), V_A(y)\}$.

Definition 2.7 [18] Let A be an *I*-vague set in a near-ring R, then A is said to be an *I*-vague ideal in a near-ring R if and only if for all $x, y, z \in R$, it satisfies

(1) $V_A(x-y) \ge iinf\{V_A(x), V_A(y)\},$ (2) $V_A(xy) \ge iinf\{V_A(x), V_A(y)\},$ (3) $V_A(y+x-y) \ge V_A(x),$ (4) $V_A(xy) \ge V_A(x),$ (5) $V_A[x(y+z)-xy] \ge V_A(z).$

Here A is said to be right *I*-vague ideal in a near-ring R if it satisfies (1), (2), (3) and (4) and A is said to be left *I*-vague ideal in a near-ring R if it satisfies (1), (2), (3) and (5).

3. Q-I VAGUE IDEALS IN NEAR-RING

In this section author defines and discuss about *Q-I* vague sets, ideals and some of the properties of it in a near-ring *R*. Here in this paper *I* be a unit interval [0,1] of real numbers, with $a \oplus b = \min\{1,a+b\}$. With the usual ordering $(I, \oplus, \leq -)$ is an involuntary DRL-semigroup. The definition is as follows:

Definition 3.1 An *I* vague set *A* in a near-ring *R* which can be denoted as *Q*-*I* vague set *A* in a near-ring *R* by defining membership functions t_A and f_A from an ordered pain $R \times Q$ to codomain *I* such that $t_A(x,p)+f_A(x,p) \le l$ for all $x \in \mathbb{R}$ and $p \in Q$ where *Q* is a non-empty set.

Definition 3.2 Let *A* be a *Q*-*I* vague set in a near-ring *R*, Then *A* is said to be *Q*-*I* vague subnear-ring in a near-ring *R if* for all $x, y \in R$ and $p \in Q$, it satisfies (1) $V_A(x-y,p) \ge iinf\{V_A(x,p), V_A(y,p)\}$, (2) $V_A(xy,p) \ge iinf\{V_A(x,p), V_A(y,p)\}$.

Definition 3.3 Let *A* be a Q-*I* vague set in a near-ring R, then *A* is said to be a Q-*I* vague ideal in a near-ring *R* if and only if for all *x*, *y*, $z \in R$, $p \in Q$ it satisfies

(1) $V_A(x-y,p) \ge iinf\{V_A(x,p), V_A(y,p)\},$ (2) $V_A(xy,p) \ge iinf\{V_A(x,p), V_A(y,p)\},$

(3) $V_A(y+x-y,p) \ge V_A(x,p)$,

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

(4) $V_A(xy,p) \ge V_A(x,p)$,

(5) $V_A[x(y+z)-xy,p] \ge V_A(z,p).$

Here A is said to be right Q-I vague ideal in a near-ring R if it satisfies (1), (2), (3) and (4) and A is said to be left Q-I vague ideal in a near-ring R if it satisfies (1), (2), (3) and (5). If A satisfies (1) to (5) then A is called both sided Q-I vague ideal in a near-ring R.

Remark 3.4. If *A* is a Q-*I* vague ideal in a near-ring *R*, then it holds commutative property. i.e., $V_A(x+y,p) = V_A(y+x,p)$ for all $x, y \in R, p \in Q$.

Remark 3.5. If A is a Q-I vague ideal in a near-ring R, then $V_A(0,p)$ is an upper bound for $V_A(x,p)$ for all $x \in R$, $p \in Q$.

Example 3.6. Let $Z_3 = \{0, 1, 2\}$ be a near-ring under residue classes of addition and multiplication modulo-3 and $Q = \{p,q\}$. An *I*-vague set $A = (t_A, f_A)$ of R defined as $t_A: Z_3 \times Q \rightarrow I$ and $f_A: Z_3 \times Q \rightarrow I$ such that $t_A(x,p) = 1$ if $x=0, t_A(x,p)=0.3$ if x=1,2; $f_A(x,p)=0$ if $x=0, f_A(x,p)=0.6$ if x=1,2; $t_A(x,q)=1$ if $x=0, t_A(x,q)=0.4$ if x=1,2; and $f_A(x,q)=0$ if $x=0, f_A(x,q)=0.5$ if x=1,2.

Here let us prove that A is a vague ideal in Z_3 . all x, y, $z \in Z_3$, $p,q \in Q$. Let us verify the first property of Q-I vague ideal through following tables:

x	у	r = x - y	$t_A(r)$	$iinf\{t_A(x, p), t_A(y, p)\}$	$1 - f_A(r, p)$	$iinf\{1 - f_A(x,p), 1 - f_A(y,p)\}$
0	0	0	1	1	1	1
0	1	2	0.3	0.3	0.4	0.4
0	2	1	0.3	0.3	0.4	0.4
1	0	1	0.3	0.3	0.4	0.4
1	1	0	1	0.3	1	0.4
1	2	2	0.3	0.3	0.4	0.4
2	0	2	0.3	0.3	0.4	0.4
2	1	1	0.3	0.3	0.4	0.4
2	2	0	1	0.3	1	0.4

TABLE 1. $V_A(x - y, p) \ge iinf\{V_A(x, p), V_A(y, p)\}, x, y \in Z_3.$

x	у	r = x - y	$t_A(r)$	$iinf \{t_A(x, q), t_A(y, q)\}$	$1 - f_A(r, q)$	$iinf\{1 - f_A(x, q), 1 - f_A(y, q)\}$
0	0	0	1	1	1	1
0	1	2	0.4	0.4	0.5	0.5
0	2	1	0.4	0.4	0.5	0.5
1	0	1	0.4	0.4	0.5	0.5
1	1	0	1	0.4	1	0.5
1	2	2	0.4	0.4	0.5	0.5
2	0	2	0.4	0.4	0.5	0.5
2	1	1	0.4	0.4	0.5	0.5
2	2	0	1	0.4	1	0.5

TABLE 2. $V_A(x - y, q) \ge iinf\{V_A(x, q), V_A(y, q)\}, x, y \in Z_3.$

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

From Table 1, by 4th & 5th columns we get $t_A(x-y, p) \ge iinf \{t_A(x, p), t_A(y, p)\}$ and by columns 6th & 7th columns we get $1 - f_A(x-y, p) \ge iinf \{1 - f_A(x, p), 1 - f_A(y, p)\}$. Hence we get $V_A(x-y, p) \ge iinf \{V_A(x, p), V_A(y, p)\}$.

Similarly from Table 2, by 4th & 5th columns we get $t_A(x-y, q) \ge iinf \{t_A(x, q), t_A(y, q)\}$ and by columns 6th & 7th columns we get $1 - f_A(x-y, q) \ge iinf \{1 - f_A(x, q), 1 - f_A(y, q)\}$. Hence we get $V_A(x-y, q) \ge iinf \{V_A(x, q), V_A(y, q)\}$.

Similarly, we can prove the remaining properties given below: $V_A(xy, p) \ge iinf \{V_A(x, p), V_A(y, p)\}$ and $V_A(xy, q) \ge iinf \{V_A(x, q), V_A(y, q)\}$. $V_A(y + x - y, p) \ge V_A(x, p)$ and $V_A(y + x - y, q) \ge V_A(x, q)$. $V_A(xy, p) \ge V_A(x, p)$ and $V_A(xy, q) \ge V_A(x, q)$. $V_A[(x + z)y - xy, p] \ge V_A(z, p)$ and $V_A[(x + z)y - xy, q] \ge V_A(z, q)$, for x, $y, z \in Z_3$ and $p, q \in Q$.

We know that unit interval [0,1] is DRL-semigroup satisfying 1-(1-a)=a for all a in *I*. As here *A* is defined over an ordered pair $R \times Q$. So we get *A* is a *Q*-*I* vague ideal in a near-ring *R*.

Theorem 3.7 Let *A* be a Q-*I* vague ideal in a near-ring *R*, Then the condition $V_A(xt-xy, p) \ge V_A(t-y, p)$ is equivalent to the condition $V_A[x(y+z)-xy,p] \ge V_A(z,p)$ for all *x*, *y*, *z*, *t* \in *R*, *p* \in *Q*. (we can prove this by considering t = y+z).

Theorem 3.8 Let *R* be a near-ing and *A* be a *Q*-*I* vague set in a near-ring *R* satisfies the condition $V_A(x-y,p) \ge iinf\{V_A(x,p), V_A(y,p)\}$, then for all $x, y \in R, p \in Q$ the following properties are hold

(a) $V_A(0,p) \ge V_A(x,p)$, (b) $V_A(-x,p) = V_A(x,p)$, (c) $V_A(x,p) = V_A(y,p)$ if $V_A(x-y,p) = V_A(0,p)$. (Proof is obvious).

Definition 3.9 Let *A* be a *Q*-*I* vague set in a near-ring *R* and *g* be a well-defined function defined on *R*. Then a *Q*-*I* vague set *B* in g(R) such that, $V_B(y,p) = \{isup V_A(x,p)/x \in f^{-1}(y)\}$ for all $y \in g(R)$ and $p \in Q$ is the image of *A* under the function *g*. Similarly if *A* is a *Q*-*I* vague set in g(R) then the $B=A\circ g$ is a *Q*-*I* vague set in a nearring *R i.e.*, $V_B(x,p)=V_A[g(x),p]$, for all *x* in *R* and *p* in *Q*.

Theorem 3.10 A pre-image of onto homomorphic function of a Q-I vague ideal in a near-ring R is a Q-I vague ideal in a near-ring R in the respective near-ring.

Proof. Let ψ be an onto homomorphic function defined in a near-ring *R* to a near-ring *S* and *A* be a *Q*-*I* vague ideal in a near-ring *S*, where $B = \psi^{-1}(A)$ in a near-ring *R*.

Let us show A is Q-I vague ideal in near-ring R. Now, for all $x, y, z \in R$, $p \in Q$.

$$V_A(x-y,p) = V_B[\psi(x-y),p] = V_B[\psi(x)-\psi(y)),p] \ge iinf \{V_B(\psi(x),p), V_B(\psi(y),p)\}$$
$$\ge iinf \{V_A(x,p), V_A(y,p)\}.$$

 $V_A(xy,p) = V_B[\psi(xy),p] = V_B[\psi(x)\psi(y)),p] \ge iinf \{V_B(\psi(x),p), V_B(\psi(y),p)\}$ $\ge iinf \{V_A(x,p), V_A(y,p)\}.$

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

$$V_{A}(xy,p) = V_{B}[\psi(xy),p] = V_{B}[\psi(x)\psi(y)),p] \ge V_{B}(\psi(x),p) = V_{A}(x,p).$$

$$V_{A}[(x+z)y-xy,p] = V_{B}[\psi[(x+z)y-xy],p] = V_{B}[\psi(x)\psi(y)),p]$$

$$\ge iinf \{V_{B}(\psi(x),p), V_{B}(\psi(y),p)\} \ge iinf \{V_{A}(x,p), V_{A}(y,p)\}.$$

It shows A is a Q-I vague ideal in near-ring R, for all x, y, $z \in R$, $p \in Q$.

5. CONCLUSION

In this paper, the concepts of Q-I vague sub near-ring and Q-I vague ideals of near-ring are discussed. Also properties related to Q-I vague ideals of near-ring are discussed. Then we have observed what happens with the homomorphic image and pre-image of Q-I vague ideals with the help of some previous concepts.

6. REFERENCES

[1] A. Solairaju, R. Nagarajan, A new structure and construction of *Q*-fuzzy, Advances in Fuzzy Mathematics, 4 (2009) 1 23–29.

[2] A. Solairaju, R. Nagarajan & P. Muruganantham, *Q-Vague Groups* and Vague normal Sub Groups with Respect to (T, S) Norms, International Journal of Com- puter Applications (09757-8887), 15 (7)(2011) 23–27.

[3] B. Davvaz, Fuzzy ideals of near-rings with interval valued membership functions, J. Sci I R Iran, 12(2) (2001) 171–175.

[4] J. D. P. Meldrum, *Near-rings and their links with groups*, Pitman, Boston (1985).

[5] J. D. Yadav and Y.S. Pawar, *Fuzzy Ideals of Near-rings with Respect to s-norm*, Advances in Fuzzy Mathematics, 5 (3) (2010) 379–393.

[6] J. D. Yadav and Y.S. Pawar, *Intuitionistic Q-Fuzzy Ideals of Nearrings*, Vietnam Journal of Mathematics, 40:1 (2012) 95–105.

[7] J. R. Clay, *Near-rings*, Genses and Applications, Oxford, New York, (1992).

[8] K. H. Kim, *On Intuitionistic Q-Fuzzy Ideals in Semigroups*, Advances in Fuzzy Mathematics, 1 (1) (2006) 15–21.

[9] K. L. N. Swamy, *Dually residuated lattice ordered semigroups*, Math. Annalen, 159 (1965) 105–114.

[10] K. L. N. Swamy, *Dually residuated lattice ordered semigroups II*, Math. Annalen, 160 (1965) 64–71.

[11] K. L. N. Swamy, *Dually residuated lattice ordered semigroups III*, Math. Annalen, 167 (1966) 71–74.

[12] L. A. Zadeh, Fuzzy set, information and control, 8 (1965) 338–353.

[13] L. Bhaskar, *Vague ideals of a near-rings*, International Journal of Pure and Ap-plied Mathematics, 117 (20) (2017) 219–227

[14] M. Mashinchi & M. M. Zahedi, *On fuzzy ideals of a ring*, J. Sci. I. R. Iran, 1 (3)(1990) 208-210.lbid., 5 91991) 237-250.

[15] P. Gunter, *Near-rings*, North-Holland, Amsterdam, (1983).

[16] P. K. Sharma, *Intuitionistic Fuzzy Ideals of Near-rings*, International Mathematical Forum, 7 (16) (2012) 769–776.

Research paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, Dec 2022

[17] P. S. Das, *Fuzzy groups and level subgroups*, J. Math. Anal. and Appl., 84 (1981)264–269.

[18] Pritam Vijaysigh Patil & Janardhan D. Yadav, *I- Vague ideals in near-rings*, Journal of Hyperstructures, vol. 10(1) (2020) 13–21.

[19] S. M. Hong., Y. B. Jun & H. S. kim, *Fuzzy ideals in near-rings*, Bull of KoreanMath. Soc., 35(3) (1998) 455–464.

[20] T. Eswarlal, *Vague Ideals and Normal Vague Ideals in semirings*, International Journal of Computational Cognition, 6(3) (2008), 60–65.

[21] T. Zelalem, *I-Vague Sets and I-Vague Relations*, International Journal of Computational Cognition, 8(4) (2010) 102–109.