THE UPPER CONNECTED EDGE FIXING EDGE-TO-VERTEX STEINER NUMER OF A GRAPH

DR. R. AJITHA, Assistant Professor of Mathematics, Scott Christian College

(Autonomous), Nagercoil-629 003, India. Affiliated to Manonmaniam Sundaranar

University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India.

ABSTRACT: Let *G* be a connected graphand $e \in E(G)$. An edge fixing edge-to-vertex Steiner set *W* is called connected edge fixing edge-to-vertex Steiner set *G* if $\langle W \rangle$ is connected. The minimum cardinality of a connected edge fixing edge-to-vertex Steiner set of *G* is the connected edge fixing edge-to-vertex Steiner number of e of *G* and to denoted by $s_{cefev}(G)$. The edge fixing edge-to-vertex Steiner set of *e* of *G* of cardinality $s_{cefev}(G)$ is denoted by s_{cefev} -set of *G*. Some general properties satisfied by this concept is studied. It is shown that for positive integers *r*, *d* and $n \ge 2$ with $r \le d \le 2r$, there exists a connected graph *G* with radG = r, diamG = d and $s_{cefev}(G) = n$ for some edge e in *G*. For any positive integers *a* and *b* with $2 \le a \le b$, there exists a connected graph *G* such that $s_{cev}(G) = a$ and $s_{cefev}(G) = b$ for some edge *e* in *G*.

Keywords: the edge fixing edge-to-vertex Steiner number, the connected edge fixing edge-to-vertex Steiner number, the upper connected edge fixing edge-to-vertex Steiner number. **AMS Subject Classification:** 05C12.

1. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of Gare denoted by p and q respectively. The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u - vpath in G. An u - v path of length d(u, v) is called an u - v geodesic. For basic graph theoretic terminology, we refer to Harary [2]. For a non-empty set W of vertices in a connected graph G, the Steiner distance d(W) of W is the minimum size of a connected subgraph of G containing W. Necessarily, each such subgraph is a tree and is called a Steiner tree with respect to W or a Steiner W - tree. It is to be noted that d(W) = d(u, v) when $W = \{u, v\}$. The set of all vertices of G that lie on some Steiner W-tree is denoted by S(W). If S(W) = V, then W is called a Steiner set for G. A Steiner set of minimum cardinality is a minimum Steiner set or simply a s-set of G and this cardinality is the Steiner number s(G) of G. The Steiner number of a graph was introduced and studied in [3] and further studied in [4,5,6,7]. When $W = \{u, v\}$, every Steiner W-tree in G is a u - v geodesic. Also S(W) equals the set of vertices lying in u - v geodesic, inclusive of u, v. Hence Steiner sets, Steiner numbers can be consider as extensions of geodesic concepts. Let G be a connected graphand $e \in E(G)$. An edge fixing edge-to-vertex Steiner set W is called connected edge fixing edge-to-vertex Steiner set G if $\langle W \rangle$ is connected. The minimum cardinality of a connected edge fixing edge-to-vertex Steiner set of G is the connected edge fixing edge-tovertex Steiner number of e of G and to denoted by $s_{cefev}(G)$. The edge fixing edge-to-vertex Steiner set of *e* of *G* of cardinality $s_{cefev}(G)$ is denoted by s_{cefev} -set of *G*.

Theorem 1.1[1] Let e be an edge of G. Let v be an extreme vertex of a connected graph G such that v is not incident with e. Then every connected edge fixing edge-to-vertex Steiner set of an edge e of G contains at least one extreme edge that is incident with v. (Whether e is an extreme edge or not).

Corollary 1.2[1] Let *e* be an edge of *G* and *f* be an end edge of a connected graph *G* such that $e \neq f$. Then *f* belongs to every connected edge fixing edge-to-vertex Steiner set of an edge *e* of *G*.

Theorem 1.3[1]. For a connected graph *G* with size $q \ge 3$, $s_{cefev}(G) = q$ if and only if *e* is an internal edge of a tree.

2. The Upper Connected Edge Fixing Edge-To-Vertex Steiner Number of a Graph

Definition 2.1. An edge fixing edge-to-vertex Steiner W in a connected graph G is called a *minimum connected fixing edge-to-vertex Steiner set of G* if no proper subset W is an edge fixing edge-to-vertex Steiner set of G. The upper connected edge fixing edge-to-vertex Steiner number of G is the *minimum cardinality of a minimum connected edge fixing edge-to-vertex Steiner number of G*. It is denoted by $s_{cefev}^+(G)$.

Remark 2.3. Every minimum connected edge fixing edge-to-vertex Steiner set of G is a minimal connected edge fixing edge-to-vertex Steiner set of G and the converse need not be true.

For the graph G given in Figure 2.1, let $e = v_1v_2$ and $W_2 = \{v_6v_7, v_7v_9, v_5v_9, v_5v_4\}$. Then W_2 is a miminal connected edge fixing edge-to-vertex Steiner set but not a minimum edge fixing edge-to-vertex Steiner set of an edge *e* of G.

Theorem 2.4. For every connected graph $G, 1 \le s_{cefev}(G) \le s^+_{cefev}(G) \le q$ for some edge $e \in G$.

Proof. For an edge e of G, any connected edge fixing edge-to-vertex Steiner set needs at least one edge and so $s_{cefev}(G) \ge 1$. For an edgeeof G, since every minimal connected edge fixing edge-to-vertex Steiner set $s_{cefev}(G) \le s_{cefev}^+(G)$. Also for an edge e, since E(G) is a connected edge fixing edge-to-vertex Steiner set of an edge eof G, it is clear that $s_{cefev}^+(G) \le q$. Then $1 \le s_{cefev}(G) \le s_{cefev}^+(G) \le q$ for some edge $e \in G$. **Remark 2.5.** The bound in Theorem 2.4 can be sharp.

For the path $G = P_p$ $(p \ge 3)$, for an end edge e in E(G), $s_{cefev}(G) = 1$. For an internal edge of a tree, $s_{cefev}(G) = s_{cefev}^+(G) = q$.

The bound in Theorem 2.4 can be strict.

For the graph *G* given in Figure 2.1. Let $e = v_1v_2$. Then $W_1 = \{v_4v_5, v_5v_6, v_5v_9\}$ is a s_{cefev} -set of $Gs_{cefev}(G) = 3$. Also $W_2 = \{v_6v_7, v_7v_9, v_5v_9, v_5v_4\}$ is the minimal connected edge fixing edge-to-vertex Steiner set of *G* so that $s_{cefev}^+(G) \ge 4$. It is easily verified that there is no minimal connected edge fixing edge-to-vertex Steiner set of cardinality more than 4. Therefore $s_{cefev}^+(G) = 4$. Thus $1 < s_{cefev}(G) < s_{cefev}^+(G) < q$. Theorem 2.6. For a connected graph G, $s_{v}^+ = (G) = gi$ and only if $s_{v} = (G) = g$ for some

Theorem 2.6. For a connected graph G, $s_{cefev}^+(G) = q$ if and only if $s_{cefev}(G) = q$, for some edge e in E(G).

Proof. Let $s_{cefev}^+(G) = q$ for an edge e of G. Then W = V(G) is the unique minimal connected edge fixing edge-to-vertex Steiner set of an edge e of G. Since no proper subset of W is a connected edge fixing edge-to-vertex Steiner set of an edge e of G, W is the unique minimum connected edge fixing edge-to-vertex Steiner set of G and so that $s_{cefev}(G) = q$. The converse is clear.

Theorem 2.7. For the connected graph G, $s_{cefev}(G) = q - 1$ if and only if $s_{cefev}^+(G) = q - 1$ for every edge e in E(G).

Proof. Let $s_{cefev}(G) = q - 1$. Then $S = E(G) - \{e\}$ is the unique minimal connected edge fixing edge-to-vertex Steiner set of an edge *e* of *G*. Since no proper subset of *S* is an edge

fixing edge-to-vertex Steiner set of an edge e of G, it is clear that S is the unique minimum connected edge fixing edge-to-vertex Steiner set of G and so $s_{cefev}^+(G) = q - 1$. The converse follows from Theorem 2.4. **Corollary 2.8.** For the connected graph G of size $q \ge 4$, the following are equivalent for the some edge e in G.

(i) $s_{cefev}(G) = q$ (ii) $s^+_{cefev}(G) = q$ (iii) *e* is an internal edge of a tree.

Proof. It follows from Theorems 1.3[1] and 2.6.

Corollary 2.9. For the connected graph G of size $q \ge 4$, the following are equivalent for the some edge e in G.

(i)
$$s_{cefev}(G) = q - 1$$

(ii) $s^+_{cefev}(G) = q - 1$
(iii) $G = K_{1,q-1}$

Proof. It follows from Theorem 2.7 and Theorem 1.4[1].

Theorem 2.10. For the complete graph $G = K_p$ $(p \ge 4)$, $s_{cefev}^+(K_p) = p - 2$ for any edge e of G.

Proof. Let e = uv be an edge of G. Let W be any set of p - 2 adjacent edges of K_p incident at the vertex v. Since each vertex of K_p lies on Steiner W_{ev} -tree of G, it follows that W is a connected edge fixing edge-to-vertex Steiner set of an edge e of G. If W is not a minimal connected edge fixing edge-to-vertex Steiner set of an edge e of G, then there exists a proper subset of W' of W such that W' is a connected edge fixing edge-to-vertex Steiner set of an edge e of G. Therefore there exists atleast one vertex, say u of K_p such that u is not incident with any edge of W'. Hence u does not belong to any Steiner W'_{ev} -tree of G, Which is a contradiction. Hence W is a minimal connected edge fixing edge-to-vertex Steiner set of an edge e of G. Therefore $s_{cefev}^+(G) \ge p - 2$. Suppose that there exists a minimal connected edge fixing edge-to-vertex Steiner set of an edge e of G of M such that $|M| \ge p - 1$. Since $M \cup \{e\}$ contains at least p edges, $\langle M \rangle$ contains at least one cycle. Let $M' = M - \{f\}$, where f is an edge of a cycle which lies in $\langle M \rangle$. It is clear that M' is a connected edge fixing edge-to-vertex Steiner set with $W' \subset W$, Which is a contradiction. Therefores $_{cefev}^+(G) = p - 2$.

References

[1] R. Ajitha, Joseph Robin S., The Connected Edge fixing Edge-to-Vertex Steiner number of a Graph, International Journal of Research and Analytical Reviews, (2019)Vol 6, Issue, pp 244-253.

- [2] F.Buckley, F. Harary, Distance in Graphs, Addition- Wesley, Redwood City, CA, 1990.
- [3] G. Chartrand and P. Zhang, The Steiner number of a graph, Discrete Mathematics
- Vol.242 (2002), pp. 41-54.
- [4] Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the Steiner, geodetic and hull number of graphs, Discrete Mathematics 293 (2005) 139 - 154.
- [5] R. Eballe, S. Canoy, Jr., Steiner sets in the join and composition of graphs, Congressus Numerantium, 170(2004)65-73.