THE UPPER CONNECTED EDGE FIXING EDGE-TO-VERTEX STEINER NUMER

 OF A GRAPHDR. R. AJITHA, Assistant Professor of Mathematics, Scott Christian College
(Autonomous), Nagercoil-629 003, India. Affiliated to Manonmaniam Sundaranar
University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India.

Abstract

Let G be a connected graphand $e \in E(G)$. An edge fixing edge-to-vertex Steiner set W is called connected edge fixing edge-to-vertex Steiner set G if $<W\rangle$ is connected. The minimum cardinality of a connected edge fixing edge-to-vertex Steiner set of G is the connected edge fixing edge-to-vertex Steiner number of e of G and to denoted by $s_{c e f e v}(G)$. The edge fixing edge-to-vertex Steiner set of e of G of cardinality $s_{c e f e v}(G)$ is denoted by $s_{c e f e v}$-set of G. Some general properties satisfied by this concept is studied. It is shown that for positive integers r, d and $n \geq 2$ with $r \leq d \leq 2 r$, there exists a connected graph G with $\operatorname{rad} G=r, \operatorname{diam} G=d$ and $s_{c e f e v}(G)=n$ for some edge e in G. For any positive integers a and b with $2 \leq a \leq b$, there exists a connected graph G such that $s_{c e v}(G)=a$ and $s_{c e f e v}(G)=b$ for some edge e in G.

Keywords: the edge fixing edge-to-vertex Steiner number, the connected edge fixing edge-to-vertex Steiner number, the upper connected edge fixing edge-to-vertex Steiner number.
AMS Subject Classification: 05C12.

1. INTRODUCTION

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. For basic graph theoretic terminology, we refer to Harary [2]. For a non-empty set W of vertices in a connected graph G, the Steiner distance $d(W)$ of W is the minimum size of a connected subgraph of G containing W. Necessarily, each such subgraph is a tree and is called a Steiner tree with respect to W or a Steiner W-tree. It is to be noted that $d(W)=d(u, v)$ when $W=\{u, v\}$. The set of all vertices of G that lie on some Steiner W-tree is denoted by $S(W)$. If $S(W)=V$, then W is called a Steiner set for G. A Steiner set of minimum cardinality is a minimum Steiner set or simply a s-set of G and this cardinality is the Steiner number $s(G)$ of G. The Steiner number of a graph was introduced and studied in [3] and further studied in $[4,5,6,7]$. When $W=\{u, v\}$, every Steiner W-tree in G is a $u-v$ geodesic. Also $S(W)$ equals the set of vertices lying in $u-v$ geodesic, inclusive of u, v. Hence Steiner sets, Steiner numbers can be consider as extensions of geodesic concepts. Let G be a connected graphand $e \in E(G)$. An edge fixing edge-to-vertex Steiner set W is called connected edge fixing edge-to-vertex Steiner set G if $\langle W\rangle$ is connected. The minimum cardinality of a connected edge fixing edge-to-vertex Steiner set of G is the connected edge fixing edge-tovertex Steiner number of e of G and to denoted by $s_{c e f e v}(G)$. The edge fixing edge-to-vertex Steiner set of e of G of cardinality $s_{\text {cefev }}(G)$ is denoted by $s_{\text {cefev }}$-set of G.
Theorem 1.1[1] Let e be an edge of G. Let v be an extreme vertex of a connected graph G such that v is not incident with e. Then every connected edge fixing edge-to-vertex Steiner set of an edge e of G contains at least one extreme edge that is incident with v. (Whether e is an extreme edge or not).

Corollary 1.2[1] Let e be an edge of G and f be an end edge of a connected graph G such that $e \neq f$. Then f belongs to every connected edge fixing edge-to-vertex Steiner set of an edge e of G.
Theorem 1.3[1]. For a connected graph G with size $q \geq 3, s_{\text {cefev }}(G)=q$ if and only if e is an internal edge of a tree.

2. The Upper Connected Edge Fixing Edge-To-Vertex Steiner Number of a Graph

Definition 2.1. An edge fixing edge-to-vertex Steiner W in a connected graph G is called a minimum connected fixing edge-to-vertex Steiner set of G if no proper subset W is an edge fixing edge-to-vertex Steiner set of G. The upper connected edge fixing edge-to-vertex Steiner number of G is the minimum cardinality of a minimum connected edge fixing edge-tovertex Steiner number of G. It is denoted by $s_{\text {cefev }}^{+}(G)$.
Remark 2.3. Every minimum connected edge fixing edge-to-vertex Steiner set of G is a minimal connected edge fixing edge-to-vertex Steiner set of G and the converse need not be true.
For the graph G given in Figure 2.1, let $e=v_{1} v_{2}$ and $W_{2}=\left\{v_{6} v_{7}, v_{7} v_{9}, v_{5} v_{9}, v_{5} v_{4}\right\}$.
Then W_{2} is a miminal connected edge fixing edge-to-vertex Steiner set but not a minimumedge fixing edge-to-vertex Steiner set of an edge eof G.
Theorem 2.4. For every connected graph $G, 1 \leq s_{c e f e v}(G) \leq s_{\text {cefev }}^{+}(G) \leq q$ for some edge $e \in G$.
Proof. For an edge e of G, any connected edge fixing edge-to-vertex Steiner set needs at least one edge and so $s_{\text {cefev }}(G) \geq 1$. For an edgeeof G, since every minimal connected edge fixing edge-to-vertex Steiner set $s_{c e f e v}(G) \leq s_{c e f e v}^{+}(G)$. Also for an edge e, since $E(G)$ is a connected edge fixing edge-to-vertex Steiner set of an edge e of G, it is clear that $s_{\text {cefev }}^{+}(G) \leq q$. Then $1 \leq s_{\text {cefev }}(G) \leq s_{\text {cefev }}^{+}(G) \leq q$ for some edge $e \in G$.
Remark 2.5. The bound in Theorem 2.4 can be sharp.
For the path $G=P_{p}(p \geq 3)$, for an end edge e in $E(G), s_{c e f e v}(G)=1$. For an internal edge of a tree, $s_{c e f e v}(G)=s_{c e f e v}^{+}(G)=q$.
The bound in Theorem 2.4 can be strict.
For the graph G given in Figure 2.1. Let $e=v_{1} v_{2}$. Then $W_{1}=\left\{v_{4} v_{5}, v_{5} v_{6}, v_{5} v_{9}\right\}$ is a $s_{\text {cefev }}$-set of $G s_{\text {cefev }}(G)=3$. Also $W_{2}=\left\{v_{6} v_{7}, v_{7} v_{9}, v_{5} v_{9}, v_{5} v_{4}\right\}$ is the minimal connectededge fixing edge-to-vertex Steiner set of G so that $s_{\text {cefev }}^{+}(G) \geq 4$. It is easily verified that there is no minimal connected edge fixng edge-to-vertex Steiner set of cardinality more than 4. Therefores $s_{\text {cefev }}^{+}(G)=4$. Thus $1<s_{\text {cefev }}(G)<s_{\text {cefev }}^{+}(G)<q$.
Theorem 2.6. For a connected graph $G, s_{c e f e v}^{+}(G)=q$ if and only if $s_{c e f e v}(G)=q$, for some edge e in $E(G)$.
Proof. Let $s_{c e f e v}^{+}(G)=q$ for an edge e of G. Then $W=V(G)$ is the unique minimal connected edge fixing edge-to-vertex Steiner set of an edge e of G. Since no proper subset of W is a connected edge fixing edge-to-vertex Steiner set of an edge e of G, W is the unique minimum connected edge fixing edge-to-vertex Steiner set of G and so that $s_{c e f e v}(G)=q$.
The converse is clear.
Theorem 2.7. For the connected graph $G, s_{\text {cefev }}(G)=q-1 \quad$ if and only if $s_{\text {cefev }}^{+}(G)=$ $q-1$ for every edge e in $E(G)$.
Proof. Let $s_{c e f e v}(G)=q-1$. Then $S=E(G)-\{e\}$ is the unique minimal connected edge fixing edge-to-vertex Steiner set of an edge e of $\quad G$. Since no proper subset of S is an edge
fixing edge-to-vertex Steiner set of an edge e of G, it is clear that S is the unique minimum connected edge fixing edge-to-vertex Steiner set of G and so $s_{\text {cefev }}^{+}(G)=q-1$.The converse follows from Theorem 2.4.Corollary 2.8. For the connected graph G of size $q \geq 4$, the following are equivalent for the some edge e in G.
(i) $s_{\text {cefev }}(G)=q$
(ii) $s_{\text {cefev }}^{+}(G)=q$
(iii) e is an internal edge of a tree.

Proof. Itfollows from Theorems 1.3[1] and 2.6.
Corollary 2.9. For the connected graph G of size $q \geq 4$, the following are equivalent for the some edge e in G.
(i) $s_{c e f e v}(G)=q-1$
(ii) $s_{\text {cefev }}^{+}(G)=q-1$
(iii) $G=K_{1, q-1}$

Proof. It follows from Theorem 2.7 and Theorem 1.4[1].
Theorem 2.10. For the complete graph $G=K_{p}(p \geq 4), s_{\text {cefev }}^{+}\left(K_{p}\right)=p-2$ for any edge e of G.
Proof. Let $e=u v$ be an edge of G. Let W be any set of $p-2$ adjacent edges of K_{p} incident at the vertex v. Since each vertex of K_{p} lies on Steiner $W_{e v}$-tree of G, it follows that W is a connected edge fixing edge-to-vertex Steiner set of an edge e of G. If W is not a minimal connected edge fixing edge-to-vertex Steiner set of an edge e of G, then there exists a proper subset of W^{\prime} of W such that W^{\prime} is a connectededge fixing edge-to-vertex Steiner set of an edge e of G. Therefore there exists atleast one vertex, say u of K_{p} such that u is not incident with any edge of W^{\prime}. Hence u does not belong to any Steiner $W^{\prime}{ }_{e v}$-tree of G, Which is a contradiction. Hence W is a minimal connected edge fixing edge-to-vertex Steiner set of an edge e of G. Therefore $s_{c e f e v}^{+}(G) \geq p-2$. Suppose that there exists a minimal connected edge fixing edge-to-vertex Steiner set of an edge e of G of M such that $|M| \geq p-1$. Since $M \cup\{e\}$ contains atleast p edges, $\langle M\rangle$ contains at least one cycle. Let $M^{\prime}=M-\{f\}$, where f is an edge of a cycle which lies in $\langle M\rangle$. It is clear that M^{\prime} is a connected edge fixing edge-to-vertex Steiner set with $W^{\prime} \subset W$, Which is a contradiction.
Therefores $_{\text {cefev }}^{+}(G)=p-2$.

References

[1] R. Ajitha, Joseph Robin S., The Connected Edge fixing Edge-to-Vertex Steiner number of a Graph, International Journal of Research and Analytical Reviews, (2019)Vol 6, Issue, pp 244-253.
[2] F.Buckley, F. Harary, Distance in Graphs, Addition- Wesley, Redwood City, CA,1990.
[3] G. Chartrand and P. Zhang, The Steiner number of a graph, Discrete Mathematics
Vol. 242 (2002), pp. 41-54.
[4] Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the Steiner, geodetic and hull number of graphs, Discrete Mathematics 293 (2005) 139-154.
[5] R. Eballe, S. Canoy, Jr., Steiner sets in the join and composition of graphs, Congressus Numerantium, 170(2004)65-73.

