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1. INTRODUCTION 

Solairaju and Nagarajan [1] constructed Q-fuzzy groups by defining membership 

functions on an ordered pair R Q to unit interval [0, 1] where R is near-ring and Q is any 

non-empty set. Then various re- searchers defined these concepts using Q set. Again, 

both of them along with Muruganantham [2] extended this to Q-vague set and defined Q- 

vague value, Q-vague cut, Q-vague groups, Q-vague normal subgroups, Q- vague 

normalizer, and centralizers. K. L. N. Swamy [9,10,11] introduced DRL-semigroups 

and T. Zelalem [21] defined I-vague sets from DRL- semigroup I to near ring R. 

Pritam [18] extended this concept to define I-vague ideals in near-ring R. So here in this 

paper, author extending that work to Q-I vague concepts. 

 

2. PRELIMINARIES 

Let us see some required definitions as follows: 

Definition 2.1 [9]  A system A=(A,+, ≤, ─) is called a dually residuated lattice ordered 

semigroup (in short DRL-semigroup) if and only if 

(1) A=(A,+) is a commutative semigroup with zero “0”. 

(2) A=(A, ≤) is a lattice such that a+(b∪c)=(a+b) ∪ (a+c) 

&a+(b∩c)=(a+b)∩(a+c) for all a,b,c ∈ A 

(3) Given a,b ∈ A then there exists a least x in A such that b+x ≥ a, and we 

denotes this a by a-b (for a given a,b it is uniquely determined), 

(4) (a-b) ∪0+b≤ a∪b for all a,b ∈ A, 

(5) a – a ≥ 0 for all a ∈ A. 

In this research, let I = (I, +,─, ∨, ∧, 0,1) be a DRL-semigroup satisfying 1─ (1─a)=a for 

all a ∈ I. 

Definition 2.2 [20] Let f be a mapping from set X into a set Y.  Let B be a vague set in Y , 

Then the inverse image of B i.e. f −1[B] is the vague set in X given by, Vf−1 [B](x) = 

VB[f (x)] for all x ∈ X. 
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Definition 2.3. [20] Let f be a mapping from a set X into a set Y.  Let A be a vague set in 

X. Then the image of A i.e. f [A] is the vague set in Y is given by,  

Vf[A](y)={isup VA(z)/ z  ∈ f-1(y)} if f-1(y) is non-empty and Vf[A](y)=[0,0] otherwise. 

Definition 2.4 [2]  A Q-Vague set A in the universe of discourse X is characterized by 

two membership functions given by: 

(1) a truth membership function tA : X × Q → [0, 1], 

(2) a false membership function fA : X × Q → [0, 1], 

Such that tA(x,p) + fA(x,p) ≤ 1 for all x ∈ X  and p ∈ Q. 

Definition 2.5 [21] An I-vague set A on a non-empty set X is a pair (tA, fA) where tA : X × 

Q → I and fA : X × Q → I with tA(x) ≤ 1 - fA(x) for all x ∈ X . 

Definition 2.6 [18] Let A be an I-vague set in a near-ring R. Then A is called I-vague 

subnear-ring in a near-ring R if it satisfies the following conditions for all x,y ∈ R, 

(1) VA(x-y) ≥ iinf {VA(x),VA(y)} 

(2) VA(xy) ≥ iinf {VA(x),VA(y)}. 

Definition 2.7 [18] Let A be an I-vague set in a near-ring R, then A is said to be an I-

vague ideal in a near-ring R if and only if for all x, y, z ∈ R, it satisfies  

(1) VA(x-y)  ≥  iinf{VA(x),VA(y)}, 

(2) VA(xy)  ≥  iinf{VA(x),VA(y)}, 

(3) VA(y+x-y ) ≥ VA(x), 

(4) VA(xy) ≥ VA(x), 

(5) VA[x(y+z)-xy] ≥ VA(z). 

Here A is said to be right I-vague ideal in a near-ring R if it satisfies (1), (2), (3) and (4) 

and A is said to be left I-vague ideal in a near-ring R if it satisfies (1), (2), (3) and (5). 

 

3. Q-I VAGUE IDEALS IN NEAR-RING 

 
In this section author defines and discuss about Q-I vague sets, ideals and some of 

the properties of it in a near-ring R. Here in this paper I be a unit interval [0,1] of 

real numbers, with a ⊕ b= min {1,a+b}. With the usual ordering (I, ⊕, ≤, ─) is 

an involuntary DRL-semigroup. The definition is as follows: 

Definition 3.1 An I vague set A in a near-ring R which can be denoted as Q-I 

vague set A in a near-ring R by defining membership functions tA and fA from an 

ordered pain R × Q to codomain I such that tA(x,p)+f A(x,p)≤1 for all x ∈ R  and p 

∈ Q where Q is a non-empty set. 

Definition 3.2 Let A be a Q-I vague set in a near-ring R, Then A is said to be Q-I 

vague subnear-ring in a near-ring R if for all x, y ∈ R and p ∈ Q, it satisfies  

(1) VA(x-y,p) ≥ iinf{VA(x,p),VA(y,p)}, 

(2) VA(xy,p) ≥ iinf{VA(x,p),VA(y,p)}. 

Definition 3.3 Let A be a Q-I vague set in a near-ring R, then A is said to be a Q-I 

vague ideal in a near-ring R if and only if for all x, y, z ∈ R, p ∈ Q it satisfies  

(1) VA(x-y,p) ≥ iinf{VA(x,p),VA(y,p)}, 

(2) VA(xy,p) ≥ iinf{VA(x,p),VA(y,p)}, 

(3) VA(y+x-y,p)≥ VA(x,p), 
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(4) VA(xy,p) ≥ VA(x,p), 

(5) VA[x(y+z)-xy,p] ≥ VA(z,p). 

Here A is said to be right Q-I vague ideal in a near-ring R if it satisfies (1), (2), (3) 

and (4) and A is said to be left Q-I vague ideal in a near-ring R if it satisfies (1), 

(2), (3) and (5). If A satisfies (1) to (5) then A is called both sided Q-I vague ideal 

in a near-ring R. 

Remark 3.4. If A is a Q-I vague ideal in a near-ring R, then it holds commutative 

property. i.e., VA(x+y,p) = VA(y+x,p) for all x, y ∈ R, p ∈ Q. 

Remark 3.5. If A is a Q-I vague ideal in a near-ring R, then VA(0,p)  is an upper 

bound for  VA (x,p) for all x ∈ R, p ∈ Q. 

Example 3.6. Let Z3={0,1,2} be a near-ring under residue classes of addition and 

multiplication modulo-3 and Q={p,q}. An I–vague set A=(tA,fA) of R defined as 

tA:Z3×Q→I and fA:Z3×Q→I such that tA(x,p)=1 if x=0, tA(x,p)=0.3 if x=1,2; 

fA(x,p)=0 if x=0, fA(x,p)=0.6 if x=1,2; tA(x,q)=1 if x=0, tA(x,q)=0.4 if x=1,2; and 

fA(x,q)=0 if x=0, fA(x,q)=0.5 if x=1,2.  

Here let us prove that A is a vague ideal in Z3. all x, y, z ∈ Z3, p,q ∈ Q. Let us 

verify the first property of Q-I vague ideal through following tables: 

x y r = x -y tA(r) iinf {tA(x, p), tA(y, p)} 1 − fA(r, p) iinf {1 − fA(x,p), 1 − fA(y,p)} 

0 0 0 1 1 1 1 

0 1 2 0.3 0.3 0.4 0.4 

0 2 1 0.3 0.3 0.4 0.4 

1 0 1 0.3 0.3 0.4 0.4 

1 1 0 1 0.3 1 0.4 

1 2 2 0.3 0.3 0.4 0.4 

2 0 2 0.3 0.3 0.4 0.4 

2 1 1 0.3 0.3 0.4 0.4 

2 2 0 1 0.3 1 0.4 

TABLE 1. VA(x − y, p) ≥ iinf {VA(x, p), VA(y, p)}, x, y ∈ Z3. 

x y r = x − y tA(r) iinf {tA(x, q), tA(y, q)} 1 − fA(r, q) iinf {1 − fA(x, q), 1 − fA(y, q)} 

0 0 0 1 1 1 1 

0 1 2 0.4 0.4 0.5 0.5 

0 2 1 0.4 0.4 0.5 0.5 

1 0 1 0.4 0.4 0.5 0.5 

1 1 0 1 0.4 1 0.5 

1 2 2 0.4 0.4 0.5 0.5 

2 0 2 0.4 0.4 0.5 0.5 

2 1 1 0.4 0.4 0.5 0.5 

2 2 0 1 0.4 1 0.5 

TABLE 2. VA(x − y, q) ≥ iinf {VA(x, q), VA(y, q)}, x, y ∈ Z3. 

 



IJFANS International Journal of Food and Nutritional Sciences 

ISSN PRINT 2319 1775 Online 2320 7876  

Research paper        © 2012 IJFANS. All Rights Reserved,  UGC CARE Listed ( Group -I) Journal Volume 11, Iss 12,Dec 2022 

6431 | P a g e  
 

From Table 1, by 4th & 5th columns we get tA(x − y, p) ≥ iinf {tA(x, p), tA(y, p)} and by 

columns 6th & 7th columns we get 1-fA(x − y, p) ≥ iinf {1-fA(x, p), 1-f A(y, p)} . Hence 

we get VA(x − y, p) ≥ iinf {VA(x, p), VA(y, p)}. 

Similarly from Table 2, by 4th & 5th columns we get tA(x − y, q) ≥ iinf {tA(x, q), tA(y, 

q)} and by columns 6th & 7th columns we get 1-fA(x − y, q) ≥ iinf {1-fA(x, q), 1-f A(y, 

q)}. Hence we get VA(x − y, q) ≥ iinf {VA(x, q), VA(y, q)}. 

Similarly, we can prove the remaining properties given below: 
VA(xy, p) ≥ iinf {VA(x, p), VA(y, p)} and VA(xy, q) ≥ iinf {VA(x, q), VA(y, q)}. VA(y + 
x − y, p) ≥ VA(x, p) and VA(y + x − y, q) ≥ VA(x, q).  
VA(xy, p) ≥ VA(x, p) and VA(xy, q) ≥ VA(x, q). 
VA[(x + z)y − xy, p] ≥ VA(z, p) and VA[(x + z)y − xy, q] ≥ VA(z, q), for x, 
y,z ∈ Z3 and p, q ∈ Q. 

We know that unit interval [0,1] is DRL-semigroup satisfying 1─(1─a)=a for all 

a in I. As here A is defined over an ordered pair R×Q. So we get A is a Q-I vague 

ideal in a near-ring R. 

Theorem 3.7 Let A be a Q-I vague ideal in a near-ring R, Then the condition 

VA(xt-xy, p) ≥ VA(t-y, p) is equivalent to the condition VA[x(y+z)-xy,p] ≥ VA(z,p) 

for all x, y, z, t ∈ R, p ∈ Q. ( we can prove this by considering t = y+z). 

Theorem 3.8 Let R be a near-ing and A be a Q-I vague set in a near-ring R 

satisfies the condition VA(x-y,p) ≥ iinf{VA(x,p),VA(y,p)}, then for all x, y ∈ R, p ∈ Q  

the following properties are hold   

(a) VA(0,p) ≥ VA(x,p), (b) VA(-x,p) = VA(x,p), (c) VA(x,p) = VA(y,p) if VA(x-y,p) = 

VA(0,p).  (Proof is obvious). 

Definition 3.9 Let A be a Q-I vague set in a near-ring R and g be a well-defined 

function defined on R. Then a Q-I vague set B in g(R) such that, VB(y,p)={isup 

VA(x,p)/ x ∈ f--1(y)} for all y ∈ g(R) and p ∈ Q  is the image of A under the function g. 

Similarly if A is a Q-I vague set in g(R) then the B=A⸰g is a Q-I vague set in a near-

ring R i.e., VB(x,p)=VA[g(x),p], for all x in R and p in Q. 

Theorem 3.10 A pre-image of onto homomorphic function of a Q-I vague ideal 

in a near-ring R is a Q-I vague ideal in a near-ring R in the respective near-ring. 

Proof. Let ψ be an onto homomorphic function defined in a near-ring R to a near-

ring S and A be a Q-I vague ideal in a near-ring S, where B=ψ-1(A) in a near-ring 

R. 

Let us show A is  Q-I vague ideal in  near-ring R. Now, for all x,y,z∈ R, p∈ Q.   

VA(x-y,p) = VB[ψ(x-y),p]= VB[ψ(x)-ψ(y)),p] ≥ iinf {VB(ψ(x),p), VB(ψ(y),p)} 

       ≥ iinf {VA(x,p), VA(y,p)}. 

VA(xy,p) = VB[ψ(xy),p]= VB[ψ(x)ψ(y)),p] ≥ iinf {VB(ψ(x),p), VB(ψ(y),p)} 

       ≥ iinf {VA(x,p), VA(y,p)}. 
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VA(xy,p) = VB[ψ(xy),p]= VB[ψ(x)ψ(y)),p] ≥ VB(ψ(x),p) =VA(x,p). 

VA[(x+z)y-xy,p] = VB[ψ[(x+z)y-xy],p]= VB[ψ(x)ψ(y)),p]  

                          ≥ iinf {VB(ψ(x),p), VB(ψ(y),p)} ≥ iinf {VA(x,p), VA(y,p)}. 

It shows A is a Q-I vague ideal in near-ring R, for all x, y, z ∈ R, p ∈ Q. 

 

5. CONCLUSION 

In this paper, the concepts of Q-I vague sub near-ring and Q-I vague ideals of near-ring are 

discussed. Also properties related to Q-I vague ideals of near-ring are discussed. Then we have 

observed what happens with the homomorphic image and pre-image of Q-I vague ideals with the 
help of some previous concepts. 
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